4 Theory of Feshbach resonances

4.1 Overview

e Feshbach resonance : resonance in coupled-channel scattering

e Threshold energy Ey, and channels

— open channels (E > Eyy,) : scattering occurs at energy F

— closed channels (E < Eyy,) : scattering does not occur at energy E

e Original paper by Feshbach [30, 31] : theory of compound nuclear reaction (Fig. 12, left)

e Realization with cold atoms [7] : controlling scattering length by magnetic field (Fig. 12, right)
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Figure 12: Left : original paper, H. Feshbach, Ann. Phys. 5, 357 (1958). Right: controlling scattering
length of cold atoms by magnetic field, adopted from S. Inouye, Nature (London) 392, 151 (1998).

4.2 Two-channel Hamiltonian

e Two channels P and @, setting threshold of P at Fi,(P) = 0 [32]

e Schrodinger equation in matrix form

H|y) = E|) (30)
~2
ot et P +Vp Vi |P)
IA{:<APP APQ): 2MP ~D ) ’¢>:< >
Hop Hoq 1% —21; +A+ T Q)
Q

— Vp, Vg : potential in each channel (Fig. 4), vanishes at r — 0o
— V, : channel transition potential

— A > 0: threshold energy difference Fi,(Q) — En(P) (originates in Zeeman splitting of atoms,

proportional to magnetic field strength)

— Energy region 0 < E < A : P is open (entrance) channel, @ is closed channel
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e Projection operators

. 10 A 00
P: s =
PPob Q=0 PO=QP=0, PiQ=]
Each component can be written as | X ) = X|¢) and Hyy = XHY

e Effective Hamiltonian for channel P : eliminating | Q)

It follows from the lower component of Eq. (30) that
Hop| P)+ Hool| Q) = E|Q)
Hop| P) = (E - Hoq)| Q)
|Q) = (E — Hgq) "Hqp| P)
Substituting this into the upper component of Eq. (30) :
App| P)+ HrglQ) = E| P)
Hpp|P) + Hpg(E — Hog) 'Hgp| P) = E|P)
then
A*(E)| P) = E| P), (31)
H™(E) = Hpp + Hpo(E — Hqq) 'Hop

~

Hef is effective Hamiltonian of P, incorporating the effect of Q

— Eq. (31) is a single-channel (not in matrix form) Schrédinger equation in P
— No approximations = Solution of Eq. (31) is equivalent to | P) in Eq. (30)
— H(E) is energy dependent (Eq. (31) should be solved self-consistently)

4.3 Single-resonance approximation
e Eigenstates of Hgg (Fig. 13) : bound states | ¢; ), continuum states | ¢(¢) ) labeled by energy e
Hoql i) = il ¢i),
Hqql¢(e)) = €l ¢(e))
|$) : eigenstates without channel transition (V; = 0) but with Vg # 0 only, |¢) # | Q)

e Spectral decomposition (continuum starts from e = A)
F=Y 1o o]+ [ delof))iote)

With this, HeT can be written as

reff oy _ 7 Hpol¢i){6i|Hop | [, Hpgld(e) ){$(c) |Hop
bik (E)_pr+z; B, +/A de SR (32)
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Figure 13: Schematic figure of eigenstates of }:TQQ.

e The 3rd term of Eq. (32) has an imaginary part for £ > A

 fl@) / flx) . L .
/dl‘x a0t P [ dx imf(a) (when z = a is in the integral range)

T —a
c.f.) When A <0, Hef has an imaginary part from £ =0

e In the 2nd and 3rd terms of Eq. (32), state with the nearest eigenenergy with E is dominant
Denoting the state with the smallest €; as | ¢g ), at low energy with F < A,

Hpo| do){ ¢o |Hgp
E — ¢

H(E) ~ Hpp + (33)

