
4 Theory of Feshbach resonances

4.1 Overview

• Feshbach resonance : resonance in coupled-channel scattering

• Threshold energy Eth and channels

– open channels (E > Eth) : scattering occurs at energy E

– closed channels (E < Eth) : scattering does not occur at energy E

• Original paper by Feshbach [30, 31] : theory of compound nuclear reaction (Fig. 12, left)

• Realization with cold atoms [7] : controlling scattering length by magnetic field (Fig. 12, right)
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A new formulation of the theory of nuclear reactions based on the properties 
of a generalized “optical” potential is presented. The real and imaginary part 
of this potential satisfy a dispersion type relation while its poles give rise to 
resonances in nuclear reactions. A new derivation of the Breit-Wigner formula 
is given in which the concept of channel radius is not employed. This deriva- 
tion is extended to the case of overlapping resonances. These results can then 
be employed to obtain the complex potential well model for pure elastic scatter- 
ing. This potential well is shown to become real as the average width of the 
resonances increases. Reactions as well as elastic scattering are treated. Con- 
sidering the former process in an isolated resonance, we obtain a nonresonant 
term analogous to the familiar potential scattering term of elastic scattering. 
This is just the direct interaction term which thus appears automatically in 
this formalism. Upon performing the appropriate energy averages over res- 
onances, the complex potential well model is generalized so as to include 
inelastic scattering. The effects of the identity of nucleons is investigated. It is 
shown that our formalism is valid as long as the exit channels can at most 
contain one nucleon. 

I. INTRODUCTION 

By this time it has become abundantly clear that many differing aspects of 
the nucleon-nucleus interaction show up in nuclear reactions and scattering. 
There is consequently a multiplicity of descriptions of nuclear reactions which 
are brought to mind by the terms compound nucleus, the statistical hypothesis, 
optical model and direct and surface interaction. Since all the phenomena charac- 
terized by these concepts are general properties of the many body system (1) 
it should be possible to develop a theory of nuclear reactions from which each 
of these phenomena can be abstracted in a natural and straight forward fashion. 
It is the purpose of this paper to present such a formalism. 

This program has been carried out in part by Thomas (S), Bloch (S) who 
employ a suitably modified form of the Wigner (4) theory of nuclear resonances 
and by Brown and Dominicis (5) who work with the Kapur-Peierls (6) formalism. 
The present paper is based on a new formulation of resonance theory which 
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about 80% of the atoms were lost. This, coupled with the stability
and finite programming speed of the power supplies, limited the
ramp rates to those given above.
The observation of twin resonances separated by 54 ! 1G, with

the weaker one at lower field, exactly matches the theoretically
predicted pattern and thus strongly confirms our interpretation. No
resonance phenomenawere observed in the jmF ¼ " 1⟩ state at any
field up to 1,000G, in agreement with theory which predicted
resonances for this state only at much higher fields.

Changing the scattering length
The trap loss measurements easily located the Feshbach resonances.
To measure the variation of the scattering length around these
resonances, we determined the interaction energy of a trapped
condensate. This was done by suddenly switching off the trap,
allowing the stored interaction energy to be converted into the
kinetic energy of a freely expanding condensate and measuring it by
time-of-flight absorption imaging1,2,21. The interaction energy is
proportional to the scattering length and the average density of the
condensate ⟨n⟩:

EI =N ¼
2p 2

m
a ⟨n⟩ ð2Þ

where N is the number of condensed atoms of mass m. For a large
condensate the kinetic energy in the trap is negligible (Thomas–
Fermi limit), and EI is equal to the kinetic energy EK of the freely
expanding condensate EK =N ¼ mv2rms=2, where vrms is the root-
mean-square velocity of the atoms. For a three-dimensional har-

monic oscillator potential one finds ⟨n⟩ # NðNaÞ" 3=5 (ref. 23) (We
note that, for a general power-law potential Sicix

pi
i , one obtains

⟨n⟩ # NðNaÞk" 1, where k ¼ 1=ð1 þ Si1=piÞ). Thus, the value of the
scattering length scales as:

