## 2 Scattering theory primer

### 2.1 Preliminaries

## Setup

- Quantum scattering of distinguishable particles 1,2 (mass $m_{1}, m_{2}$ )
- Hamiltonian $H=H_{0}+V\left(H_{0}\right.$ : kinetic term, $V$ : potential $)$
- Three spatial dimensions, nonrelativistic, $\hbar=1$
- No internal degrees of freedom (spin, flavor, etc.)
- Elastic scattering (initial state $=$ final state, no coupled channels)
- Rotational symmetry $\Leftrightarrow$ spherical potential $V(r) \Leftrightarrow[H, \boldsymbol{L}]=\mathbf{0}$
- Short range interaction (potential $V(r)$ vanishes at large distance $r \rightarrow \infty$ sufficiently rapidly)


## Kinematics of the scattering

- Kinematics is specified by relative momentum (Fig. 8)
- Initial state: $\boldsymbol{p}$ [in CM frame, particle 1 (2) has momentum $\boldsymbol{p}(-\boldsymbol{p})$ ]
- Final state: $\boldsymbol{p}^{\prime}$
- Elastic scattering does not change magnitude of momentum : $p \equiv|\boldsymbol{p}|=\left|\boldsymbol{p}^{\prime}\right|$
- Two parameters which characterize scattering process
- Scattering angle

$$
\cos \theta=\frac{\boldsymbol{p} \cdot \boldsymbol{p}^{\prime}}{p^{2}}
$$

- Scattering energy (or momentum $p$ )

$$
E=\frac{p^{2}}{2 \mu}
$$

reduced mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$

- Physical scattering occurs for $E>0, p>0^{1}$
- Wave function is obtained by solving time-independent Schrödinger equation with energy $E$ (§1)

[^0]

Figure 8: Schematic illustration of the kinematics of the scattering.

## State vectors

- Momentum representation: initial state $|\boldsymbol{p}\rangle$, final state $\left\langle\boldsymbol{p}^{\prime}\right|$, normalization is

$$
\begin{equation*}
\left\langle\boldsymbol{p}^{\prime} \mid \boldsymbol{p}\right\rangle=\delta^{3}\left(\boldsymbol{p}^{\prime}-\boldsymbol{p}\right) \tag{6}
\end{equation*}
$$

These are eigenstates of $H_{0}\left(H_{0}|\boldsymbol{p}\rangle=\frac{p^{2}}{2 \mu}|\boldsymbol{p}\rangle\right)$

- Angular momentum representation: initial state $|E, \ell, m\rangle$, final state $\left\langle E^{\prime}, \ell^{\prime}, m^{\prime}\right|$, normalization is

$$
\begin{equation*}
\left\langle E^{\prime}, \ell^{\prime}, m^{\prime} \mid E, \ell, m\right\rangle=\delta\left(E^{\prime}-E\right) \delta_{\ell^{\prime} \ell} \delta_{m^{\prime} m} \tag{7}
\end{equation*}
$$

- Relation between two:

$$
\begin{equation*}
\left\langle\boldsymbol{p}^{\prime} \mid E, \ell, m\right\rangle=\frac{1}{\sqrt{\mu p}} \delta\left(E^{\prime}-E\right) Y_{\ell}^{m}(\hat{\boldsymbol{p}}), \quad \hat{\boldsymbol{p}}=\frac{\boldsymbol{p}}{p} \tag{8}
\end{equation*}
$$

## Exercise 2

1) Using the normalization condition (6), show that the coordinate space wave function is given by $\langle\boldsymbol{r} \mid \boldsymbol{p}\rangle=e^{i \boldsymbol{p} \cdot \boldsymbol{r}} /(2 \pi)^{3 / 2}$. Here the completeness relation of the coordinate basis is $1=\int d \boldsymbol{r}|\boldsymbol{r}\rangle\langle\boldsymbol{r}|$.
2) Because $\langle\boldsymbol{r} \mid E, \ell, m\rangle$ is the solution without interaction, it is proportional to the spherical Bessel function and the spherical harmonics. Using the normalization condition (7), derive the expression of $\langle\boldsymbol{r} \mid E, \ell, m\rangle$. The spherical Bessel functions satisfy the following relation:

$$
\int_{0}^{\infty} d r r^{2} j_{\ell}\left(p^{\prime} r\right) j_{\ell}(p r)=\frac{1}{2} \frac{\pi}{p^{2}} \delta\left(p^{\prime}-p\right) .
$$

3) Expressing the plane wave by the spherical harmonics, show Eq. (8).

