11 エキゾチックなハドロンと原子核

11.1 エキゾチック系

- 多くの種類がある原子核・ハドロン
 大多数の従う法則から外れたものをエキゾチックなハドロン・原子核と呼ぶ
 (厳密な定義がなく、慣習でグループ化されている場合も多い)
- 研究意義:法則から外れたものを調べることで、法則の起源を理解する
- •エキゾチックなハドロン: §11.2、エキゾチックな原子核: §11.3
- 他にも π, K, η 中間子を含む原子核、中性子過剰な原子核で現れるハロー、原子核のクラスター構造など

11.2 エキゾチックハドロン

- カラー閉じ込め以外にハドロンの従う法則性は?
- 現在までに観測されているメソン(~ 210 種、図 30)とバリオン(~ 180 種、図 31)
- フレーバー量子数による分類
 - 軽いクォークをq = u, d, s、重いクォークをQ = c, bと表記
 - 図 30 のメソンは全て $\bar{q}q$ 、 $\bar{Q}q(Q\bar{q})$ 、 $\bar{Q}Q$ のフレーバー量子数 (エキゾチックな $J^{PC} = 1^{-+}$ を持つ $\pi_1(1400)$ 、 $\pi_1(1600)$ は $\bar{q}q$ では構成できない)
 - 図 31 のバリオンは全て qqq、Qqq、QQq のフレーバー量子数
 - qqqqq 状態のフレーバー SU(3) 表現

 $\mathbf{3}\otimes\mathbf{3}\otimes\mathbf{3}\otimes\mathbf{3}\otimes\overline{\mathbf{3}}=\mathbf{1}\oplus\mathbf{1}\oplus\mathbf{1}\oplus\mathbf{1}\oplus\mathbf{8}\oplus\cdots\oplus\mathbf{8}\oplus\mathbf{10}\oplus\mathbf{10}\oplus\mathbf{10}\oplus\mathbf{10}$

$$\oplus 10 \oplus 10 \oplus 27 \oplus 27 \oplus 27 \oplus 35$$

*qqq*の表現(1,8,10)に加えて10,27,35表現に属する状態が可能

- エキゾチックなフレーバー量子数:qq̄、qqq では作れない表現
 10,10,27 に属するメソン、10,27,35 に属するバリオンなど
- エキゾチックなフレーバーを持つ状態は確立されていない
 観測されない理由は解明されていない(カラー閉じ込めと同様に非自明な問題)

問題 11.1*

1) *u*,*d*,*s*クォークで構成されるメソンを考える。以下のアイソスピン*I*、アイソスピンの第3成分*I*₃、ストレンジネス*S*を持つ状態のうち、*qq*で構成できないエキゾチックなメソンを全て示せ。

a) (*I*, *I*₃, *S*) = (1, 1, 0), b) (*I*, *I*₃, *S*) = (1/2, 1/2, -1), c) (*I*, *I*₃, *S*) = (0, 0, -2), d) (*I*, *I*₃, *S*) = (1/2, -1/2, +1) 2) *u*, *d*, *s* クォークで構成されるバリオンを考える。以下の *I*、 *I*₃、*S* を持つ状態のうち、qqq で構成できない エキゾチックなバリオンを全て示せ。

a) $(I, I_3, S) = (3/2, 3/2, 0)$, b) $(I, I_3, S) = (1, 1, -1)$ c) $(I, I_3, S) = (0, 0, +1)$, d) $(I, I_3, S) = (3/2, -3/2, -2)$

