4 Theory of Feshbach resonances

4.1 Overview

- Feshbach resonance : resonance in coupled-channel scattering
- Threshold energy $E_{\text {th }}$ and channels
- open channels $\left(E>E_{\mathrm{th}}\right)$: scattering occurs at energy E
- closed channels $\left(E<E_{\text {th }}\right)$: scattering does not occur at energy E
- Original paper by Feshbach $[30,31]$: theory of compound nuclear reaction (Fig. 12, left)
- Realization with cold atoms [7] : controlling scattering length by magnetic field (Fig. 12, right)

Unified Theory of Nuclear Reactions*

Herman Feshbach

Department of Physics and Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

Figure 12: Left : original paper, H. Feshbach, Ann. Phys. 5, 357 (1958). Right: controlling scattering length of cold atoms by magnetic field, adopted from S. Inouye, Nature (London) 392, 151 (1998).

4.2 Two-channel Hamiltonian

- Two channels P and Q, setting threshold of P at $E_{\mathrm{th}}(P)=0$ [32]
- Schrödinger equation in matrix form

$$
\begin{align*}
\hat{H}|\psi\rangle & =E|\psi\rangle \tag{30}\\
\hat{H} & =\left(\begin{array}{cc}
\hat{H}_{P P} & \hat{H}_{P Q} \\
\hat{H}_{Q P} & \hat{H}_{Q Q}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\hat{\boldsymbol{p}}^{2}}{2 \mu_{P}}+\hat{V}_{P} & \hat{V}_{t} \\
\hat{V}_{t} & \frac{\hat{\boldsymbol{p}}^{2}}{2 \mu_{Q}}+\Delta+\hat{V}_{Q}
\end{array}\right), \quad|\psi\rangle=\binom{|P\rangle}{|Q\rangle}
\end{align*}
$$

- \hat{V}_{P}, \hat{V}_{Q} : potential in each channel (Fig. 4), vanishes at $r \rightarrow \infty$
- \hat{V}_{t} : channel transition potential
- $\Delta>0$: threshold energy difference $E_{\mathrm{th}}(Q)-E_{\mathrm{th}}(P)$ (originates in Zeeman splitting of atoms, proportional to magnetic field strength)
- Energy region $0<E<\Delta$: P is open (entrance) channel, Q is closed channel
- Projection operators

$$
\begin{aligned}
\hat{P} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad \hat{Q}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\hat{P}^{2} & =\hat{P}, \quad \hat{Q}^{2}=\hat{Q}, \quad \hat{P} \hat{Q}=\hat{Q} \hat{P}=0, \quad \hat{P}+\hat{Q}=\hat{I}
\end{aligned}
$$

Each component can be written as $|X\rangle=\hat{X}|\psi\rangle$ and $\hat{H}_{X Y}=\hat{X} \hat{H} \hat{Y}$

- Effective Hamiltonian for channel P : eliminating $|Q\rangle$

It follows from the lower component of Eq. (30) that

$$
\begin{aligned}
\hat{H}_{Q P}|P\rangle+\hat{H}_{Q Q}|Q\rangle & =E|Q\rangle \\
\hat{H}_{Q P}|P\rangle & =\left(E-\hat{H}_{Q Q}\right)|Q\rangle \\
|Q\rangle & =\left(E-\hat{H}_{Q Q}\right)^{-1} \hat{H}_{Q P}|P\rangle
\end{aligned}
$$

Substituting this into the upper component of Eq. (30) :

$$
\begin{aligned}
\hat{H}_{P P}|P\rangle+\hat{H}_{P Q}|Q\rangle & =E|P\rangle \\
\hat{H}_{P P}|P\rangle+\hat{H}_{P Q}\left(E-\hat{H}_{Q Q}\right)^{-1} \hat{H}_{Q P}|P\rangle & =E|P\rangle
\end{aligned}
$$

then

$$
\begin{align*}
\hat{H}^{\mathrm{eff}}(E)|P\rangle & =E|P\rangle \tag{31}\\
\hat{H}^{\mathrm{eff}}(E) & =\hat{H}_{P P}+\hat{H}_{P Q}\left(E-\hat{H}_{Q Q}\right)^{-1} \hat{H}_{Q P}
\end{align*}
$$

$\hat{H}^{\text {eff }}$ is effective Hamiltonian of P, incorporating the effect of Q

- Eq. (31) is a single-channel (not in matrix form) Schrödinger equation in P
- No approximations \Rightarrow Solution of Eq. (31) is equivalent to $|P\rangle$ in Eq. (30)
- $\hat{H}^{\text {eff }}(E)$ is energy dependent (Eq. (31) should be solved self-consistently)

4.3 Single-resonance approximation

- Eigenstates of $\hat{H}_{Q Q}$ (Fig. 13) : bound states $\left|\phi_{i}\right\rangle$, continuum states $|\phi(\epsilon)\rangle$ labeled by energy ϵ

$$
\begin{aligned}
\hat{H}_{Q Q}\left|\phi_{i}\right\rangle & =\epsilon_{i}\left|\phi_{i}\right\rangle \\
\hat{H}_{Q Q}|\phi(\epsilon)\rangle & =\epsilon|\phi(\epsilon)\rangle
\end{aligned}
$$