### 2.2 Scattering amplitude

- Scattering operator : transition from initial state to final state

$$
\begin{equation*}
\mathrm{S}=\Omega_{-}^{\dagger} \Omega_{+}=\lim _{t \rightarrow+\infty}\left[e^{i H_{0} t} e^{-i H t}\right] \lim _{t \rightarrow-\infty}\left[e^{i H t} e^{-i H_{0} t}\right] \tag{9}
\end{equation*}
$$

$\Omega_{ \pm}$: Møller operators

- $S$-matrix element (also called $S$ matrix) : $s_{\ell}(E) \in \mathbb{C}$

$$
\begin{equation*}
\left\langle E^{\prime}, \ell^{\prime}, m^{\prime}\right| S|E, \ell, m\rangle=\delta\left(E^{\prime}-E\right) \delta_{\ell^{\prime} \ell} \delta_{m^{\prime} m} s_{\ell}(E) \tag{10}
\end{equation*}
$$

- Phase shift : $\delta_{\ell}(E) \in \mathbb{R}$

$$
\begin{equation*}
s_{\ell}(E)=\exp \left\{2 i \delta_{\ell}(E)\right\} \tag{11}
\end{equation*}
$$

- $T$ matrix : $t\left(\boldsymbol{p}^{\prime} \leftarrow \boldsymbol{p}\right) \in \mathbb{C}$

$$
\left\langle\boldsymbol{p}^{\prime}\right|(\mathrm{S}-1)|\boldsymbol{p}\rangle=-2 \pi i \delta\left(E^{\prime}-E\right) t\left(\boldsymbol{p}^{\prime} \leftarrow \boldsymbol{p}\right)
$$

- Scattering amplitude : $f(E, \theta) \in \mathbb{C}$

$$
\begin{align*}
f(E, \theta) & =-(2 \pi)^{2} \mu t\left(\boldsymbol{p}^{\prime} \leftarrow \boldsymbol{p}\right) \\
& =\sum_{\ell}(2 \ell+1) f_{\ell}(E) P_{\ell}(\cos \theta) \quad \text { (partial wave decomposition) } \tag{12}
\end{align*}
$$

Relation to $S$ matrix

$$
\begin{equation*}
f_{\ell}(E)=\frac{s_{\ell}(E)-1}{2 i p} \tag{13}
\end{equation*}
$$

- $s_{\ell}, \delta_{\ell}, f_{\ell}$ are functions of $E$ for each $\ell$


### 2.3 Unitarity and scattering cross section

- From definition (9), S operator is unitary (when $H$ is hermitian)

$$
S^{\dagger} S=1
$$

Norm (probability) is conserved during time evolution

- From the completeness relation $1=\int d E \sum_{\ell, m}|E, \ell, m\rangle\langle E, \ell, m|$ and definition (10),

$$
\begin{equation*}
s_{\ell}^{*}(E) s_{\ell}(E)=\left|s_{\ell}(E)\right|^{2}=1 \tag{14}
\end{equation*}
$$

This indicates that phase shift is real (when $E>0$ )

$$
\exp \left\{2 i\left(\delta_{\ell}(E)-\delta_{\ell}^{*}(E)\right)\right\}=1
$$

- Scattering cross section

$$
\sigma(E)=\int d \Omega|f(E, \theta)|^{2}=\sum_{\ell} 4 \pi(2 \ell+1)\left|f_{\ell}(E)\right|^{2}
$$

Substituting Eq. (13)

$$
\begin{align*}
\sigma(E) & =\sum_{\ell} \sigma_{\ell}(E) \\
\sigma_{\ell}(E) & =\frac{2 \pi(2 \ell+1)}{\mu E} \sin ^{2} \delta_{\ell}(E) \tag{15}
\end{align*}
$$



Figure 9: Schematic figure of cross section. Dashed line shows the unitarity bound $2 \pi(2 \ell+1) /(\mu E)$.