a #
v5rms

N
ð3Þ

Both vrms andN can be directly evaluated from absorption images of
freely expanding condensates. For a cigar-shaped condensate the
free expansion is predominantly radial, and so the contribution of
the axial dimension to vrms could be neglected. The quantity v5rms/N
(equation (3)), normalized to unity outside the resonance, should
be identical to a/ã (equation (1)). This quantity was measured
around the resonance at 907G and is shown in Fig. 2b together with
the theoretical prediction of a resonance with width ∆ ¼ 1G. The
data clearly displays the predicted dispersive shape and shows
evidence for a variation in the scattering length by more than a
factor of ten.
We nowdiscuss the assumptions for equation (3) and show that it

is approximately valid for our conditions. (1) We assumed that the
condensate remains in equilibrium during the magnetic field ramp.
This is the case if the adiabatic condition ȧ=ap qi holds for the
temporal change of the scattering length16, and a similar condition
for the loss of atoms (the qi are the trapping frequencies). For the
condensate’s fast radial dynamics (qr ! 2p $ 1:5 kHz) this con-
dition is fulfilled, whereas for the slower axial motion
(qz ! 2p $ 0:1 kHz) it breaks down close to or within the reso-
nance. In this case the density would approach the two-dimensional
scaling N(Na)−1/2, but the values for a/ã (Fig. 2b) would differ by at
most 50%. (2) The second assumption was a three-dimensional
harmonic trap. If the axial potential has linear contributions, the
density scales instead like N(Na)−2/3 resulting in at most a 50%
change for a/ã. (3) We assumed that contributions of collective
excitations to the released energy were small. Axial striations were
observed in free expansion for both jmF ¼ þ1⟩ and jmF ¼ " 1⟩
atoms (probably created by the changing potential during the fast
magnetic field ramp). However, the small scatter of points outside
the resonance in Fig. 2b, which do not show any evidence of
oscillations, suggests that the contribution of excitations to the
released energy is negligible. (4) We assumed a sudden switch-off of
the trap and ballistic expansion. The inhomogeneous bias field
during the first 1–2ms of free expansion accelerated the axial
expansion, but had a negligible effect on the expansion of the
condensate in the radial direction, which was evaluated for Fig. 2b.
None of the corrections (1)–(4) discussed above affect our

conclusion that the scattering length varies dispersively near a
Feshbach resonance. More accurate experiments should be done
with a homogeneous bias field. In addition, an optical trap with
larger volume and lower density would preclude the need to ramp
the field quickly because three-body recombination would be
reduced.
The trap losses observed around the Feshbach resonances merit

further study as they might impose practical limits on the possi-
bilities for varying the scattering length. An increase of the dipolar
relaxation rate near Feshbach resonances has been predicted6,7, but
for atoms in the lowest hyperfine state no such inelastic binary
collisions are possible. Therefore, the observed trap loss is probably
due to three-body collisions. In this case the loss rate is characterized
by the coefficient K3, defined as Ṅ=N ¼ "K3⟨n2⟩. So far, there is no
theoretical work onK3 near a Feshbach resonance. An analysis based
on Fig. 2 shows that K3 increased on both sides of the resonance,
because the loss rate increased while the density decreased or stayed
constant. In any case, the fact that we observed Feshbach resonances
at high atomic densities ("1015 cm−3) strongly enhanced this loss
process, which can be avoided with a condensate at lower density in
a modified optical trap. Control of the bias field with a precision
better than "10−4 will be necessary to achieve negative or extremely
large values of the scattering length in a stable way.
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Figure 2 Observation of the Feshbach resonance at 907G using time-of-flight

absorption imaging.a, Numberof atoms in the condensate versusmagnetic field.

Field values above the resonance were reached by quickly crossing the

resonance from below and then slowly approaching from above. b, The

normalized scattering length a=ã # v 5
rms=N calculated from the released energy,

together with the predicted shape (equation (1), solid line). The values of the

magnetic field in the upper scan relative to the lower one have an uncertainty of

%0.5G.