$|\phi\rangle$: eigenstates without channel transition $\left(\hat{V}_{t}=0\right)$ but with $\hat{V}_{Q} \neq 0$ only, $|\phi\rangle \neq|Q\rangle$

- Spectral decomposition (continuum starts from $\epsilon=\Delta$)

$$
\hat{I}=\sum_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|+\int_{\Delta}^{\infty} d \epsilon|\phi(\epsilon)\rangle\langle\phi(\epsilon)|
$$

With this, $\hat{H}^{\text {eff }}$ can be written as

$$
\begin{equation*}
\hat{H}^{\mathrm{eff}}(E)=\hat{H}_{P P}+\sum_{i} \frac{\hat{H}_{P Q}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \hat{H}_{Q P}}{E-\epsilon_{i}}+\int_{\Delta}^{\infty} d \epsilon \frac{\hat{H}_{P Q}|\phi(\epsilon)\rangle\langle\phi(\epsilon)| \hat{H}_{Q P}}{E-\epsilon+i 0^{+}} \tag{32}
\end{equation*}
$$

Figure 13: Schematic figure of eigenstates of $\hat{H}_{Q Q}$.

- The 3rd term of Eq. (32) has an imaginary part for $E>\Delta$

$$
\int d x \frac{f(x)}{x-a+i 0^{+}}=\mathcal{P} \int d x \frac{f(x)}{x-a}-i \pi f(a) \quad(\text { when } x=a \text { is in the integral range })
$$

c.f.) When $\Delta<0, \hat{H}^{\text {eff }}$ has an imaginary part from $E=0$

- In the 2nd and 3rd terms of Eq. (32), state with the nearest eigenenergy with E is dominant Denoting the state with the smallest ϵ_{i} as $\left|\phi_{0}\right\rangle$, at low energy with $E \ll \Delta$,

$$
\begin{equation*}
\hat{H}^{\mathrm{eff}}(E) \approx \hat{H}_{P P}+\frac{\hat{H}_{P Q}\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right| \hat{H}_{Q P}}{E-\epsilon_{0}} \tag{33}
\end{equation*}
$$

If $\hat{H}_{Q Q}$ is confining potential (without continuum) with a single bound state $\left|\phi_{0}\right\rangle$, then Eq. (33) is exact

- ϵ_{0} is measured from threshold of $P(E=0)$; binding energy from threshold of $Q(E=\Delta)$ is

$$
B . E .=\Delta-\epsilon_{0}
$$

$B . E$. is fixed by $\hat{H}_{Q Q} \Rightarrow$ If Δ is proportional to magnetic field, ϵ_{0} can be controlled

4.4 Scattering amplitude and resonance

Lippmann-Schwinger equation

- $\hat{H}^{\text {eff }}$ is a single-channel Hamiltonian for $P \Rightarrow$ apply scattering theory in $\S 2$

$$
\hat{H}^{\mathrm{eff}}=\hat{H}_{0}+\hat{V}, \quad \hat{H}_{0}=\frac{\hat{\boldsymbol{p}}^{2}}{2 \mu_{P}}, \quad \hat{H}_{0}|\boldsymbol{p}\rangle=\frac{\boldsymbol{p}^{2}}{2 \mu_{P}}|\boldsymbol{p}\rangle
$$

- Schrödinger equation $\left(|P\rangle\right.$ is eigenstate of $\left.\hat{H}^{\mathrm{eff}}\right)$

$$
\begin{aligned}
\hat{H}^{\mathrm{eff}}|P\rangle & =E|P\rangle \\
\left(\hat{H}_{0}+\hat{V}\right)|P\rangle & =E|P\rangle \\
\hat{V}|P\rangle & =\left(E-\hat{H}_{0}\right)|P\rangle
\end{aligned}
$$

Add $\left(E-\hat{H}_{0}\right)|\boldsymbol{p}\rangle=0$ in right hand side (for scattering state $|P\rangle \rightarrow|\boldsymbol{p}\rangle$ at $\hat{V} \rightarrow 0$)

$$
\begin{aligned}
\hat{V}|P\rangle & =\left(E-\hat{H}_{0}\right)(|P\rangle-|\boldsymbol{p}\rangle) \\
\left(E-\hat{H}_{0}\right)^{-1} \hat{V}|P\rangle & =|P\rangle-|\boldsymbol{p}\rangle \\
|P\rangle & =|\boldsymbol{p}\rangle+\left(E-\hat{H}_{0}\right)^{-1} \hat{V}|P\rangle
\end{aligned}
$$

- Green's operator (resolvent)

$$
\hat{G}(E)=\left(E-\hat{H}_{0}\right)^{-1}
$$

with this,

$$
\begin{equation*}
|P\rangle=|\boldsymbol{p}\rangle+\hat{G} \hat{V}|P\rangle \tag{34}
\end{equation*}
$$

- T operator : relating eigenstate of $\hat{H}_{0}(|\boldsymbol{p}\rangle)$ and that of $\hat{H}^{\text {eff }}(|P\rangle)$

$$
\text { (definition) } \quad \begin{array}{rlrl}
\hat{T}|\boldsymbol{p}\rangle & =\hat{V}|P\rangle \\
& =\hat{V}|\boldsymbol{p}\rangle+\hat{V} \hat{G} \hat{V}|P\rangle & \leftarrow \text { (Eq. (34)) } \\
& =\hat{V}|\boldsymbol{p}\rangle+\hat{V} \hat{G} \hat{T}|\boldsymbol{p}\rangle & \leftarrow \text { (definition) }
\end{array}
$$