- Unitarity bound : because $\sin ^{2} \delta_{\ell}(E) \leq 1$, cross section has upper bound (Fig. 9)

$$
\sigma_{\ell}(E) \leq \frac{2 \pi(2 \ell+1)}{\mu E}
$$

Equality holds for $\sin \delta_{\ell}= \pm 1$, namely, $\delta_{\ell}=\frac{\pi}{2}\left(\operatorname{modulo} \frac{\pi}{2}\right)$

- For $E \rightarrow 0$, upper bound of $\sigma_{\ell}(E)$ is $\infty$ (unitary limit)


### 2.4 Jost functions

## Relation of scattering amplitude and wave function

- Riccati functions
- 3d wave function $\psi_{\ell, m}(\boldsymbol{r})$ with $V=0(p=\sqrt{2 \mu E})$ :

$$
\psi_{\ell, m}(\boldsymbol{r})=A j_{\ell}(p r)+B n_{\ell}(p r)=C h_{\ell}^{-}(p r)+D h_{\ell}^{+}(p r)
$$

$j_{\ell}(z)\left[n_{\ell}(z)\right]$ : spherical Bessel (Neumann) function, $h^{ \pm}(z)$ : spherical Hankel functions

- Radial wave function $\chi_{\ell}(r) \propto r \psi_{\ell, m}(\boldsymbol{r})$
- Riccati-Bessel/Neumann function : useful to expand $\chi_{\ell}(r)$

$$
\hat{j}_{\ell}(z)=z j_{\ell}(z), \quad \hat{n}_{\ell}(z)=z n_{\ell}(z),
$$

- Riccati-Hankel functions

$$
\begin{equation*}
\hat{h}_{\ell}^{ \pm}(z)=z h_{\ell}^{ \pm}(z) \rightarrow \exp \{ \pm i(z-\ell \pi / 2)\} \quad z \rightarrow \infty \tag{16}
\end{equation*}
$$

Namely, $\hat{h}_{\ell}^{+}(p r) \sim e^{+i p r}\left[\hat{h}_{\ell}^{-}(p r) \sim e^{-i p r}\right]$ is outgoing (incoming) wave

- Regular solution $\phi_{\ell, p}(r): \chi_{\ell}(r)$ with eigenmomentum $p$ normalized as

$$
\begin{equation*}
\frac{\phi_{\ell, p}(r)}{\hat{j}_{\ell}(p r)} \rightarrow 1 \quad(r \rightarrow 0) \tag{17}
\end{equation*}
$$

In addition to $\phi_{\ell, p}(r) \rightarrow 0$, its normalization is fixed

- Asymptotic form of $\phi_{\ell, p}(r)$ at $r \rightarrow \infty$ : superposition of Riccati functions because of $V=0$

$$
\phi_{\ell, p}(r) \rightarrow \frac{i}{2}\left[f_{\ell}(p) \hat{h}_{\ell}^{-}(p r)-f_{\ell}(-p) \hat{h}_{\ell}^{+}(p r)\right] \quad(r \rightarrow \infty)
$$

- Jost function $f_{\ell}(p)$ : amplitude of incoming wave $\leftarrow$ Eq. (16)

Amplitude of outgoing wave is given by the same function with substitution of $-p$

## - Outgoing boundary condition $=$ zero of $\mathbf{J o s t}$ function $f_{\ell}(p)$

- Jost function is an analytic function of $p$ ( $\sim$ having no singularity $)^{2}$
- Expansion of $f_{\ell}(p)$ for small $p$ : shown by integral representation

$$
\begin{equation*}
\mathcal{P}_{\ell}(p)=1+\underbrace{\left[\alpha_{\ell}+\beta_{\ell} p^{2}+\mathcal{O}\left(p^{4}\right)\right]}_{\text {even powers of } p}+i \underbrace{\left[\gamma_{\ell} p^{2 \ell+1}+\mathcal{O}\left(p^{2 \ell+3}\right)\right]}_{\text {odd powers of } p}, \quad \alpha_{\ell}, \beta_{\ell}, \gamma_{\ell}, \cdots \in \mathbb{R} \tag{18}
\end{equation*}
$$

- Complex conjugate of Jost function $\leftarrow$ Eq. (18)

$$
\begin{equation*}
\left[f_{\ell}(p)\right]^{*}=f_{\ell}\left(-p^{*}\right) \tag{19}
\end{equation*}
$$