If Hgq is confining potential (without continuum) with a single bound state | ¢g ), then Eq. (33) is
exact
e ¢ is measured from threshold of P (E = 0); binding energy from threshold of @ (E = A) is

BE =A—¢

B.E. is fixed by fIQQ = If A is proportional to magnetic field, ey can be controlled

4.4 Scattering amplitude and resonance
Lippmann-Schwinger equation

o Hff i a single-channel Hamiltonian for P = apply scattering theory in §2

P X A 2 A p?
H" =Ho+V, Hy=-+—, H0|P>=T|p>
Hp

e Schrodinger equation (| P) is eigenstate of Hef)

H®| P) = E| P)
(Hy+V)|P)=E|P)
V|P) = (E - Hy)| P)
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Add (E — Hp)|p) = 0 in right hand side (for scattering state | P) — |p) at V — 0)

VIP)=(E—Ho)(P)~-|p)
(E—Ho)'VIP)=|P)~|p)
|P)=|p)+(E—Hy) 'V|P)

e Green’s operator (resolvent)

G(E) = (E - Ho)™'
with this,

|P)=|p)+GV|P) (34)

e T operator : relating eigenstate of Hy (|p)) and that of H*F (| P))

A~

(definition) 7|p) = V|P)
VGV|P) <+ (Eq. (34))
VGT|p) <« (definition)

T=V+VGT
=V 4+ VGV +VGT) (iterative substitution)
=V+VGV+VGVGY +

T depends on energy E because G does (even if V does not)

e Relation with (on-shell) 7' matrix

1

(p/|T(E+i0")|p) =t(p + p) = @

f(E,0)
Poles of t(p’ + p) are poles of scattering amplitude, representing discrete eigenstates
e Lippmann-Schwinger equation for 7" matrix
t@ +p)=(p'[VIp)+(p VGT|p)

t(p’<—p):<p’\‘7\p>+/dQ(p’!V|q><q!éT|p> <—f=/dQIq>(q|

1 . 7
t(q + — H = —

=<p'|V\p>+/dq<p'W|q>

Integral equation for ¢(p’ < p)
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Separable interaction

e Separable interaction (product of functions of p and p’)
(P'|VIp) = AF(p')F(p)
In this case, T matrix is (G(E,q) = [E — ¢*/(2up) +1i0F]71)
Hpl ) = (p| [V + VGV + VEVGY +-- ] p)
= AF(p")F(p) + / dg\F(p')F(q)G(E, q)AF(q)F(p)

v / dq / dq \F(p)F(q)G(E, Q) \F(q)F (q)G(E. ¢ )\F(q')F(p) + - --

= AF(p)F(p) [1+G(E) + [G(E)]* +---] < G(B) =\ / dqF(q)G(E,q)F(q)
— AF(p")F(p) [1 — G(E)]
AF(p')F(p)
1-— A/qu(q)G(E, a)F(q)
F

(p")F(p)

1 F(q)F(q)
A /qu — q*/(2up) +i0F

Scattering amplitude

F(p')F(p)

F(q)F(q)
- /qu — q?/(2up) +i0F

J(E,0) = —(@2nu~
3

e Potential V corresponds to the Hamiltonian in Eq. (33)

V(2) = Ty + F 0L

If €q is sufficiently small, the second term is dominant at low energy :

(A special case for Vp # 0 will be discussed in §6)

V(E)% WWBM?;H@

This is a separable potential

(P Vil ¢0) (0 [Vi|p)
E — ¢

F(p) = (¢o|Vi|p) (form factor)

(p'[V(E)|p) =

1
E—¢’

= A=
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4.5

Scattering amplitude in P channel
N(E, 0 . )
FE) =~ s N(B,6) = (20l o' [T 00) (60 Vil )

B (¢0 Vil q){q Vil do)
B(B) = /d E —q?/(2up) +1i0F

(self energy)