LIGHT UNFLAVORED				STRANGE		CHARMED,	STRANGE	cc continued		
	(S = C = B =		<i>C (D</i> C)	$(S = \pm 1, C = B = 0)$		$(C = \pm 1, S = \pm 1)$		$I^{G}(J^{PC})$		
+	$P(J^{PC})$		$P(J^{PC})$		<i>I</i> (<i>J</i> ^P)	(+ possibly no	$I(J^P)$	• ψ ₂ (3823)	$0^{-}(2^{-})$	
$\bullet \pi^{\pm}$	$1^{-}(0^{-})$	• $\pi_2(1670)$	$1^{-}(2^{-+})$	• K [±]	$1/2(0^{-})$	• D [±]	0(0-)	• $\psi_3(3842)$	0(3)	
• <i>π</i> •	1 (0 +) 0 + (0 - +)	• $\phi(1680)$	0 (1)	• K°	1/2(0) $1/2(0^{-1})$	• D_s • $D^{*\pm}$	$0(0^{?})$	$\chi_{c0}(3860)$	$0^+(0^+)$ $0^+(1^+)$	
• 1/ • fo(500)	$0^{+}(0^{+})$	• $\rho_3(1090)$	$1^{+}(3^{-})$ $1^{+}(1^{-})$	• $K_{\tilde{S}}^0$	$1/2(0^{-1})$	• D_s^*	$0(0^+)$	• $\chi_{c1}(3072)$	$1^{+}(1^{+})$	
• <i>a</i> (770)	$1^{+}(1^{-})$	• $p(1700)$ • $a_0(1700)$	$1^{-}(2^{+}+)$	• K*(700)	$1/2(0^+)$	• $D_{s0}(2317)$	$0(0^{+})$	• $\chi_{c0}(3915)$	$0^{+}(0^{+}+)$	
• $\omega(782)$	$0^{-}(1^{-})$	• $f_0(1710)$	$0^{+}(0^{+}+)$	• K*(802)	$1/2(0^{-1})$	• $D_{c1}(2536)^{\pm}$	$0(1^+)$	• $\chi_{c2}(3930)$	$0^{+}(2^{+}+)$	
• n'(958)	$0^{+}(0^{-}+)$	X(1750)	$?^{-}(1^{-})$	• $K_1(1270)$	$\frac{1}{2}(1^{+})$	• $D_{c2}^{*}(2573)$	$0(2^+)$	X(3940)	? [?] (???)	
• $f_0(980)$	$0^{+}(0^{+}+)$	$\eta(1760)$	0+(0-+)	• $K_1(1400)$	$1/2(1^+)$	$D_{s0}(2590)^+$	$0(0^{-})$	• X(4020) [±]	$1^{+}(?^{?-})$	
• a ₀ (980)	$1^{-}(0^{++})$	• π(1800)	$1^{-}(0^{-+})$	• K*(1410)	$1/2(1^{-})$	• D [*] _{\$1} (2700) [±]	$0(1^{-})$	 ψ(4040) 	$0^{-}(1^{})$	
 φ(1020) 	0-(1)	f ₂ (1810)	$0^+(2^{++})$	• K ₀ (1430)	$1/2(0^+)$	$D_{s1}^{*}(2860)^{\pm}$	$0(1^{-})$	$X(4050)^{\pm}$	$1^{-}(?^{\prime+})$	
• $h_1(1170)$	$0^{-}(1^{+})$	X(1835)	? [!] (0 ⁻⁺)	• K [*] ₂ (1430)	1/2(2+)	• D [*] ₅₃ (2860) [±]	0(3-)	$X(4055)^{\pm}$	$1^{+}(?^{\prime})$	
• $b_1(1235)$	$1^+(1^{+-})$	 φ₃(1850) 	0-(3)	• K(1460)	1/2(0 ⁻)	X ₀ (2900)	?(0+)	$X(4100)^{\pm}$	$1^{-}(?')$	
• $a_1(1260)$	$1^{-}(1^{++})$	 η₂(1870) 	$0^+(2^{-+})$	K ₂ (1580)	$1/2(2^{-})$	$X_1(2900)$	$?(1^{-})$	• $\chi_{c1}(4140)$	$0^+(1^+)$	
• $f_2(1270)$	$0^{+}(2^{++})$	• π ₂ (1880)	$1^{-}(2^{-+})$	K(1630)	1/2(?')	<i>D</i> _{sJ} (3040) [±]	0(? [?])	• $\psi(4160)$	0(1)	
• $f_1(1285)$	$0^{+}(0^{-}+)$	$\rho(1900)$	$1^{+}(1^{-})$	• $K_1(1650)$	$1/2(1^+)$	BOTT	OM	Z(4160)	(1+(1+-))	
• $\eta(1295)$	$1^{-}(0^{-+})$	$n_2(1910)$	$1^{-}(0^{+}^{+})$	• K*(1680)	$1/2(1^{-})$	(<i>B</i> = 1	±1)	$z_c(4200)$	$0^{-}(1^{-})$	
• $a_{2}(1320)$	$1^{-}(2^{++})$	• $f_0(1950)$	$0^{+}(2^{+}+)$	• $K_2(1770)$	$1/2(2^{-})$	• B [±]	$1/2(0^{-})$	$R_{\infty}(4240)$	$1^{+}(0^{-})$	
• $f_0(1370)$	$0^{+}(0^{+}+)$	• $a_1(1970)$	$1^{-}(4^{++})$	• $K_3(1780)$	1/2(3)	• B ⁰	$1/2(0^{-})$	$X(4250)^{\pm}$	$1^{-}(?^{?+})$	
• $\pi_1(1400)$	$1^{-}(1^{-}+)$	$\rho_3(1990)$	$1^{+}(3^{-})$	• $K_2(1820)$	1/2(2)	● <i>B</i> [±] / <i>B</i> ⁰ AD	MIXTURE	• $\chi_{c1}(4274)$	$0^{+}(1^{++})$	
• η(1405)	0+(0-+)	$\pi_2(2005)$	$1^{-}(2^{-+})$	$K^{(1050)}$	$1/2(0^+)$	• $B^{\pm}/B^0/B^0_{s}$	/ <i>b</i> -baryon	X(4350)	$0^{+}(?^{?+})$	
• $h_1(1415)$	$0^{-(1+-)}$	• f ₂ (2010)	$0^{+}(2^{+}+)$	• $K^*(1980)$	$\frac{1}{2}(0^{+})$	ADMIXTUF	E	 ψ(4360) 	$0^{-}(1^{})$	
• f ₁ (1420)	0+(1++)	$f_0(2020)$	$0^{+}(0^{++})$	• $K_2(1)00)$	$1/2(2^{+})$	trix Element	CKIVI IVIA- Is	 ψ(4415) 	0_(1)	