## Example

- $s$-wave case $(\ell=0): \hat{j}_{0}(p r)=\sin (p r), \hat{h}_{0}^{ \pm}(p r)=e^{ \pm i p r}$
- Solution (3) of square well potential in $\S 1.3$

$$
\chi(r) \rightarrow C \sin (k r)=C k r+\mathcal{O}\left(r^{3}\right)
$$

- Normalization of Eq. (17) : from $\hat{j}_{0}(p r)=p r+\mathcal{O}\left(r^{3}\right)$

$$
\phi_{\ell, p}(r)=\left.\chi(r)\right|_{C=\frac{p}{k}}
$$

- Jost function of square well potential

$$
\begin{aligned}
\frac{i}{2} f_{\ell}(p) & =\left.A^{-}(p)\right|_{C=\frac{p}{k}} \\
f_{\ell}(p) & =\left[\cos (k b)-i \frac{p}{k} \sin (k b)\right] e^{i p b}
\end{aligned}
$$

This follows expansion (18) for $p \rightarrow 0$, and we obtain $A^{+}(p)=-\frac{i}{2} f_{\ell}(-p)$ with $C=\frac{p}{k}$

[^1]
## 3 Resonances in scattering theory

### 3.1 Resonances as poles of scattering amplitude

- §1 : resonances are discrete eigenstates of Hamiltonian (complex $p$ ) $\leftarrow$ outgoing boundary condition
- $\S 2$ : outgoing boundary condition in scattering theory is zero of Jost function $\mathcal{f}_{\ell}(p)=0$
- $S$ matrix : amplitude of outgoing wave normalized by that of incoming wave

$$
s_{\ell}(p)=\frac{\text { amplitude of outgoing wave }}{\text { amplitude of incoming wave }}=\frac{f_{\ell}(-p)}{f_{\ell}(p)}
$$

$\Rightarrow$ discrete eigenstates are represented by poles of $S$ matrix

- From Eq. (19), unitarity condition (14) follows

$$
s_{\ell}^{*}(p) s_{\ell}(p)=\frac{\left[f_{\ell}(-p)\right]^{*} f_{\ell}(-p)}{\left.f_{\ell}(p)\right]^{*}} \frac{f_{\ell}(p)}{f_{\ell}\left(p^{*}\right)} \frac{f_{\ell}(-p)}{f_{\ell}\left(-p^{*}\right)}=1 \quad(p>0)
$$

instead, $s_{\ell}^{*}(p) s_{\ell}(p) \neq 1$ for $p \notin \mathbb{R}$

- Scattering amplitude : from Eq. (13)

$$
\begin{equation*}
f_{\ell}(p)=\frac{s_{\ell}(p)-1}{2 i p}=\frac{f_{\ell}(-p)-f_{\ell}(p)}{2 i p f_{\ell}(p)} \tag{20}
\end{equation*}
$$

$\Rightarrow$ discrete eigenstates are represented by poles of scattering amplitude

- $s_{\ell}(p)$ and $f_{\ell}(p)$ are meromorphic functions of $p$ ( $\sim$ no singularity except for poles)


### 3.2 Eigenenergies and Riemann sheets

- Analytic continuation of $f_{\ell}(p), s_{\ell}(p), f_{\ell}(p)$ defined in physical region $p>0$ to complex plane
- Complex momentum $p$, complex energy $E$

$$
p=|p| e^{i \theta_{p}}, \quad E=|E| e^{i \theta_{E}}
$$

- Relations

$$
\begin{aligned}
& E=\frac{p^{2}}{2 \mu}=\frac{|p|^{2}}{2 \mu} e^{2 i \theta_{p}} \\
\Rightarrow \quad & |E|=\frac{|p|^{2}}{2 \mu}, \quad 2 \theta_{p}=\theta_{E}
\end{aligned}
$$

- When $\theta_{p}$ varies $0 \rightarrow 2 \pi, \theta_{E}$ moves $0 \rightarrow 4 \pi$
- $\quad p$ and $-p\left(\theta_{p}\right.$ and $\left.\theta_{p}+\pi\right)$ are mapped onto the same $E$
- Meromorphic functions of $p\left(s_{\ell}(p), f_{\ell}(p)\right)$ are defined on two-sheeted Riemann surface of $E$ $0 \leq \theta_{E}<2 \pi$ : 1st Riemann sheet of $E$ (upper half plane of $p, 0 \leq \theta_{p}<\pi$ )
$2 \pi \leq \theta_{E}<4 \pi$ : 2nd Riemann sheet of $E$ (lower half plane of $p, \pi \leq \theta_{p}<2 \pi$ )
- Complex $p$ and $E$ planes : Fig. 10

Cut on real axis of $E$ plane (branch point at $E=0$ )


Figure 10: Poles in complex plane. (a) : p plane, (b) : E plane (1st Riemann sheet), (c) : E plane (2nd Riemann sheet). $B, V, R$, and $\bar{R}$ represent bound state, virtual state, resonance, and Anti-resonance.