Figure 12: Left : original paper, H. Feshbach, Ann. Phys. 5, 357 (1958). Right: controlling scattering

length of cold atoms by magnetic field, adopted from S. Inouye, Nature (London) 392, 151 (1998).

4.2 Two-channel Hamiltonian

• Two channels P and Q, setting threshold of P at Eth(P ) = 0 [32]

• Schrödinger equation in matrix form

Ĥ|ψ ⟩ = E|ψ ⟩ (30)

Ĥ =

(
ĤPP ĤPQ

ĤQP ĤQQ

)
=

⎛

⎜⎜⎝

p̂2

2µP
+ V̂P V̂t

V̂t
p̂2

2µQ
+∆+ V̂Q

⎞

⎟⎟⎠ , |ψ ⟩ =
(
|P ⟩
|Q ⟩

)

– V̂P , V̂Q : potential in each channel (Fig. 4), vanishes at r →∞

– V̂t : channel transition potential

– ∆ > 0 : threshold energy difference Eth(Q)−Eth(P ) (originates in Zeeman splitting of atoms,

proportional to magnetic field strength)

– Energy region 0 < E < ∆ : P is open (entrance) channel, Q is closed channel
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• Projection operators

P̂ =

(
1 0

0 0

)
, Q̂ =

(
0 0

0 1

)

P̂ 2 = P̂ , Q̂2 = Q̂, P̂ Q̂ = Q̂P̂ = 0, P̂ + Q̂ = Î

Each component can be written as |X ⟩ = X̂|ψ ⟩ and ĤXY = X̂ĤŶ

• Effective Hamiltonian for channel P : eliminating |Q ⟩
It follows from the lower component of Eq. (30) that

ĤQP |P ⟩+ ĤQQ|Q ⟩ = E|Q ⟩

ĤQP |P ⟩ = (E − ĤQQ)|Q ⟩

|Q ⟩ = (E − ĤQQ)
−1ĤQP |P ⟩

Substituting this into the upper component of Eq. (30) :

ĤPP |P ⟩+ ĤPQ|Q ⟩ = E|P ⟩

ĤPP |P ⟩+ ĤPQ(E − ĤQQ)
−1ĤQP |P ⟩ = E|P ⟩

then

Ĥeff(E)|P ⟩ = E|P ⟩, (31)

Ĥeff(E) = ĤPP + ĤPQ(E − ĤQQ)
−1ĤQP

Ĥeff is effective Hamiltonian of P , incorporating the effect of Q

– Eq. (31) is a single-channel (not in matrix form) Schrödinger equation in P

– No approximations ⇒ Solution of Eq. (31) is equivalent to |P ⟩ in Eq. (30)

– Ĥeff(E) is energy dependent (Eq. (31) should be solved self-consistently)

4.3 Single-resonance approximation

• Eigenstates of ĤQQ (Fig. 13) : bound states |φi ⟩, continuum states |φ(ϵ) ⟩ labeled by energy ϵ

ĤQQ|φi ⟩ = ϵi|φi ⟩,

ĤQQ|φ(ϵ) ⟩ = ϵ|φ(ϵ) ⟩

|φ ⟩ : eigenstates without channel transition (V̂t = 0) but with V̂Q ̸= 0 only, |φ ⟩ ̸= |Q ⟩

• Spectral decomposition (continuum starts from ϵ = ∆)

Î =
∑

i

|φi ⟩⟨φi |+
∫ ∞

∆
dϵ|φ(ϵ) ⟩⟨φ(ϵ) |

With this, Ĥeff can be written as

Ĥeff(E) = ĤPP +
∑

i

ĤPQ|φi ⟩⟨φi |ĤQP

E − ϵi
+

∫ ∞

∆
dϵ

ĤPQ|φ(ϵ) ⟩⟨φ(ϵ) |ĤQP

E − ϵ+ i0+
(32)
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Figure 13: Schematic figure of eigenstates of ĤQQ.