• ω(1420)	$0^{-}(1^{})$	• f ₄ (2050)	0+(4++)	$K_{4}(2010)$	$1/2(2^{-1})$	• <i>B</i> *	1/2(1-)	• Z _c (4430)	$1^+(1^{+-})$	
$f_2(1430)$	$0^+(2^{++})$	$\pi_2(2100)$	$1^{-}(2^{-+})$	$K_3(2320)$	$1/2(3^+)$	• <i>B</i> ₁ (5721)	$1/2(1^+)$	$\chi_{c0}(4500)$	$0^+(0^{++})$	
• a ₀ (1450)	$1^{-}(0^{++})$	$f_0(2100)$	$0^+(0^{++})$	$K_{5}^{*}(2380)$	$1/2(5^{-})$	B* _J (5732)	?(?')	X(4630)	$0^{+}(?^{+})$	
• $\rho(1450)$	$1^{+}(1^{-})$	$T_2(2150)$	$0^+(2^+)^+$ $1^+(1^-)^-$	K ₄ (2500)	$1/2(4^{-})$	• B ₂ (5747)	$1/2(2^+)$	• $\psi(4000)$	0(1)	
• $\eta(1475)$	$0^+(0^+)$	$\rho(2150)$	$1^{-}(1^{-})$	K(3100)	? [?] (? ^{??})	B _J (5840)	1/2(?!)	$\chi_{c1}(4005)$	$0^{+}(0^{+}+)$	
$f_1(1510)$	$0^{+}(1^{++})$	$f_0(2200)$	$0^{+}(0^{+}+)$	CHARM	IFD	(5970)رe B	1/2(?:)	λευ(4100)	0(0)	
• $f'_2(1525)$	$0^{+}(2^{++})$	f ₀ (2200) f _J (2220)	$0^{+}(2^{++})$	$(C = \pm$	1)	BOTTOM, STRANGE		b.	b an a a statas)	
f ₂ (1565)	0+(2++)		or 4 ^{+ +})	• D^{\pm}	1/2(0-)	$(B = \pm 1,$	S = ∓1)		JII-qq states)	
$\rho(1570)$	$1^+(1^{})$	η(2225)	0+(0 - +)	• D ⁰	$1/2(0^{-})$	• B_s^0	0(0-)	• $\eta_b(1S)$	$0^+(0^{-+})$	
$h_1(1595)$	$0^{-}(1^{+})$	$\rho_3(2250)$	$1^+(3^{})$	• D*(2007) ⁰	$1/2(1^{-})$	• <i>B</i> [*] _s	$0(1^{-})$	• 7 (15)	$0 (1) 0^+ (0^+ +)$	
• $\pi_1(1600)$	$1^{-}(1^{-+})$	• $f_2(2300)$	$0^+(2^+)$	• $D^*(2010)^{\pm}$	1/2(1-)	$X(5568)^{\pm}$?(?')	• $\chi_{b0}(1P)$	$0^+(0^+)$ $0^+(1^+)$	
• $a_1(1640)$	1(1++)	$f_4(2300)$	$0^{+}(4^{++})$	• D ₀ *(2300)	1/2(0+)	• $B_{s1}(5830)^0$	$0(1^+)$	• $\chi_{b1}(1P)$	$0^{-}(1^{+})$	
$f_2(1640)$	$0^+(2^++)$ $0^+(2^-+)$	$I_0(2330)$	$0^+(0^+, 1)$	• D ₁ (2420)	$1/2(1^+)$	• B [*] _{\$2} (5840) ^o	$0(2^{+})$	• $\gamma_{P}(1P)$	$0^{+}(2^{+})$	
• $\eta_2(1045)$	$0^{-}(2^{-})$	• $l_2(2340)$	$1^{+}(5^{-})$	• $D_1(2430)^0$	$1/2(1^{+})$	$B_{sJ}^{*}(5850)$	((?))	$\eta_{b}(2S)$	$0^{+}(0^{-}+)$	
• $\omega_{(1050)}$	$0^{-}(3^{-})$	X(2370)	$\frac{1}{2}(3, 1)$	• D ₂ (2460)	$1/2(2^{+})$	$B_{s,J}(6063)^{\circ}$	0(?)	• r(25)	$0^{-(1^{-})}$	
- ~3(1010)	0 (0)	$f_{6}(2510)$	$0^{+}(6^{+}+)$	$D_0(2550)^\circ$	1/2(0)	$D_{sJ}(0114)^{-1}$	0(:)	• $\Upsilon_2(1D)$	$0^{-}(2^{-})$	
		. ,	()	$D_{J}(2600)^{-1}$	$\frac{1}{2}(1)$	воттом, (HARMED	• χ _{b0} (2P)	0+(0++)	
				$D_{2}(2740)^{0}$	1/2(1) $1/2(2^{-1})$	(B=C)	$=\pm1)$	• $\chi_{b1}(2P)$	$0^+(1^{++})$	
				• D [*] ₂ (2750)	$1/2(3^{-})$	• B_c^+	0(0-)	• $h_b(2P)$	$0^{-}(1^{+})$	
				$D_{1}^{*}(2760)^{0}$	$1/2(1^{-})$	• $B_c(2S)^{\pm}$	0(0-)	• χ _{b2} (2P)	$0^+(2^+)$	
				$D(3000)^{0}$	$1/2(?^{?})$			• 7(35)	$0^{-}(1^{-})$	
			()	/ ()	(+ possibly no	n– <i>q</i> q states)	• $\chi_{b1}(3P)$	$0^+(1^+)$ $0^+(2^++)$		
					• n _c (15)	$0^{+}(0^{-+})$	• $\Upsilon(4S)$	$0^{-}(1^{-})$		
						• $J/\psi(1S)$	$0^{-}(1^{-})$	• $Z_{b}(10610)$	$1^{+}(1^{+})$	
						• $\chi_{c0}(1P)$	0+(0++)	• $Z_b(10650)$	1+(1+-)	
						• $\chi_{c1}(1P)$	0+(1++)	$\gamma(10753)$?(1)'	
						• $h_c(1P)$	0-(1+-)	 <i>γ</i>(10860) 	0-(1)	
						• $\chi_{c2}(1P)$	$0^+(2^{++})$	 <i>γ</i>(11020) 	0-(1)	
						• $\eta_c(2S)$	$0^+(0^{-+})$	OTH	IFR	
						• $\psi(25)$	U(1)	Further Sta	ites	
1						■ψ(s(10)	υ(Γ)			