This leads to Lippmann-Schwinger equation for T operator

$$
\begin{aligned}
\hat{T} & =\hat{V}+\hat{V} \hat{G} \hat{T} \\
& =\hat{V}+\hat{V} \hat{G}(\hat{V}+\hat{V} \hat{G} \hat{T}) \quad \text { (iterative substitution) } \\
& =\hat{V}+\hat{V} \hat{G} \hat{V}+\hat{V} \hat{G} \hat{V} \hat{G} \hat{V}+\cdots
\end{aligned}
$$

\hat{T} depends on energy E because \hat{G} does (even if \hat{V} does not)

- Relation with (on-shell) T matrix

$$
\left\langle\boldsymbol{p}^{\prime}\right| \hat{T}\left(E+i 0^{+}\right)|\boldsymbol{p}\rangle=t\left(\boldsymbol{p}^{\prime} \leftarrow \boldsymbol{p}\right)=-\frac{1}{(2 \pi)^{2} \mu_{P}} f(E, \theta)
$$

Poles of $t\left(\boldsymbol{p}^{\prime} \leftarrow \boldsymbol{p}\right)$ are poles of scattering amplitude, representing discrete eigenstates

- Lippmann-Schwinger equation for T matrix

$$
\begin{aligned}
t\left(\boldsymbol{p}^{\prime} \leftarrow \boldsymbol{p}\right) & =\left\langle\boldsymbol{p}^{\prime}\right| \hat{V}|\boldsymbol{p}\rangle+\left\langle\boldsymbol{p}^{\prime}\right| \hat{V} \hat{G} \hat{T}|\boldsymbol{p}\rangle \\
t\left(\boldsymbol{p}^{\prime} \leftarrow \boldsymbol{p}\right) & =\left\langle\boldsymbol{p}^{\prime}\right| \hat{V}|\boldsymbol{p}\rangle+\int d \boldsymbol{q}\left\langle\boldsymbol{p}^{\prime}\right| \hat{V}|\boldsymbol{q}\rangle\langle\boldsymbol{q}| \hat{G} \hat{T}|\boldsymbol{p}\rangle \quad \leftarrow \hat{I}=\int d \boldsymbol{q}|\boldsymbol{q}\rangle\langle\boldsymbol{q}| \\
& =\left\langle\boldsymbol{p}^{\prime}\right| \hat{V}|\boldsymbol{p}\rangle+\int d \boldsymbol{q}\left\langle\boldsymbol{p}^{\prime}\right| \hat{V}|\boldsymbol{q}\rangle \frac{1}{E-\boldsymbol{q}^{2} /\left(2 \mu_{P}\right)+i 0^{+}} t(\boldsymbol{q} \leftarrow \boldsymbol{p}) \quad \leftarrow \hat{H}_{0}|\boldsymbol{q}\rangle=\frac{\boldsymbol{q}^{2}}{2 \mu_{P}}|\boldsymbol{q}\rangle
\end{aligned}
$$

Integral equation for $t\left(\boldsymbol{p}^{\prime} \leftarrow \boldsymbol{p}\right)$

Separable interaction

- Separable interaction (product of functions of \boldsymbol{p} and \boldsymbol{p}^{\prime})

$$
\left\langle\boldsymbol{p}^{\prime}\right| \hat{V}|\boldsymbol{p}\rangle=\lambda F\left(\boldsymbol{p}^{\prime}\right) F(\boldsymbol{p})
$$

In this case, T matrix is $\left(G(E, \boldsymbol{q})=\left[E-\boldsymbol{q}^{2} /\left(2 \mu_{P}\right)+i 0^{+}\right]^{-1}\right)$