• The 3rd term of Eq. (32) has an imaginary part for E > ∆

∫
dx

f(x)

x− a+ i0+
= P

∫
dx

f(x)

x− a
− iπf(a) (when x = a is in the integral range)

c.f.) When ∆ < 0, Ĥeff has an imaginary part from E = 0

• In the 2nd and 3rd terms of Eq. (32), state with the nearest eigenenergy with E is dominant

Denoting the state with the smallest ϵi as |φ0 ⟩, at low energy with E ≪ ∆,

Ĥeff(E) ≈ ĤPP +
ĤPQ|φ0 ⟩⟨φ0 |ĤQP

E − ϵ0
(33)

If ĤQQ is confining potential (without continuum) with a single bound state |φ0 ⟩, then Eq. (33) is

exact

• ϵ0 is measured from threshold of P (E = 0); binding energy from threshold of Q (E = ∆) is

B.E. = ∆− ϵ0

B.E. is fixed by ĤQQ ⇒ If ∆ is proportional to magnetic field, ϵ0 can be controlled

4.4 Scattering amplitude and resonance

Lippmann-Schwinger equation

• Ĥeff is a single-channel Hamiltonian for P ⇒ apply scattering theory in §2

Ĥeff = Ĥ0 + V̂ , Ĥ0 =
p̂2

2µP
, Ĥ0|p ⟩ =

p2

2µP
|p ⟩

• Schrödinger equation (|P ⟩ is eigenstate of Ĥeff)

Ĥeff |P ⟩ = E|P ⟩

(Ĥ0 + V̂ )|P ⟩ = E|P ⟩

V̂ |P ⟩ = (E − Ĥ0)|P ⟩
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Add (E − Ĥ0)|p ⟩ = 0 in right hand side (for scattering state |P ⟩ → |p ⟩ at V̂ → 0)

V̂ |P ⟩ = (E − Ĥ0)(|P ⟩ − |p ⟩)

(E − Ĥ0)
−1V̂ |P ⟩ = |P ⟩ − |p ⟩

|P ⟩ = |p ⟩+ (E − Ĥ0)
−1V̂ |P ⟩

• Green’s operator (resolvent)

Ĝ(E) = (E − Ĥ0)
−1

with this,

|P ⟩ = |p ⟩+ ĜV̂ |P ⟩ (34)

• T operator : relating eigenstate of Ĥ0 (|p ⟩) and that of Ĥeff (|P ⟩)

(definition) T̂ |p ⟩ = V̂ |P ⟩

= V̂ |p ⟩+ V̂ ĜV̂ |P ⟩ ← (Eq. (34))

= V̂ |p ⟩+ V̂ ĜT̂ |p ⟩ ← (definition)

This leads to Lippmann-Schwinger equation for T operator

T̂ = V̂ + V̂ ĜT̂

= V̂ + V̂ Ĝ(V̂ + V̂ ĜT̂ ) (iterative substitution)

= V̂ + V̂ ĜV̂ + V̂ ĜV̂ ĜV̂ + · · ·

T̂ depends on energy E because Ĝ does (even if V̂ does not)

• Relation with (on-shell) T matrix

⟨p′ |T̂ (E + i0+)|p ⟩ = t(p′ ← p) = − 1

(2π)2µP
f(E, θ)

Poles of t(p′ ← p) are poles of scattering amplitude, representing discrete eigenstates

• Lippmann-Schwinger equation for T matrix

t(p′ ← p) = ⟨p′ |V̂ |p ⟩+ ⟨p′ |V̂ ĜT̂ |p ⟩

t(p′ ← p) = ⟨p′ |V̂ |p ⟩+
∫

dq⟨p′ |V̂ | q ⟩⟨ q |ĜT̂ |p ⟩ ← Î =

∫
dq| q ⟩⟨ q |

= ⟨p′ |V̂ |p ⟩+
∫

dq⟨p′ |V̂ | q ⟩ 1

E − q2/(2µP ) + i0+
t(q ← p) ← Ĥ0| q ⟩ =

q2

2µP
| q ⟩

Integral equation for t(p′ ← p)

27



Separable interaction

• Separable interaction (product of functions of p and p′)

⟨p′ |V̂ |p ⟩ = λF (p′)F (p)