See also the table of suggested $q\overline{q}$ quark-model assignments in the Quark Model section. • Indicates particles that appear in the preceding Meson Summary Table. We do not regard the other entries as being established.

図 30: 観測されているメソンの表。The Review of Particle Physics, R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) から引用。ファイルはhttp://pdg.lbl.govから入手可能。

This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3- or 4-star status are included in the Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the table are not established baryons. The names with masses are of baryons that decay strongly. The spin-parity J^P (when known) is given with each particle. For the strongly decaying particles, the J^P values are considered to be part of the names.

n	1/2+	****	A(1020)	2/0+ ****	ς+	1/2+	****	<u></u> +	1/2+	****	A 0	1/2+	***
p n	$\frac{1}{2^+}$	****	$\Delta(1232)$	2/2+ ****	Σ^{0}	$\frac{1}{2^+}$	****	n_c	1/2	***	16 1 (E010)0	1/2	***
M(1AA0)	$\frac{1}{2^+}$	****	$\Delta(1000)$	1/2 ****	Σ -	$\frac{1}{2^+}$	****	$\Lambda_{C}(2595)$	$\frac{1}{2}$	***	$\sqrt{(E000)_0}$	2/2-	***
N(1440) N(1520)	2/2-	****	$\Delta(1020)$	2/2 ****	ム <u> て(1205</u>)	2/2+	****	$\Lambda_{C}(2025)^{+}$	3/2	*	$h_{6}(3920)^{-1}$	$\frac{3}{2}$	***
N(1520) N(1525)	1/2	****	$\Delta(1700)$ $\Delta(1750)$	1/0+ *	$\Sigma(1500)$ $\Sigma(1500)$	2/2	*	$\Lambda_{c}(2703)^{+}$	2/2+	***	$h_{6}(0140)^{-1}$	5/2	***
N(1555)	1/2	****	$\Delta(1750)$	1/2 ***	$\Sigma(1500)$ $\Sigma(1620)$	1/2	*	$\Lambda_{c}(2000)^{+}$	3/2 ' E/2+	***	76(0102)-	$\frac{3}{2}$	***
N(1050)	1/2 E/2-	****	$\Delta(1900)$	1/2 ····	$\Sigma(1020)$ $\Sigma(1660)$	$\frac{1}{2}$	***	$\Lambda_{c}(2880)^{+}$	5/2 ·	***	Σ_b	$\frac{1}{2}$	***
N(1690)	5/2 5/2+	****	$\Delta(1905)$	3/2 *****	$\Sigma(1000)$ $\Sigma(1670)$	2/2-	****	$\int_{C} (2940)^{+}$	3/2	****	Σ_b	3/2 '	***
N(1000)	2/2	***	$\Delta(1910)$	$\frac{1}{2}$ + +++	$\Sigma(1070)$ $\Sigma(1750)$	$\frac{3}{2}$	***	$\Sigma_{C}(2455)$	$\frac{1}{2}$	***	$\Sigma_{b}(6097)^{-1}$		***
N(1700)	$\frac{3}{2}$	****	$\Delta(1920)$	5/2 ***	$\Sigma(1750)$ $\Sigma(1775)$	1/2 5/2-	****	$\Sigma_{C}(2520)$	3/2 '	***	2 _b (6097) —_	1/0+	***
N(1720)	3/2+	****	$\Delta(1950)$	3/2 **	$\Sigma(1730)$	3/2+	*	$\frac{Z_{c}(2000)}{=+}$	1/0+	***	$=_{b}$	1/2	444
N(1720) N(1860)	5/2	**	$\Delta(1940)$ $\Lambda(1050)$	7/0+ ****	$\Sigma(1880)$	$\frac{3}{2}$	**	$\frac{-c}{-0}$	1/2	****	$=_{b}^{b}$	1/2	***
N(1000) N(1875)	3/2	***	$\Delta(1900)$	5/2+ **	$\Sigma(1000)$ $\Sigma(1000)$	1/2	**	$=_{c}^{\circ}$	1/2 '	****	$=_{b}^{\prime}(5935)^{-}$	1/2	***