$$
\begin{aligned}
t\left(\boldsymbol{p}^{\prime} \leftarrow \boldsymbol{p}\right)= & \left\langle\boldsymbol{p}^{\prime}\right|[\hat{V}+\hat{V} \hat{G} \hat{V}+\hat{V} \hat{G} \hat{V} \hat{G} \hat{V}+\cdots]|\boldsymbol{p}\rangle \\
= & \lambda F\left(\boldsymbol{p}^{\prime}\right) F(\boldsymbol{p})+\int d \boldsymbol{q} \lambda F\left(\boldsymbol{p}^{\prime}\right) F(\boldsymbol{q}) G(E, \boldsymbol{q}) \lambda F(\boldsymbol{q}) F(\boldsymbol{p}) \\
& +\int d \boldsymbol{q} \int d \boldsymbol{q}^{\prime} \lambda F\left(\boldsymbol{p}^{\prime}\right) F(\boldsymbol{q}) G(E, \boldsymbol{q}) \lambda F(\boldsymbol{q}) F\left(\boldsymbol{q}^{\prime}\right) G\left(E, \boldsymbol{q}^{\prime}\right) \lambda F\left(\boldsymbol{q}^{\prime}\right) F(\boldsymbol{p})+\cdots \\
= & \lambda F\left(\boldsymbol{p}^{\prime}\right) F(\boldsymbol{p})+\lambda F\left(\boldsymbol{p}^{\prime}\right)\left[\lambda \int d \boldsymbol{q} F(\boldsymbol{q}) G(E, \boldsymbol{q}) F(\boldsymbol{q})\right] F(\boldsymbol{p}) \\
& +\lambda F\left(\boldsymbol{p}^{\prime}\right)\left[\lambda \int d \boldsymbol{q} F(\boldsymbol{q}) G(E, \boldsymbol{q}) F(\boldsymbol{q})\right]\left[\lambda \int d \boldsymbol{q}^{\prime} F\left(\boldsymbol{q}^{\prime}\right) G\left(E, \boldsymbol{q}^{\prime}\right) F\left(\boldsymbol{q}^{\prime}\right)\right] F(\boldsymbol{p})+\cdots \\
= & \lambda F\left(\boldsymbol{p}^{\prime}\right) F(\boldsymbol{p})\left[1+\mathcal{G}(E)+[\mathcal{G}(E)]^{2}+\cdots\right] \leftarrow \mathcal{G}(E)=\lambda \int d \boldsymbol{q} F(\boldsymbol{q}) G(E, \boldsymbol{q}) F(\boldsymbol{q}) \\
= & \lambda F\left(\boldsymbol{p}^{\prime}\right) F(\boldsymbol{p})[1-\mathcal{G}(E)]^{-1} \\
= & \frac{\lambda F\left(\boldsymbol{p}^{\prime}\right) F(\boldsymbol{p})}{1-\lambda \int d \boldsymbol{q} F(\boldsymbol{q}) G(E, \boldsymbol{q}) F(\boldsymbol{q})} \\
= & \frac{F\left(\boldsymbol{p}^{\prime}\right) F(\boldsymbol{p})}{\frac{1}{\lambda}-\int d \boldsymbol{q} \frac{F(\boldsymbol{q}) F(\boldsymbol{q})}{E-\boldsymbol{q}^{2} /(2 \mu P)+i 0^{+}}}
\end{aligned}
$$

Scattering amplitude

$$
f(E, \theta)=-(2 \pi)^{2} \mu \frac{F\left(\boldsymbol{p}^{\prime}\right) F(\boldsymbol{p})}{\frac{1}{\lambda}-\int d \boldsymbol{q} \frac{F(\boldsymbol{q}) F(\boldsymbol{q})}{E-\boldsymbol{q}^{2} /\left(2 \mu_{P}\right)+i 0^{+}}}
$$

- Potential \hat{V} corresponds to the Hamiltonian in Eq. (33)

$$
\hat{V}(E)=\hat{V}_{P}+\frac{\hat{V}_{t}\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right| \hat{V}_{t}}{E-\epsilon_{0}}
$$

If ϵ_{0} is sufficiently small, the second term is dominant at low energy :
(A special case for $\hat{V}_{P} \neq 0$ will be discussed in $\S 6$)

$$
\hat{V}(E) \approx \frac{\hat{V}_{t}\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right| \hat{V}_{t}}{E-\epsilon_{0}}
$$

This is a separable potential

$$
\begin{aligned}
\left\langle\boldsymbol{p}^{\prime}\right| \hat{V}(E)|\boldsymbol{p}\rangle & =\frac{\left\langle\boldsymbol{p}^{\prime}\right| \hat{V}_{t}\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right| \hat{V}_{t}|\boldsymbol{p}\rangle}{E-\epsilon_{0}} \\
\Rightarrow \quad \lambda & =\frac{1}{E-\epsilon_{0}}, \quad F(\boldsymbol{p})=\left\langle\phi_{0}\right| \hat{V}_{t}|\boldsymbol{p}\rangle \quad \text { (form factor) }
\end{aligned}
$$

- Scattering amplitude in P channel

$$
\begin{aligned}
f(E, \theta) & =-\frac{N(E, \theta)}{E-\epsilon_{0}-\Sigma(E)}, \quad N(E, \theta)=(2 \pi)^{2} \mu\left\langle\boldsymbol{p}^{\prime}\right| \hat{V}_{t}\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right| \hat{V}_{t}|\boldsymbol{p}\rangle \\
\Sigma(E) & =\int d \boldsymbol{q} \frac{\left\langle\phi_{0}\right| \hat{V}_{t}|\boldsymbol{q}\rangle\langle\boldsymbol{q}| \hat{V}_{t}\left|\phi_{0}\right\rangle}{E-\boldsymbol{q}^{2} /\left(2 \mu_{P}\right)+i 0^{+}} \quad \text { (self energy) }
\end{aligned}
$$

- When $\hat{V}_{t}=0, \Sigma(E)=0$, so the pole position is

$$
E=\epsilon_{0} \in \mathbb{R}
$$

corresponds to the bound state by $\hat{H}_{Q Q}$

- When $\hat{V}_{t} \neq 0$, in general the solution of $E-\epsilon_{0}-\Sigma(E)=0$, but for weak \hat{V}_{t}, we have

$$
E \approx \epsilon_{0}+\Sigma\left(\epsilon_{0}\right) \quad \text { (perturbative approximation) }
$$

When $\epsilon_{0}>0, \Sigma\left(\epsilon_{0}\right)$ has an imaginary part ($d q$ integration starts from $q=0$)
\Rightarrow resonance with complex eigenenergy