### 3.3 Classification of eigenstates

- Eigenstate of Hamiltonian : zero of Jost function $f_{\ell}(p)=0$
- From Eq. (19), when $f_{\ell}(p)=0$,

$$
f_{\ell}\left(-p^{*}\right)=\left[f_{\ell}(p)\right]^{*}=0
$$

$\Rightarrow$ If $p$ is a solution, $-p^{*}$ (point which is symmetric about imaginary axis) is also a solution

- Solutions with $p=-p^{*}$ (on imaginary axis)
- bound state $(B): \times$ in Fig. 10

$$
\operatorname{Re}\left[p_{B}\right]=0, \quad \operatorname{Im}\left[p_{B}\right]>0
$$

Energy $E_{B}$ is real and negative (1st Riemann sheet)

- Virtual state (anti-bound state, $V$ ) :

$$
\operatorname{Re}\left[p_{V}\right]=0, \quad \operatorname{Im}\left[p_{V}\right]<0
$$

Energy $E_{V}$ is real and negative (2nd Riemann sheet)
Residue of pole ( $\sim$ norm) is negative : non-physical degree of freedom?[26]

- Solutions with $p \neq-p^{*}$ (always appear in pairs)
- Solutions exist only in lower half plane of $p$ $\leftarrow$ complex $E$ is allowed only when wave function is not square integrable
- Resonance $(R): \triangle$

$$
\operatorname{Re}\left[p_{R}\right]>0, \quad \operatorname{Im}\left[p_{R}\right]<0
$$

Energy $\operatorname{Re}\left[E_{R}\right]>0, \operatorname{Im}\left[E_{R}\right]<0$ (2nd Riemann sheet)

- Anti-resonance $(\bar{R}): \nabla$

$$
\operatorname{Re}\left[p_{\bar{R}}\right]<0, \quad \operatorname{Im}\left[p_{\bar{R}}\right]<0
$$

appears together with resonance
Growing solution with time [27] ("conjugate" of resonance)

### 3.4 Resonances and observables

- Only real energies are experimentally accessible
- Effect on observables by resonance pole at $E=E_{R}=M_{R}-i \Gamma_{R} / 2$ in partial wave $\ell$
- Laurent expansion of scattering amplitude around $E=E_{R}$

$$
\begin{equation*}
f_{\ell}(E)=f_{\ell, \mathrm{BW}}(E)+f_{\ell, \mathrm{BG}}(E), \tag{21}
\end{equation*}
$$

Breit-Wigner term $f_{\ell, \mathrm{BW}}(E)$ : contribution from resonance pole

$$
\begin{equation*}
f_{\ell, \mathrm{BW}}(E)=\frac{Z_{R}}{E-E_{R}}=\frac{Z_{R}\left(E-M_{R}-i \Gamma_{R} / 2\right)}{\left(E-M_{R}\right)^{2}+\Gamma_{R}^{2} / 4}, \quad Z_{R}=-\frac{\Gamma_{R}}{2 p_{R}} \tag{22}
\end{equation*}
$$

Nonresonant background $f_{\ell, \mathrm{BG}}(E)$ : analytic at $E=E_{R}$

$$
\begin{equation*}
f_{\ell, \mathrm{BG}}(E)=\sum_{n=0}^{\infty} C_{n}\left(E-E_{R}\right)^{n} . \tag{23}
\end{equation*}
$$

- At real energy $E \sim M_{R}$, contribution from $f_{\ell, \mathrm{BW}}(E)$ increases (in particular, narrow $\Gamma_{R}$ case)
- When $f_{\ell, \mathrm{BG}}(E)$ is assumed to be small and negligible

$$
\begin{equation*}
f_{\ell}(E) \approx f_{\ell, \mathrm{BW}}(E) \quad\left(f_{\ell, \mathrm{BG}}(E) \rightarrow 0\right) . \tag{24}
\end{equation*}
$$