When V; = 0, Y(E) = 0, so the pole position is
E=¢€eR

corresponds to the bound state by ﬁQQ

When V; # 0, in general the solution of E — ¢y — (E) = 0, but for weak V;, we have
E ~ ¢+ X(ep) (perturbative approximation)

When €¢p > 0, ¥(¢y) has an imaginary part (dg integration starts from ¢ = 0)

= resonance with complex eigenenergy

Physically, bound state by ﬁQQ acquires decay width through transition to the continuum of P

Controlling scattering length by magnetic field

For s wave (¢ = 0) scattering, N(E,6) had no 6 dependence, and scattering length ag is (see §3)

N(0)

aoz—f(EZO):?E(O)

where N(0) > 0 and

(¢0 Vil @){aq|Vi| do) _ 21p|{q |Vi| do )|?
/d —q%/(2up) B /dq q? <0

When A (namely ¢p) is proportional to the external magnetic field B
=CB+ 6(0)

C > 0 because the splitting increases with the magnetic field
eé ) is the energy of the bound state with B = 0 where Ei,(Q) = 0, so eé ) <0
Scattering length depends on B as

N(0)

—5(0) — )
C(B—-By)’

CL()(B) = — C

By = >0 (35)

Scattering length diverges at B = By : unitary limit

With Vp # 0, we obtain (Fig. 12 right)
AB
B — B,

ap(B) = apg [1 — (36)
apg is the scattering length only by Vp
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Exercise 4

1) When the S matrix s(p) (suppressing £) has a pole at p = pr € C, it is written as s(p) = A(p)(p—pr) "
with a function A(p) € C. From the unitarity condition (14), show that in general we can write A(p) =
C(p)(p — pk) with a complex function with unit magnitude C(p).

2) From this, the S matrix is given by (dpa(p) € R)

P —Pg

P—DR

s(p) = spa(p)spw(p), spa(p) = e¥°86®) spw(p) = Cpw

From Eq. (13), show that s(p = 0) = 1 for |f(p = 0)| < oo, and determine Cpw when spw(p) follows
this condition.

3) Let the scattering lengths of s(p), spa(p), ssw(p) be ag, apa, apw, respectively. Express ag by using
apc and apw.

4) Let the scattering length with Vp = 0 be apw, and that of only Vp # 0 be apg. Show that B
dependence of the total scattering length ag is given in the form of Eq. (36), and determine AB.

4.6 Summary of §4
e Coupled-channel Hamiltonian of P and Q
e Eliminating channel @) to obtain effective Hamiltonian in P

e Bound state | ¢g) in @ couples with P to generate complex energy state
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5 Nonrelativistic effective field theory

5.1 Effective field theories
e Microscopic quantum field theory Licro

e A : ultraviolet cutoff scale (see Fig. 14)

Q : low-energy/long-wavelength phenomena below A

Effective Field Theory, EFT Lgpr

— Lgpt describes the same € with Lojicro does
— can be elaborated systematically

— A : applicability bound of EFT

micro

»

A energy, (length)-!

Figure 14: Schematic figure of effective field theory.

e Example 1 : Electromagnetic interaction
— Microscopic theory : QED

1
v /.
Lonicro = ['QED = —ZFMVF“ + €(Z$ — me)e
—_———
kinetic term of photons kinetic, mass, interaction terms of photons

massless photons and electrons with mass m,

— EFT : Euler-Heisenberg theory [33]

1 ~
Lert = LrH = —EFWFW + e (Fu F™)? + co(Fju FH')* 4+ -

interaction terms of photons
Electrons are “heavy”, only photons (A ~ m)
a? 7a?

Coeflicients are calculable from QED : ¢; = m, cy = m
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Ge

Figure 15: Schematic figure of u~ decay. Left : Weinberg-Salam theory, Right : Fermi theory
e Example 2 : Weak interaction
— Microscopic theory : Weinberg-Salam theory
Luicro = Lws (leptons, neutrinos, W=, Z, ...)