- Physically, bound state by $\hat{H}_{Q Q}$ acquires decay width through transition to the continuum of P

4.5 Controlling scattering length by magnetic field

- For s wave $(\ell=0)$ scattering, $N(E, \theta)$ had no θ dependence, and scattering length a_{0} is (see $\left.\S 3\right)$

$$
a_{0}=-f(E=0)=\frac{N(0)}{-\epsilon_{0}-\Sigma(0)}
$$

where $N(0)>0$ and

$$
\Sigma(0)=\int d \boldsymbol{q} \frac{\left\langle\phi_{0}\right| \hat{V}_{t}|\boldsymbol{q}\rangle\langle\boldsymbol{q}| \hat{V}_{t}\left|\phi_{0}\right\rangle}{-\boldsymbol{q}^{2} /\left(2 \mu_{P}\right)}=-\int d \boldsymbol{q} \frac{\left.2 \mu_{P}\left|\langle\boldsymbol{q}| \hat{V}_{t}\right| \phi_{0}\right\rangle\left.\right|^{2}}{\boldsymbol{q}^{2}}<0
$$

- When Δ (namely ϵ_{0}) is proportional to the external magnetic field B

$$
\epsilon_{0}=C B+\epsilon_{0}^{(0)}
$$

$C>0$ because the splitting increases with the magnetic field
$\epsilon_{0}^{(0)}$ is the energy of the bound state with $B=0$ where $E_{\text {th }}(Q)=0$, so $\epsilon_{0}^{(0)}<0$
Scattering length depends on B as

$$
\begin{equation*}
a_{0}(B)=-\frac{N(0)}{C\left(B-B_{0}\right)}, \quad B_{0}=\frac{-\Sigma(0)-\epsilon_{0}^{(0)}}{C}>0 \tag{35}
\end{equation*}
$$

Scattering length diverges at $B=B_{0}$: unitary limit

- With $\hat{V}_{P} \neq 0$, we obtain (Fig. 12 right)

$$
\begin{equation*}
a_{0}(B)=a_{\mathrm{BG}}\left[1-\frac{\Delta B}{B-B_{0}}\right] \tag{36}
\end{equation*}
$$

a_{BG} is the scattering length only by \hat{V}_{P}

Exercise 4

1) When the S matrix $s(p)$ (suppressing ℓ) has a pole at $p=p_{R} \in \mathbb{C}$, it is written as $s(p)=A(p)\left(p-p_{R}\right)^{-1}$ with a function $A(p) \in \mathbb{C}$. From the unitarity condition (14), show that in general we can write $A(p)=$ $C(p)\left(p-p_{R}^{*}\right)$ with a complex function with unit magnitude $C(p)$.
2) From this, the S matrix is given by $\left(\delta_{\mathrm{BG}}(p) \in \mathbb{R}\right)$

$$
s(p)=s_{\mathrm{BG}}(p) s_{\mathrm{BW}}(p), \quad s_{\mathrm{BG}}(p)=e^{2 i \delta_{\mathrm{BG}}(p)}, \quad s_{\mathrm{BW}}(p)=C_{\mathrm{BW}} \frac{p-p_{R}^{*}}{p-p_{R}}
$$

From Eq. (13), show that $s(p=0)=1$ for $|f(p=0)|<\infty$, and determine C_{BW} when $s_{\mathrm{BW}}(p)$ follows this condition.
3) Let the scattering lengths of $s(p), s_{\mathrm{BG}}(p), s_{\mathrm{BW}}(p)$ be $a_{0}, a_{\mathrm{BG}}, a_{\mathrm{BW}}$, respectively. Express a_{0} by using a_{BG} and a_{BW}.
4) Let the scattering length with $\hat{V}_{P}=0$ be a_{BW}, and that of only $\hat{V}_{P} \neq 0$ be a_{BG}. Show that B dependence of the total scattering length a_{0} is given in the form of Eq. (36), and determine ΔB.

4.6 Summary of §4

- Coupled-channel Hamiltonian of P and Q
- Eliminating channel Q to obtain effective Hamiltonian in P
- Bound state $\left|\phi_{0}\right\rangle$ in Q couples with P to generate complex energy state

5 Nonrelativistic effective field theory

5.1 Effective field theories

- Microscopic quantum field theory $\mathcal{L}_{\text {micro }}$
- Λ : ultraviolet cutoff scale (see Fig. 14)
- Ω : low-energy/long-wavelength phenomena below Λ
- Effective Field Theory, EFT $\mathcal{L}_{\text {EFT }}$
$-\mathcal{L}_{\text {EFT }}$ describes the same Ω with $\mathcal{L}_{\text {micro }}$ does
- can be elaborated systematically
$-\Lambda$: applicability bound of EFT

Figure 14: Schematic figure of effective field theory.