In this case, T matrix is (G(E, q) = [E − q2/(2µP ) + i0+]−1)

t(p′ ← p) = ⟨p′ |
[
V̂ + V̂ ĜV̂ + V̂ ĜV̂ ĜV̂ + · · ·

]
|p ⟩

= λF (p′)F (p) +

∫
dqλF (p′)F (q)G(E, q)λF (q)F (p)

+

∫
dq

∫
dq′λF (p′)F (q)G(E, q)λF (q)F (q′)G(E, q′)λF (q′)F (p) + · · ·

= λF (p′)F (p) + λF (p′)

[
λ

∫
dqF (q)G(E, q)F (q)

]
F (p)

+ λF (p′)

[
λ

∫
dqF (q)G(E, q)F (q)

] [
λ

∫
dq′F (q′)G(E, q′)F (q′)

]
F (p) + · · ·

= λF (p′)F (p)
[
1 + G(E) + [G(E)]2 + · · ·

]
← G(E) = λ

∫
dqF (q)G(E, q)F (q)

= λF (p′)F (p) [1− G(E)]−1

=
λF (p′)F (p)

1− λ
∫

dqF (q)G(E, q)F (q)

=
F (p′)F (p)

1

λ
−
∫

dq
F (q)F (q)

E − q2/(2µP ) + i0+

Scattering amplitude

f(E, θ) = −(2π)2µ F (p′)F (p)
1

λ
−
∫

dq
F (q)F (q)

E − q2/(2µP ) + i0+

• Potential V̂ corresponds to the Hamiltonian in Eq. (33)

V̂ (E) = V̂P +
V̂t|φ0 ⟩⟨φ0 |V̂t

E − ϵ0

If ϵ0 is sufficiently small, the second term is dominant at low energy :

(A special case for V̂P ̸= 0 will be discussed in §6)

V̂ (E) ≈ V̂t|φ0 ⟩⟨φ0 |V̂t

E − ϵ0

This is a separable potential

⟨p′ |V̂ (E)|p ⟩ = ⟨p
′ |V̂t|φ0 ⟩⟨φ0 |V̂t|p ⟩

E − ϵ0
⇒ λ =

1

E − ϵ0
, F (p) = ⟨φ0 |V̂t|p ⟩ (form factor)
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• Scattering amplitude in P channel

f(E, θ) = − N(E, θ)

E − ϵ0 − Σ(E)
, N(E, θ) = (2π)2µ⟨p′ |V̂t|φ0 ⟩⟨φ0 |V̂t|p ⟩

Σ(E) =

∫
dq
⟨φ0 |V̂t| q ⟩⟨ q |V̂t|φ0 ⟩
E − q2/(2µP ) + i0+

(self energy)

• When V̂t = 0, Σ(E) = 0, so the pole position is

E = ϵ0 ∈ R

corresponds to the bound state by ĤQQ

• When V̂t ̸= 0, in general the solution of E − ϵ0 − Σ(E) = 0, but for weak V̂t, we have

E ≈ ϵ0 + Σ(ϵ0) (perturbative approximation)

When ϵ0 > 0, Σ(ϵ0) has an imaginary part (dq integration starts from q = 0)

⇒ resonance with complex eigenenergy

• Physically, bound state by ĤQQ acquires decay width through transition to the continuum of P

4.5 Controlling scattering length by magnetic field

• For s wave (ℓ = 0) scattering, N(E, θ) had no θ dependence, and scattering length a0 is (see §3)

a0 = −f(E = 0) =
N(0)

−ϵ0 − Σ(0)

where N(0) > 0 and

Σ(0) =

∫
dq
⟨φ0 |V̂t| q ⟩⟨ q |V̂t|φ0 ⟩

−q2/(2µP )
= −

∫
dq

2µP |⟨ q |V̂t|φ0 ⟩|2

q2
< 0

• When ∆ (namely ϵ0) is proportional to the external magnetic field B

ϵ0 = CB + ϵ(0)0

C > 0 because the splitting increases with the magnetic field

ϵ(0)0 is the energy of the bound state with B = 0 where Eth(Q) = 0, so ϵ(0)0 < 0

Scattering length depends on B as

a0(B) = − N(0)