Interaction is mediated by exchange of W*, Z (Fig. 15, left)

2 2 2
interaction o< — Jw — = g"~2” (1 +0 (qz>>
q° — myy miy Mg,

— EFT : Fermi theory
Lrrr = Lr(leptons, neutrinos, ...)

four-Fermi (contact) interaction (Fig. 15, right)

W+, Z are “heavy”, only fermions (A ~ myy=, myz)

2
interaction o« G <o< g’;)

myy
e Example 3 : strong interaction
— Microscopic theory : QCD
Lmicro = Lqcp(quarks, gluons)

not calculable at low energy, hadrons are degrees of freedom (color confinement)

— Weinberg’s “theorem” [34]

The most general Lgpr, consistent with the symmetries of Liicro, effectively describes 2

— EFT : chiral perturbation theory (having chiral symmetry as QCD) [35]
Lepr = Loppr (hadrons)
The most general Lagrangian contains infinitely many terms — sorted out by importance
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5.2 Zero-range model
e Description of nonrelativistic two-body scattering in EFT

e Ryiyp @ typical length scale of interaction

— Square well potential : Ry, = b (well width)

—RT

— Yukawa potential V(r) = g6 ! Riyp = 1/k
— van der Waals potential V (r) = —gg : Riyp ~ Lyaw = (mCg/h?)1/*
r

e Zero-range model Lyr : s-wave scattering with larger |ag| than Ry, (¢ = 0 abbreviated) [17]

Fo) = —— (37
I

— Nucleons : long-range tail is of Yukawa form by 7 exchange

1
ap('Sp) ~ 20 fm, ag(®*S;) ~ —4 fm, laol > Riyp ~ — ~ 1 fm

™

(Nucleons : fermions with spin and isospin degrees of freedom)
Lmicro = LnN  (or Lgep)
— “4He atoms : long-range tail is of van der Waals form by polarization
ap ~ 200 [Bohr radius] lag| > Riyp ~ Lyvaw ~ 10 [Bohr radius]
Limicro = Latom

e At low-energy p < 1/Ryyp, both can be described by the same Lzr

Lagrangian

e Lagrangian density of zero-range model

V2

A
tan =t (004 5 ) o= 2007 (33)

——

interaction term

kinetic term

Y (t,x) : boson field
m : boson mass

Ao : (bare) coupling constant
(two-fermions with antisymmtric spin w.f. is essentially same with two-bosons)

e (Quantization : equal-time commutation relation

[W(t, ), 9 (t, @) =0
[W(t,z), vi(t,2)] = 6 (x — 2')
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w, k
= = A6 (w, k) >< = —il, )@(:z,{(e)

Figure 16: Feynman rules of zero-range model (38). Left : boson propagator iG, Middle : vertex —il\,
Right : four-point function .4

e Interaction term : four-point contact interaction ~ 3d ¢ function potential

Ao
i = “2(1)? ~ Hius ~ (energy)
Ao > 0 increase energy = repulsion

Ao < 0 decrease energy = attraction

e Symmetries : space-time translation, rotation, parity, Galilean boost

phase symmetry
U(t,x) — ePip(t, x)
corresponding conserved charge

N = /dm YTy (particle number)

= Liny does not change the particle number (two-body is always two-body)

Feynman rules

e Calculation of physical quantities in quantum field theory

1. Derive Feynman rules (peaces of Feynman diagrams)
2. Sum up all possible Feynman diagrams (two-body sector of Lzg is possible)

2’. Perform perturbation theory (when 2. is not doable)

e Propagator : propagation of particle (Fig. 16, left)

1
w—k2/(2m) + 0t

iG(w, k) =
only positive energy component : only forward going in time

e vertex : interaction (Fig. 16, middle)
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Figure 17: Candidates of Feynman diagrams.
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Figure 18: Possible Feynman diagrams.
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1