- Example 1 : Electromagnetic interaction
- Microscopic theory : QED

$$
\mathcal{L}_{\text {micro }}=\mathcal{L}_{\mathrm{QED}}=\underbrace{-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{\text {kinetic term of photons }}+\underbrace{\bar{e}\left(i \not D-m_{e}\right) e}_{\text {kinetic, mass, interaction terms of photons }}
$$

massless photons and electrons with mass m_{e}

- EFT : Euler-Heisenberg theory [33]

$$
\mathcal{L}_{\mathrm{EFT}}=\mathcal{L}_{\mathrm{EH}}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\underbrace{c_{1}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+c_{2}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}}_{\text {interaction terms of photons }}+\cdots
$$

Electrons are "heavy", only photons $\left(\Lambda \sim m_{e}\right)$
Coefficients are calculable from QED : $c_{1}=\frac{\alpha^{2}}{90 m_{e}^{4}}, c_{2}=\frac{7 \alpha^{2}}{360 m_{e}^{4}}$

Figure 15: Schematic figure of μ^{-}decay. Left : Weinberg-Salam theory, Right : Fermi theory

- Example 2 : Weak interaction
- Microscopic theory : Weinberg-Salam theory

$$
\mathcal{L}_{\text {micro }}=\mathcal{L}_{\mathrm{WS}}\left(\text { leptons, neutrinos, } W^{ \pm}, Z, \ldots\right)
$$

Interaction is mediated by exchange of $W^{ \pm}, Z$ (Fig. 15, left)

$$
\text { interaction } \propto \frac{g_{w}^{2}}{q^{2}-m_{W}^{2}}=-\frac{g_{w}^{2}}{m_{W}^{2}}\left(1+\mathcal{O}\left(\frac{q^{2}}{M_{W}^{2}}\right)\right)
$$

- EFT : Fermi theory

$$
\mathcal{L}_{\mathrm{EFT}}=\mathcal{L}_{\mathrm{F}}(\text { leptons, neutrinos, } . . .)
$$

four-Fermi (contact) interaction (Fig. 15, right)
$W^{ \pm}, Z$ are "heavy", only fermions ($\Lambda \sim m_{W^{ \pm}}, m_{Z}$)

$$
\text { interaction } \propto G_{F}\left(\propto-\frac{g_{w}^{2}}{m_{W}^{2}}\right)
$$

- Example 3 : strong interaction
- Microscopic theory : QCD

$$
\mathcal{L}_{\text {micro }}=\mathcal{L}_{\mathrm{QCD}} \text { (quarks, gluons) }
$$

not calculable at low energy, hadrons are degrees of freedom (color confinement)

- Weinberg's "theorem" [34]

The most general $\mathcal{L}_{\text {EFT }}$, consistent with the symmetries of $\mathcal{L}_{\text {micro }}$, effectively describes Ω

- EFT : chiral perturbation theory (having chiral symmetry as QCD) [35]

$$
\mathcal{L}_{\mathrm{EFT}}=\mathcal{L}_{\mathrm{ChPT}} \text { (hadrons) }
$$

The most general Lagrangian contains infinitely many terms \rightarrow sorted out by importance

$$
\mathcal{L}_{\mathrm{ChPT}}=\mathcal{L}^{(\mathrm{LO})}+\mathcal{L}^{(\mathrm{NLO})}+\cdots
$$

5.2 Zero-range model

- Description of nonrelativistic two-body scattering in EFT
- $R_{\text {typ }}$: typical length scale of interaction
- Square well potential : $R_{\text {typ }}=b$ (well width)
- Yukawa potential $V(r)=g \frac{e^{-\kappa r}}{r}: R_{\mathrm{typ}}=1 / \kappa$
$-\quad$ van der Waals potential $V(r)=-\frac{C_{6}}{r^{6}}: R_{\mathrm{typ}} \sim \ell_{\mathrm{vdW}}=\left(m C_{6} / \hbar^{2}\right)^{1 / 4}$
- Zero-range model $\mathcal{L}_{\mathrm{ZR}}: s$-wave scattering with larger $\left|a_{0}\right|$ than $R_{\mathrm{typ}}(\ell=0$ abbreviated $)$ [17]

$$
\begin{equation*}
f(p)=\frac{1}{-\frac{1}{a_{0}}-i p} \tag{37}
\end{equation*}
$$

- Nucleons : long-range tail is of Yukawa form by π exchange

$$
a_{0}\left({ }^{1} S_{0}\right) \simeq 20 \mathrm{fm}, \quad a_{0}\left({ }^{3} S_{1}\right) \simeq-4 \mathrm{fm}, \quad\left|a_{0}\right| \gg R_{\mathrm{typ}} \sim \frac{1}{m_{\pi}} \sim 1 \mathrm{fm}
$$

(Nucleons: fermions with spin and isospin degrees of freedom)

$$
\mathcal{L}_{\text {micro }}=\mathcal{L}_{N N} \quad\left(\text { or } \mathcal{L}_{\mathrm{QCD}}\right)
$$

- ${ }^{4}$ He atoms : long-range tail is of van der Waals form by polarization

$$
\begin{aligned}
& a_{0} \simeq 200 \text { [Bohr radius] } \quad\left|a_{0}\right| \gg R_{\text {typ }} \sim \ell_{\mathrm{vdW}} \sim 10 \text { [Bohr radius] } \\
& \mathcal{L}_{\text {micro }}=\mathcal{L}_{\text {atom }}
\end{aligned}
$$

- At low-energy $p \ll 1 / R_{\text {typ }}$, both can be described by the same $\mathcal{L}_{\mathrm{ZR}}$