C(B −B0)
, B0 =

−Σ(0)− ϵ(0)0

C
> 0 (35)

Scattering length diverges at B = B0 : unitary limit

• With V̂P ̸= 0, we obtain (Fig. 12 right)

a0(B) = aBG

[
1− ∆B

B −B0

]
(36)

aBG is the scattering length only by V̂P
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Exercise 4

1) When the S matrix s(p) (suppressing ℓ) has a pole at p = pR ∈ C, it is written as s(p) = A(p)(p−pR)−1

with a function A(p) ∈ C. From the unitarity condition (14), show that in general we can write A(p) =

C(p)(p− p∗R) with a complex function with unit magnitude C(p).

2) From this, the S matrix is given by (δBG(p) ∈ R)

s(p) = sBG(p)sBW(p), sBG(p) = e2iδBG(p), sBW(p) = CBW
p− p∗R
p− pR

From Eq. (13), show that s(p = 0) = 1 for |f(p = 0)| < ∞, and determine CBW when sBW(p) follows

this condition.

3) Let the scattering lengths of s(p), sBG(p), sBW(p) be a0, aBG, aBW, respectively. Express a0 by using

aBG and aBW.

4) Let the scattering length with V̂P = 0 be aBW, and that of only V̂P ̸= 0 be aBG. Show that B

dependence of the total scattering length a0 is given in the form of Eq. (36), and determine ∆B.

4.6 Summary of §4

• Coupled-channel Hamiltonian of P and Q

• Eliminating channel Q to obtain effective Hamiltonian in P

• Bound state |φ0 ⟩ in Q couples with P to generate complex energy state
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5 Nonrelativistic effective field theory

5.1 Effective field theories

• Microscopic quantum field theory Lmicro

• Λ : ultraviolet cutoff scale (see Fig. 14)

• Ω : low-energy/long-wavelength phenomena below Λ

• Effective Field Theory, EFT LEFT

– LEFT describes the same Ω with Lmicro does

– can be elaborated systematically

– Λ : applicability bound of EFT

energy, (length)-1

Ω

Λ

ℒmicro

ℒEFT

Figure 14: Schematic figure of effective field theory.

• Example 1 : Electromagnetic interaction

– Microscopic theory : QED

Lmicro = LQED = −1

4
FµνF

µν

︸ ︷︷ ︸
kinetic term of photons

+ ē(i /D −me)e︸ ︷︷ ︸
kinetic, mass, interaction terms of photons

massless photons and electrons with mass me

– EFT : Euler-Heisenberg theory [33]

LEFT = LEH = −1

4
FµνF

µν + c1(FµνF
µν)2 + c2(FµνF̃

µν)2
︸ ︷︷ ︸

interaction terms of photons

+ · · ·

Electrons are “heavy”, only photons (Λ ∼ me)

Coefficients are calculable from QED : c1 =
α2

90m4
e
, c2 =

7α2

360m4
e
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Figure 15: Schematic figure of µ− decay. Left : Weinberg-Salam theory, Right : Fermi theory

• Example 2 : Weak interaction

– Microscopic theory : Weinberg-Salam theory

Lmicro = LWS(leptons, neutrinos, W
±, Z, ...)

Interaction is mediated by exchange of W±, Z (Fig. 15, left)

interaction ∝ g2w
q2 −m2

W

= − g2w
m2

W

(
1 +O

(
q2

M2
W

))

– EFT : Fermi theory

LEFT = LF(leptons, neutrinos, ...)

four-Fermi (contact) interaction (Fig. 15, right)

W±, Z are “heavy”, only fermions (Λ ∼ mW± ,mZ)

interaction ∝ GF

(
∝ − g2w

m2
W

)

• Example 3 : strong interaction

– Microscopic theory : QCD

Lmicro = LQCD(quarks, gluons)

not calculable at low energy, hadrons are degrees of freedom (color confinement)

– Weinberg’s “theorem” [34]

The most general LEFT, consistent with the symmetries of Lmicro, effectively describes Ω