N(1880)	$\frac{3}{2}$	***	$\Delta(2000)$ $\Delta(2150)$	1/2 *	$\Sigma(1900)$ $\Sigma(1010)$	3/2-	***	$=_{c}$	1/2	***	$=_{b}(5945)^{\circ}$	3/2	***
N(1895)	1/2	****	$\Delta(2130)$ $\Delta(2200)$	7/2 ***	$\Sigma(1910)$ $\Sigma(1015)$	5/2+	****	$=_{c}^{0}$	1/2	***	$=_{b}(5955)^{-}$	3/2	***
N(1000)	3/2+	****	$\Delta(2200)$	9/2+ **	$\Sigma(1910)$ $\Sigma(1940)$	3/2+	*	$=_{c}(2645)$	3/2	***	$=_{b}(6100)^{-}$	3/2	***
N(1990)	7/2+	**	$\Delta(2350)$	5/2 *	$\Sigma(2010)$	3/2-	*	$=_{c}(2790)$	1/2	***	$=_{b}(6227)^{-}$		***
N(2000)	$5/2^+$	**	$\Delta(2390)$	7/2+ *	$\Sigma(2030)$	$\frac{3}{2}$	****	$=_{C}(2815)$	3/2	***	$=_{b}(6227)^{\circ}$	1 /0+	***
N(2040)	$3/2^+$	*	$\Delta(2400)$	9/2 **	$\Sigma(2070)$	$5/2^+$	*	$=_{c}(2923)$		**	Σ_b	1/2 '	ттт •
N(2060)	$5/2^{-}$	***	$\Lambda(2420)$	11/2+ ****	$\Sigma(2080)$	$3/2^+$	*	$=_{c}(2930)$	1 /0+	**	$12_b(6316)$		* *
N(2100)	$1/2^+$	***	$\Delta(2750)$	13/2- **	$\Sigma(2100)$	$7/2^{-}$	*	$=_{C}(2970)$	1/2 '	***	$32_b(6330) =$		т ¥
N(2120)	3/2-	***	$\Delta(2950)$	15/2+ **	$\Sigma(2110)$	$1/2^{-}$	*	$=_{c}(3033)$		***	$32_b(0340)$		*
N(2190)	7/2-	****	()	,	$\Sigma(2230)$	3/2+	*	$=_{C}(3000)$		*	12 _b (6350)		
N(2220)	9/2+	****	Λ	1/2+ ****	$\Sigma(2250)$	<i>'</i>	**	$C_{C}(3123)$	$1/2^{+}$	***	P (1312)+		*
N(2250)	9/2-	****	A(1380)	1/2- **	Σ(2455)		*	^{32}c	2/2+	***	$P(4380)^+$		*
N(2300)	$1/2^{+}$	**	A(1405)	1/2 ****	Σ(2620)		*	$O(2000)^{0}$	3/2 '	***	$P_{c}(4300)$		*
N(2570)	$5/2^{-}$	**	A(1520)	3/2 ****	Σ(3000)		*	O(2050)		***	$P_{-}(4457)^{+}$		*
N(2600)	$11/2^{-}$	***	A(1600)	1/2+ ****	$\Sigma(3170)$		*	O(306E)0		***	1 ((1131)		
N(2700)	13/2+	**	<i>Л</i> (1670)	1/2" ****				$\Omega(3000)^{-12}$		***			
			Л(1690)	3/2 ⁻ ****	<u>=</u> 0	$1/2^{+}$	****	$O(3120)^{0}$		***			
			Л(1710)	1/2+ *	Ξ-	$1/2^{+}$	****	¹² C(3120)					
			A(1800)	1/2" ***	$\Xi(1530)$	3/2+	****	=+		*			
			Л(1810)	1/2+ ***	$\Xi(1620)$		*	$\frac{-cc}{-++}$		***			
			<i>Л</i> (1820)	5/2+ ****	$\Xi(1690)$		***	- cc					
			A(1830)	5/2 ****	$\Xi(1820)$	$3/2^{-}$	***						
			<i>Л</i> (1890)	3/2+ ****	$\Xi(1950)$	- 2	***						
			<i>Л</i> (2000)	$1/2^{-}$ *	$\Xi(2030)$	$\geq \frac{5}{2}$	***						
			<i>Л</i> (2050)	3/2 *	Ξ(2120)		*						
			<i>Л</i> (2070)	3/2+ *	Ξ(2250)		**						
			<i>Л</i> (2080)	5/2 *	$\Xi(2370)$		**						
			A(2085)	7/2+ **	Ξ(2500)		*						
			A(2100)	7/2 ****		- / 1	dated 1						
			A(2110)	5/2+ ***	Ω^{-}	3/2+	****						
			A(2325)	3/2 *	<i>\</i> 2(2012) [−]	?-	***						
			/(2350)	9/2⊤ ***	<i>12</i> (2250) ⁻		***						
			/1(2585)	*	<i>12</i> (2380) ⁻		**						
					<i>\$2</i> (2470) [−]		ቾቾ						