5.3 Two-boson scattering

e two-body scattering amplitude <+ four-point function ¢ A(E) (2 in, 2 out, Fig. 16, right)

Write down all diagrams from Feynman rules with keeping initial and final sates (Fig. 17)

Eventually, same structure with Lippmann-Schwinger equation remains (Fig. 18)

Different (Ag)" terms are summed to all orders : nonperturbative scattering amplitude

Perturbative expansion with small Ay leads the first term : i A(E) = —i)g

Calculation of scattering amplitude

e Two-body scattering amplitude A(E)

iA@»:—MW4M;/ﬁ;ﬁuqume—w_qmaE) (39)

— 1/2 is the symmetry factor
— Here completeness relation is 1 = | (;qu)S] q)(q]|
— dq integration diverges : introduce cutoff A (integral range 0 < g < A)

— 4A(F) in right hand side in not in the integration : same with separable interaction
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e A(E) can be determined algebraically

1 m \/7 A -1
S N/ — 0+ =
A(E) [ N i <A mE —i0t arctan m)] (40)
e Energy F and momentum p
20 m m-+m 2
For physical scattering £ > 0, p > 0,
V—mE —i0t = —iy/m|E| = —i/p? = —ip
e For a small momentum p < A than the cutoff A,
A
arctan <—2p> = g +0 (%)
then, Eq. (40) is
Alp) 1 m(A+,7T)1 1 mA,mf1
= —_——  — 1m— = —_——  — — I1D—
P N Ar?2 3 N ar2 Per
e Scattering amplitude
m 1
—— | —+-—A) =
m \Xo | dn2 P
Comparing with Eq. (37), scattering length is
m (1 m -1
N sy} 41
W= 8 ()\0 Res ) (41)

Unitarity

e Scattering amplitude is nonperturbative

fxe(p) = _1/a10_2.p

e Scattering amplitude with O(A\}) perturbation theory

m
fe(p) = _87)\0 = C (constant)

Fourier transformation of the interaction term, namely, Born approximation
e From Eq. (13), S matrix is given by s(p) = 2ipf(p) + 1, so

B 2ip _ 2ip—1/ag—ip  —1/ag+ip
snp(p) = P = — == —
1/ag —ip 1/ag —ip 1/ag —ip
sp(p) = 2ipC +1
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5.4

Unitarity condition (14)

) —1/ap —ip —1/ag + ip
= = 1
sxp(P)sxp(p) —1/ag +ip —1/ag — ip

sh(p)sp(p) = (2ipC + 1)(=2ipC +1) = 1 +4C%*p? £ 1
Nonperturbative scattering amplitude fxp(p) satisfies unitarity, but fp(p) dose not

Perturbative calculation violates unitarity (If f is constant, so is o ~ f2, violating unitarity bound)

Renormalization
Scattering length ag is observable and independent of cutoff A

A dependent coupling constant Ag

No(A) = <1 - 2;%) e (42)

m
coupling constant Ag for a given A to give fixed scattering length ag
Under Eq. (42), the limit A — oo can be taken

Renormalization group equation : behavior of coupling constant with respect to cutoff A

d(hcfA) MA) =) 1+ A (43)

dimensionless coupling constant

. m
A) = —A)(A
J(A) = 22 Ad(A)
Fixed point A\* : the value at which \ is A independent, RHS of Eq. (43)= 0, so that M =0or —1

A* =0 : ag = 0, noninteracting, trivial

M =—1: ag = £00, unitary limit, nontrivial

Exercise 5

1) Show that ag is cutoff independent if the coupling constant Ay has A dependence as in Eq. (42).

2) Show that the renormalization group equation for A(A) is Eq. (43).
3) Show that ag = 0 (ap = +00) when A\* = 0 (A* = —1).

5.5

Summary of §5

e EFT : description of low-energy physics

e Zero-range model : nonperturbative (unitary) scattering amplitude

1

f(p):m

37