– EFT : chiral perturbation theory (having chiral symmetry as QCD) [35]

LEFT = LChPT(hadrons)

The most general Lagrangian contains infinitely many terms → sorted out by importance

LChPT = L(LO) + L(NLO) + · · ·
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5.2 Zero-range model

• Description of nonrelativistic two-body scattering in EFT

• Rtyp : typical length scale of interaction

– Square well potential : Rtyp = b (well width)

– Yukawa potential V (r) = g
e−κr

r
: Rtyp = 1/κ

– van der Waals potential V (r) = −C6

r6
: Rtyp ∼ ℓvdW = (mC6/!2)1/4

• Zero-range model LZR : s-wave scattering with larger |a0| than Rtyp (ℓ = 0 abbreviated) [17]

f(p) =
1

− 1

a0
− ip

(37)

– Nucleons : long-range tail is of Yukawa form by π exchange

a0(
1S0) ≃ 20 fm, a0(

3S1) ≃ −4 fm, |a0|≫ Rtyp ∼
1

mπ
∼ 1 fm

(Nucleons : fermions with spin and isospin degrees of freedom)

Lmicro = LNN (or LQCD)

– 4He atoms : long-range tail is of van der Waals form by polarization

a0 ≃ 200 [Bohr radius] |a0|≫ Rtyp ∼ ℓvdW ∼ 10 [Bohr radius]

Lmicro = Latom

• At low-energy p≪ 1/Rtyp, both can be described by the same LZR

Lagrangian

• Lagrangian density of zero-range model

LZR = ψ†
(
i∂t +

∇2

2m

)
ψ

︸ ︷︷ ︸
kinetic term

− λ0
4
(ψ†ψ)2

︸ ︷︷ ︸
interaction term

(38)

ψ(t,x) : boson field

m : boson mass

λ0 : (bare) coupling constant

(two-fermions with antisymmtric spin w.f. is essentially same with two-bosons)

• Quantization : equal-time commutation relation

[ψ(t,x),ψ(t,x′)] = 0

[ψ(t,x),ψ†(t,x′)] = δ3(x− x′)
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Figure 16: Feynman rules of zero-range model (38). Left : boson propagator iG, Middle : vertex −iλ0,
Right : four-point function iA

• Interaction term : four-point contact interaction ∼ 3d δ function potential

−Lint =
λ0
4
(ψ†ψ)2 ∼ Hint ∼ (energy)

⎧
⎨

⎩
λ0 > 0 increase energy ⇒ repulsion

λ0 < 0 decrease energy ⇒ attraction

• Symmetries : space-time translation, rotation, parity, Galilean boost

phase symmetry

ψ(t,x)→ eiθψ(t,x)

corresponding conserved charge

N =

∫
dx ψ†ψ (particle number)

⇒ Lint does not change the particle number (two-body is always two-body)

Feynman rules

• Calculation of physical quantities in quantum field theory

1. Derive Feynman rules (peaces of Feynman diagrams)

2. Sum up all possible Feynman diagrams (two-body sector of LZR is possible)

2’. Perform perturbation theory (when 2. is not doable)

• Propagator : propagation of particle (Fig. 16, left)

iG(ω,k) =
1

ω − k2/(2m) + i0+

only positive energy component : only forward going in time

• vertex : interaction (Fig. 16, middle)
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Figure 17: Candidates of Feynman diagrams.

Figure 18: Possible Feynman diagrams.

5.3 Two-boson scattering

• two-body scattering amplitude ← four-point function iA(E) (2 in, 2 out, Fig. 16, right)

• Write down all diagrams from Feynman rules with keeping initial and final sates (Fig. 17)

• Eventually, same structure with Lippmann-Schwinger equation remains (Fig. 18)

• Different (λ0)n terms are summed to all orders : nonperturbative scattering amplitude

• Perturbative expansion with small λ0 leads the first term : iA(E) = −iλ0

Calculation of scattering amplitude

• Two-body scattering amplitude A(E)

iA(E) = −iλ0 − iλ0
1

2

∫
dωdq

(2π)4
iG(ω, q)iG(E − ω,−q)iA(E) (39)