Lagrangian

- Lagrangian density of zero-range model

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ZR}} & =\underbrace{\psi^{\dagger}\left(i \partial_{t}+\frac{\boldsymbol{\nabla}^{2}}{2 m}\right) \psi}_{\text {kinetic term }}-\underbrace{\frac{\lambda_{0}}{4}\left(\psi^{\dagger} \psi\right)^{2}}_{\text {interaction term }} \\
\psi(t, \boldsymbol{x}) & : \text { boson field } \\
m & : \text { boson mass } \\
\lambda_{0} & : \text { (bare) coupling constant }
\end{aligned}
$$

(two-fermions with antisymmtric spin w.f. is essentially same with two-bosons)

- Quantization : equal-time commutation relation

$$
\begin{aligned}
{\left[\psi(t, \boldsymbol{x}), \psi\left(t, \boldsymbol{x}^{\prime}\right)\right] } & =0 \\
{\left[\psi(t, \boldsymbol{x}), \psi^{\dagger}\left(t, \boldsymbol{x}^{\prime}\right)\right] } & =\delta^{3}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)
\end{aligned}
$$

Figure 16: Feynman rules of zero-range model (38). Left : boson propagator $i G$, Middle : vertex $-i \lambda_{0}$, Right : four-point function $i \mathcal{A}$

- Interaction term : four-point contact interaction $\sim 3 \mathrm{~d} \delta$ function potential

$$
\begin{aligned}
-\mathcal{L}_{\text {int }} & =\frac{\lambda_{0}}{4}\left(\psi^{\dagger} \psi\right)^{2} \sim \mathcal{H}_{\text {int }} \sim(\text { energy }) \\
& \begin{cases}\lambda_{0}>0 & \text { increase energy } \Rightarrow \text { repulsion } \\
\lambda_{0}<0 & \text { decrease energy } \Rightarrow \text { attraction }\end{cases}
\end{aligned}
$$

- Symmetries : space-time translation, rotation, parity, Galilean boost phase symmetry

$$
\psi(t, \boldsymbol{x}) \rightarrow e^{i \theta} \psi(t, \boldsymbol{x})
$$

corresponding conserved charge

$$
N=\int d \boldsymbol{x} \psi^{\dagger} \psi \quad \text { (particle number) }
$$

$\Rightarrow \mathcal{L}_{\text {int }}$ does not change the particle number (two-body is always two-body)

Feynman rules

- Calculation of physical quantities in quantum field theory

1. Derive Feynman rules (peaces of Feynman diagrams)
2. Sum up all possible Feynman diagrams (two-body sector of $\mathcal{L}_{\mathrm{ZR}}$ is possible)

2'. Perform perturbation theory (when 2 . is not doable)

- Propagator : propagation of particle (Fig. 16, left)

$$
i G(\omega, \boldsymbol{k})=\frac{1}{\omega-\boldsymbol{k}^{2} /(2 m)+i 0^{+}}
$$

only positive energy component : only forward going in time

- vertex : interaction (Fig. 16, middle)

Figure 17: Candidates of Feynman diagrams.

Figure 18: Possible Feynman diagrams.

5.3 Two-boson scattering

- two-body scattering amplitude \leftarrow four-point function $i \mathcal{A}(E)$ (2 in, 2 out, Fig. 16, right)
- Write down all diagrams from Feynman rules with keeping initial and final sates (Fig. 17)
- Eventually, same structure with Lippmann-Schwinger equation remains (Fig. 18)
- Different $\left(\lambda_{0}\right)^{n}$ terms are summed to all orders : nonperturbative scattering amplitude
- Perturbative expansion with small λ_{0} leads the first term : $i \mathcal{A}(E)=-i \lambda_{0}$

Calculation of scattering amplitude

- Two-body scattering amplitude $\mathcal{A}(E)$

$$
\begin{equation*}
i \mathcal{A}(E)=-i \lambda_{0}-i \lambda_{0} \frac{1}{2} \int \frac{d \omega d \boldsymbol{q}}{(2 \pi)^{4}} i G(\omega, \boldsymbol{q}) i G(E-\omega,-\boldsymbol{q}) i \mathcal{A}(E) \tag{39}
\end{equation*}
$$

- $1 / 2$ is the symmetry factor
- Here completeness relation is $1=\int \frac{d \boldsymbol{q}}{(2 \pi)^{3}}|\boldsymbol{q}\rangle\langle\boldsymbol{q}|$
- $d q$ integration diverges : introduce cutoff Λ (integral range $0 \leq q \leq \Lambda$)
- $i \mathcal{A}(E)$ in right hand side in not in the integration : same with separable interaction
- $\mathcal{A}(E)$ can be determined algebraically

$$
\begin{equation*}
\mathcal{A}(E)=\left[-\frac{1}{\lambda_{0}}-\frac{m}{4 \pi^{2}}\left(\Lambda-\sqrt{-m E-i 0^{+}} \arctan \frac{\Lambda}{\sqrt{-m E-i 0^{+}}}\right)\right]^{-1} \tag{40}
\end{equation*}
$$

- Energy E and momentum p

$$
E=\frac{p^{2}}{2 \mu}=\frac{p^{2}}{m} \leftarrow \mu=\frac{m m}{m+m}=\frac{m}{2}
$$