**** Existence is certain, and properties are at least fairly well explored.

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

** Evidence of existence is only fair.

* Evidence of existence is poor

図 31: 観測されているバリオンの表。The Review of Particle Physics, R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) から引用。ファイルはhttp://pdg.lbl.govから入 手可能。

図 32: 負パリティバリオン励起状態のスペクトル。黒線が理論値、影付き四角が実験値をあらわす。N. Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978) より引用。

図 33: バリオン励起状態の模式図。構成子クォーク模型では閉じ込めポテンシャル内のクォーク q のエネル ギー準位を使って励起状態を記述するのに対し、qq 対生成による励起を考慮することでマルチクォークやハド ロン分子といったエキゾチックな構造が形成される。兵藤哲雄,日本物理学会誌「最近の研究から」 第75巻 第8号 (2020) 478 より引用。

- 内部構造による分類:構成子クォーク模型(閉じ込めポテンシャル中の非相対論的なクォーク) qq のメソン、qqq のバリオンで多くのハドロン質量を説明する
 例)負パリティバリオン励起状態のスペクトル:図32
 → ほとんどのハドロンは qq、または qqq で記述される
- 構成子クォーク模型で記述できない状態: qq 対生成による励起(QCD では可能) 通常の qqq 状態に加えて様々な状態が可能(図 33):

マルチクォーク状態:4つ以上のクォークから構成されるハドロン、qqqqq、qqqqq など
 ハドロン分子状態:ハドロンを構成要素としてハドロン間相互作用で形成される状態

• qqq と同じ量子数を持ちうる:実際のバリオンは異なる成分の重ね合わせ

 $|B\rangle = c_1 |qqq\rangle + c_2 |qqqq\bar{q}\rangle + c_3 |MB\rangle + \cdots$

どのようにして重み c; を測定するか?→ 複合性の研究

(292)