– 1/2 is the symmetry factor

– Here completeness relation is 1 =
∫ dq

(2π)3 | q ⟩⟨ q |

– dq integration diverges : introduce cutoff Λ (integral range 0 ≤ q ≤ Λ)

– iA(E) in right hand side in not in the integration : same with separable interaction
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• A(E) can be determined algebraically

A(E) =

[
− 1

λ0
− m

4π2

(
Λ−

√
−mE − i0+ arctan

Λ√
−mE − i0+

)]−1

(40)

• Energy E and momentum p

E =
p2

2µ
=

p2

m
← µ =

mm

m+m
=

m

2

For physical scattering E > 0, p > 0,

√
−mE − i0+ = −i

√
m|E| = −i

√
p2 = −ip

• For a small momentum p≪ Λ than the cutoff Λ,

arctan

(
Λ

−ip

)
=
π

2
+O

( p
Λ

)

then, Eq. (40) is

A(p) =

[
− 1

λ0
− m

4π2

(
Λ+ ip

π

2

)]−1

=

[
− 1

λ0
− m

4π2
Λ− ip

m

8π

]−1

• Scattering amplitude

f(p) =
m

8π
A(p) =

1

−8π

m

(
1

λ0
+

m

4π2
Λ

)
− ip

Comparing with Eq. (37), scattering length is

a0 =
m

8π

(
1

λ0
+

m

4π2
Λ

)−1

(41)

Unitarity

• Scattering amplitude is nonperturbative

fNP(p) =
1

−1/a0 − ip

• Scattering amplitude with O(λ10) perturbation theory

fP(p) = −
m

8π
λ0 = C (constant)

Fourier transformation of the interaction term, namely, Born approximation

• From Eq. (13), S matrix is given by s(p) = 2ipf(p) + 1, so

sNP(p) =
2ip

−1/a0 − ip
+ 1 =

2ip− 1/a0 − ip

−1/a0 − ip
=
−1/a0 + ip

−1/a0 − ip

sP(p) = 2ipC + 1
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• Unitarity condition (14)

s∗NP(p)sNP(p) =
−1/a0 − ip

−1/a0 + ip

−1/a0 + ip

−1/a0 − ip
= 1

s∗P(p)sP(p) = (2ipC + 1)(−2ipC + 1) = 1 + 4C2p2 ̸= 1

• Nonperturbative scattering amplitude fNP(p) satisfies unitarity, but fP(p) dose not

• Perturbative calculation violates unitarity (If f is constant, so is σ ∼ f2, violating unitarity bound)

5.4 Renormalization

• Scattering length a0 is observable and independent of cutoff Λ

• Λ dependent coupling constant λ0

λ0(Λ) =

(
1− 2a0

π
Λ

)−1 8π

m
a0 (42)

coupling constant λ0 for a given Λ to give fixed scattering length a0

• Under Eq. (42), the limit Λ→∞ can be taken

• Renormalization group equation : behavior of coupling constant with respect to cutoff Λ

d

d(lnΛ)
λ̂(Λ) = λ̂(Λ)

[
1 + λ̂(Λ)

]
(43)

dimensionless coupling constant

λ̂(Λ) =
m

4π2
Λλ0(Λ)

• Fixed point λ̂∗ : the value at which λ̂ is Λ independent, RHS of Eq. (43)= 0, so that λ̂∗ = 0 or −1

– λ̂∗ = 0 : a0 = 0, noninteracting, trivial

– λ̂∗ = −1 : a0 = ±∞, unitary limit, nontrivial

Exercise 5

1) Show that a0 is cutoff independent if the coupling constant λ0 has Λ dependence as in Eq. (42).

2) Show that the renormalization group equation for λ̂(Λ) is Eq. (43).

3) Show that a0 = 0 (a0 = ±∞) when λ̂∗ = 0 (λ̂∗ = −1).

5.5 Summary of §5

• EFT : description of low-energy physics

• Zero-range model : nonperturbative (unitary) scattering amplitude

f(p) =
1

−1/a0 − ip
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