For physical scattering $E>0, p>0$,

$$
\sqrt{-m E-i 0^{+}}=-i \sqrt{m|E|}=-i \sqrt{p^{2}}=-i p
$$

- For a small momentum $p \ll \Lambda$ than the cutoff Λ,

$$
\arctan \left(\frac{\Lambda}{-i p}\right)=\frac{\pi}{2}+\mathcal{O}\left(\frac{p}{\Lambda}\right)
$$

then, Eq. (40) is

$$
\mathcal{A}(p)=\left[-\frac{1}{\lambda_{0}}-\frac{m}{4 \pi^{2}}\left(\Lambda+i p \frac{\pi}{2}\right)\right]^{-1}=\left[-\frac{1}{\lambda_{0}}-\frac{m}{4 \pi^{2}} \Lambda-i p \frac{m}{8 \pi}\right]^{-1}
$$

- Scattering amplitude

$$
f(p)=\frac{m}{8 \pi} \mathcal{A}(p)=\frac{1}{-\frac{8 \pi}{m}\left(\frac{1}{\lambda_{0}}+\frac{m}{4 \pi^{2}} \Lambda\right)-i p}
$$

Comparing with Eq. (37), scattering length is

$$
\begin{equation*}
a_{0}=\frac{m}{8 \pi}\left(\frac{1}{\lambda_{0}}+\frac{m}{4 \pi^{2}} \Lambda\right)^{-1} \tag{41}
\end{equation*}
$$

Unitarity

- Scattering amplitude is nonperturbative

$$
f_{\mathrm{NP}}(p)=\frac{1}{-1 / a_{0}-i p}
$$

- Scattering amplitude with $\mathcal{O}\left(\lambda_{0}^{1}\right)$ perturbation theory

$$
\left.f_{\mathrm{P}}(p)=-\frac{m}{8 \pi} \lambda_{0}=C \quad \text { (constant }\right)
$$

Fourier transformation of the interaction term, namely, Born approximation

- From Eq. (13), S matrix is given by $s(p)=2 \operatorname{ipf}(p)+1$, so

$$
\begin{aligned}
s_{\mathrm{NP}}(p) & =\frac{2 i p}{-1 / a_{0}-i p}+1=\frac{2 i p-1 / a_{0}-i p}{-1 / a_{0}-i p}=\frac{-1 / a_{0}+i p}{-1 / a_{0}-i p} \\
s_{\mathrm{P}}(p) & =2 i p C+1
\end{aligned}
$$

- Unitarity condition (14)

$$
\begin{aligned}
s_{\mathrm{NP}}^{*}(p) s_{\mathrm{NP}}(p) & =\frac{-1 / a_{0}-i p}{-1 / a_{0}+i p} \frac{-1 / a_{0}+i p}{-1 / a_{0}-i p}=1 \\
s_{\mathrm{P}}^{*}(p) s_{\mathrm{P}}(p) & =(2 i p C+1)(-2 i p C+1)=1+4 C^{2} p^{2} \neq 1
\end{aligned}
$$

- Nonperturbative scattering amplitude $f_{\mathrm{NP}}(p)$ satisfies unitarity, but $f_{\mathrm{P}}(p)$ dose not
- Perturbative calculation violates unitarity (If f is constant, so is $\sigma \sim f^{2}$, violating unitarity bound)

5.4 Renormalization

- Scattering length a_{0} is observable and independent of cutoff Λ
- Λ dependent coupling constant λ_{0}

$$
\begin{equation*}
\lambda_{0}(\Lambda)=\left(1-\frac{2 a_{0}}{\pi} \Lambda\right)^{-1} \frac{8 \pi}{m} a_{0} \tag{42}
\end{equation*}
$$

coupling constant λ_{0} for a given Λ to give fixed scattering length a_{0}

- Under Eq. (42), the limit $\Lambda \rightarrow \infty$ can be taken
- Renormalization group equation : behavior of coupling constant with respect to cutoff Λ

$$
\begin{equation*}
\frac{d}{d(\ln \Lambda)} \hat{\lambda}(\Lambda)=\hat{\lambda}(\Lambda)[1+\hat{\lambda}(\Lambda)] \tag{43}
\end{equation*}
$$

dimensionless coupling constant

$$
\hat{\lambda}(\Lambda)=\frac{m}{4 \pi^{2}} \Lambda \lambda_{0}(\Lambda)
$$

- Fixed point $\hat{\lambda}^{*}$: the value at which $\hat{\lambda}$ is Λ independent, RHS of Eq. $(43)=0$, so that $\hat{\lambda}^{*}=0$ or -1
$-\hat{\lambda}^{*}=0: a_{0}=0$, noninteracting, trivial
$-\hat{\lambda}^{*}=-1: a_{0}= \pm \infty$, unitary limit, nontrivial

Exercise 5

1) Show that a_{0} is cutoff independent if the coupling constant λ_{0} has Λ dependence as in Eq. (42).
2) Show that the renormalization group equation for $\hat{\lambda}(\Lambda)$ is Eq. (43).
3) Show that $a_{0}=0\left(a_{0}= \pm \infty\right)$ when $\hat{\lambda}^{*}=0\left(\hat{\lambda}^{*}=-1\right)$.

5.5 Summary of $\S 5$

- EFT : description of low-energy physics
- Zero-range model : nonperturbative (unitary) scattering amplitude

$$
f(p)=\frac{1}{-1 / a_{0}-i p}
$$