図 34: エキゾチックハドロンの実験データ。左上:Z_b、A. Bondar *et al.* [Belle Collaboration], Phys. Rev. Lett. **108**, 122001 (2012) より引用。右上:P_c、R. Aaij *et al.* [LHCb Collaboration], Phys. Rev. Lett. **122**, 222001 (2019) より引用。左下:X(2900)、R. Aaij *et al.* [LHCb Collaboration], Phys. Rev. D **102**, 112003 (2020) より引用。右下:T_{cc}、R. Aaij *et al.* [LHCb], Nature Phys. **18**, 751 (2022) より引用。

- 関連する最近の実験(図34)
 - Z_b(10610)、Z_b(10650): 2012 年 Belle グループにより報告
 A. Bondar *et al.* [Belle Collaboration], Phys. Rev. Lett. **108**, 122001 (2012).
 クォーク組成: bbud など (エネルギー的に bb が存在しないとは考えにくい)
 - P_c(4380)、P_c(4450): 2015 年 LHCb グループにより報告
 R. Aaij *et al.* [LHCb Collaboration], Phys. Rev. Lett. **115**, 072001 (2015).
 クォーク組成: c̄cuud (エネルギー的に c̄c が存在しないとは考えにくい)
 追実験: P_c(4440)、P_c(4457)、P_c(4312) という 3 つの状態か?
 R. Aaij *et al.* [LHCb Collaboration], Phys. Rev. Lett. **122**, 222001 (2019).
 - X(2900): 2020 年 LHCb グループにより報告
 R. Aaij *et al.* [LHCb Collaboration], Phys. Rev. D **102**, 112003 (2020).
 クォーク組成: udcs (qq では作れない)
 - T_{cc}: 2021 年に LHCb グループにより報告
 R. Aaij *et al.* [LHCb], Nature Phys. 18, 751 (2022), Nature Commun. 13, 3351 (2022).
 クォーク組成: ccūd̄ (q̄q では作れない)

11.3 ハイパー核

- 11.3.1 ハイパー核概観
 - ハイペロン:ストレンジネスを持つバリオン(Λ、Σ、Ξ)の総称 核子を N と書くのと同様に記号 Y で表記 核子と同じ 8 重項に属するため(図 28 参照)、ハイペロンは核子と類似の性質を持つ
 - ハイパー核:原子核中にハイペロンを追加したもの
 - Λ ハイパー核 (Λ を 1 つ追加): S = -1、現在までに数十種類発見されている (図 35)
 - Σ ハイパー核 (Σ を1つ追加): S = -1、報告は1例のみ
 - $-\Lambda\Lambda$ ハイパー核 (Λ を2つ追加): S = -2、十数例の報告がある
 - Ξハイパー核 (Ξを1つ追加): *S* = -2、2013 年に発見
 - 研究意義
 - ハイペロンを原子核中の不純物として扱い、(通常の)原子核の構造を調べる
 - SU(3) バリオン間力:核力(NN)の拡張としてのYN、YY 相互作用
 ⇒ 核力の斥力芯の起源など
 - 中性子星:**重力**により束縛した核子多体系 内部は高密度核物質: $E_F^n \sim 50\text{-}200 \text{ MeV}$ $E_F^n > M_\Lambda - M_N$ でハイペロンが現れると期待される ただし質量 $2M_\odot$ の中性子星の観測(2010 年以降)から、ハイペロンの存在は否定的

図 35: A ハイパー核の核図表 (2012 年)。D. Lonardoni, arXiv:1311.6672 [nucl-th] p.5, 図 1.3 から引用。

11.3.2 Λ ハイパー核

- Λ 粒子 (uds): ストレンジネス S = -1、スピンパリティ $J^P = 1/2^+$ 、バリオン数 B = 1
- Λは強い相互作用で安定だが、弱い相互作用で崩壊

$$\Lambda \to \pi N$$

(293)

寿命: $\tau = 2.632 \pm 0.020 \times 10^{-10} \text{ s} \Rightarrow$ 自然界に Λ は存在しない

- Λ ハイパー核:Λ を1つ含む原子核
- 表記法: Λ を左下に添え、元素名 X = {H, He, Li, Be,…} を用いて

 $^{A}_{\Lambda}X$

(294)

質量数 A は Λ **の数も** 1 とカウントする、つまり陽子数 Z と中性子数 N を用いて A = Z + N + 1例) ${}_{\Lambda}^{12}$ C : 質量数 A = 12 の炭素ハイパー核、陽子数 Z = 6、中性子数 N = 5、 Λ が 1 つ ⇒ ${}_{\Lambda}^{12}$ C は 11 C と Λ を組み合わせたもの

11.3.3 A ハイパー核の生成

- ハイペロンは自然には存在しないので、ハイパー核は実験で生成する必要がある
- ハドロンビームを用いた反応の素過程(強い相互作用)

 $K^- + n \to \Lambda + \pi^-, \quad (K^-, \pi^-)$ 反応, $K^- + p \to \Lambda + \pi^0, \quad (K^-, \pi^0)$ 反応, $\pi^+ + n \to \Lambda + K^+, \quad (\pi^+, K^+)$ 反応

• 電子ビームを用いた反応の素過程(電磁相互作用+強い相互作用)

 $e^- + p \rightarrow \Lambda + e^- + K^+, \quad (e, e'K^+) \, {\ensuremath{\bar{E}}} \kappa$

• (K^{-}, π^{-}) 、 (K^{-}, π^{0}) は発熱反応 (Q 値 > 0) ⇒ 静止した K^{-} を用いた反応が可能: (K^{-}_{stop}, π^{-}) 、 (K^{-}_{stop}, π^{0})

11.3.4 A ハイパー核の構造

Λ結合エネルギー:Λハイパー核をΛと残りの原子核に分解するのに必要なエネルギー

$$B_{\Lambda} = M(A-1,Z) + M_{\Lambda} - M(A,Z,\Lambda)$$
(295)

 $M(A, Z, \Lambda)$: 質量数 A、陽子数 Z の Λ ハイパー核の質量

様々なハイパー核の B_Λ 実験値:図 36

図より、

$$B_{\Lambda} \propto \frac{1}{A^{2/3}} \tag{296}$$

つまり $B_{\Lambda}A^{2/3}$ が一定の関係:3次元井戸型ポテンシャルなど、深さ一定の引力ポテンシャルの特徴 \Rightarrow Woods-Saxon 型を用いた一体ポテンシャルでよく記述できる

⇒ Λ 粒子は核子が作るポテンシャル内を自由に運動する:独立粒子描像的

図 36: Λ 結合エネルギー。曲線は Woods-Saxon ポテンシャルで $V_0 = -30.05$ MeV, 半径 $R_B = r_0 A^{1/3}$ 、 $r_0 = 1.165$ fm、a = 0.6 fm とした計算。A. Gal, E. Hungerford, D.J. Millener, Rev. Mod. Phys. 88, 035004 (2016) 図 11 から引用。

11.3.5 A ハイパー核の崩壊

- Λハイパー核の崩壊は弱い相互作用で起こる
- 中間子崩壊 (mesonic decay):素過程 $\Lambda \to \pi N$ によって、 π 中間子を放出する崩壊 終状態の N の運動量が小さいため重い核ではパウリ原理で禁止される ($k_F \sim 273$ MeV) ⇒ 主に軽いハイパー核で起こる
- 非中間子崩壊 (nonmesonic decay):素過程 $\Lambda N \rightarrow NN$ によって、終状態に π 中間子を含まない崩壊 $\Lambda \rightarrow \pi N$ の π が原子核中の核子に吸われたと理解される 終状態の N の運動量が大きくパウリ原理で禁止されない ⇒ 重いハイパー核 ($A \ge 20$) で支配的

問題 11.2

1) 表 7 のハドロン質量を用いて $\Lambda \to \pi N$ 過程および $\Lambda N \to NN$ 過程の Q 値を求めよ。通常原子核の β 崩壊 の Q 値とオーダーを比較し理由を考察せよ。

2) Q 値は反応後の粒子の運動エネルギーに使われる。始状態が静止していることを仮定し、2 体崩壊の終状態 の運動量は向きが反対で大きさが同じ(運動量保存)であることを利用し、非相対論的な運動エネルギーの表 式 $p^2/(2M)$ を用いて $\Lambda \to \pi N$ 過程、 $\Lambda N \to NN$ 過程それぞれの終状態の核子の運動量の大きさを求めよ。 3) 相対論的な運動学を用いると、質量 M_A 、 M_B という 2 粒子への崩壊の終状態の運動量の大きさは

$$p = \frac{\sqrt{M_{\rm in}^4 + M_A^4 + M_B^4 - 2M_{\rm in}^2M_A^2 - 2M_A^2M_B^2 - 2M_B^2M_{\rm in}^2}}{2M_{\rm in}}$$

で与えられる。 $M_{\rm in}$ は始状態の相対論的エネルギーで、 $\Lambda \to \pi N$ の場合は M_{Λ} 、 $\Lambda N \to NN$ の場合は $M_N + M_{\Lambda}$ である。両過程の運動量の大きさを計算し、2)の結果と比較せよ。