- Resonance phenomena for real energy
(valid only when $f_{\ell, \mathrm{BG}}(E)$ is neglected)
(i) $\operatorname{Re}\left[f_{\ell}(E)\right]=0$ and $\operatorname{Im}\left[f_{\ell}(E)\right]$ becomes maximum at $E=M_{R}$
$\leftarrow Z=-\Gamma_{R} /(2 p)<0$ and Eq. (22) (residue $Z$ is given on the real axis)
(ii) cross section $\sigma(E)$ peaks at $E=M_{R}$
$\leftarrow$ (i) and optical theorem (See Exercise 3)
(iii) phase shift $\delta_{\ell}(E)$ increases rapidly and crosses $\frac{\pi}{2}$ at $E=M_{R}$
$\leftarrow$ From Eq. (13), $\operatorname{Im}\left[s_{\ell}\left(M_{R}\right)\right]=0$ when $\operatorname{Re}\left[f_{\ell}\left(M_{R}\right)\right]=0$
Except for the non-interacting case $\left(\delta_{\ell}=0\right)$, we have $\delta_{\ell}=\frac{\pi}{2}(\operatorname{modulo} \pi)$ for $\operatorname{Im}\left[s_{\ell}\left(M_{R}\right)\right]=0$
- When $f_{\ell, \mathrm{BG}}(E)$ is nonnegligible, interference term contributes

$$
\begin{equation*}
\left|f_{\ell}(E)\right|^{2}=\left|f_{\ell, \mathrm{BW}}(E)\right|^{2}+\left|f_{\ell, \mathrm{BG}}(E)\right|^{2}+2 \operatorname{Re}\left[f_{\ell, \mathrm{BW}}(E) f_{\ell, \mathrm{BG}}^{*}(E)\right], \tag{25}
\end{equation*}
$$

- Peaks can be generated kinematically by cusps and triangle singularities [28]
- Importance of accurate analysis to determine resonance pole instead of simply fitting peak


## Exercise 3

1) Express $f_{\ell}(E)$ in terms of $\sin \delta_{\ell}(E)$ and $\cos \delta_{\ell}(E)$.
2) Show Eq. (15).
3) Show the following optical theorem :
$\operatorname{Im} f(E, \theta=0)=\frac{p}{4 \pi} \sigma(E)$.
4) Argue that the optical theorem is violated when the time evolution is not unitary.

### 3.5 Effective range expansion

- Low-energy (small $p$ ) behavior of scattering amplitude $f_{\ell}(p)$

$$
\begin{align*}
f_{\ell}(p) & =\frac{s_{\ell}(p)-1}{2 i p} \leftarrow(13) \\
& =\frac{p^{2 \ell}}{p^{2 \ell+1} \cot \delta_{\ell}(p)-i p^{2 \ell+1}} \tag{26}
\end{align*}
$$

- From Eq. (18), Jost function is written as

$$
f_{\ell}(p)=F_{\ell}\left(p^{2}\right)+i p G_{\ell}\left(p^{2}\right)
$$

$F_{\ell}$ and $G_{\ell}$ are functions of $p^{2}$ and behave at $p \rightarrow 0$ as

$$
F_{\ell}\left(p^{2}\right)=\mathcal{O}\left(p^{0}\right), \quad G_{\ell}\left(p^{2}\right)=\mathcal{O}\left(p^{2 \ell}\right)
$$

From this,

$$
f_{\ell}(-p)=F_{\ell}\left(p^{2}\right)-i p G_{\ell}\left(p^{2}\right)
$$

- From Eq. (20)

$$
\begin{align*}
f_{\ell}(p) & =\frac{f_{\ell}(-p)-f_{\ell}(p)}{2 i p f_{\ell}(p)} \\
& =\frac{p^{2 \ell}}{-p^{2 \ell} F_{\ell}\left(p^{2}\right) / G_{\ell}\left(p^{2}\right)-i p^{2 \ell+1}} \tag{27}
\end{align*}
$$

- Comparison of Eqs. (26) and (27)

$$
\begin{equation*}
p^{2 \ell+1} \cot \delta_{\ell}(p)=-p^{2 \ell} \frac{F_{\ell}\left(p^{2}\right)}{G_{\ell}\left(p^{2}\right)} \tag{28}
\end{equation*}
$$

Right-hand-side is a function of $p^{2}$ with $\mathcal{O}\left(p^{0}\right)$ for $p \rightarrow 0$ : Taylor expansion reads

$$
\begin{equation*}
\Rightarrow \quad p^{2 \ell+1} \cot \delta_{\ell}(p)=-\frac{1}{a_{\ell}}+\frac{r_{\ell}}{2} p^{2}+\mathcal{O}\left(p^{4}\right) \tag{29}
\end{equation*}
$$

which is called effective range expansion


Figure 11: Various conditions for resonances. The outgoing boundary condition of the wave function is related to the pole of the scattering amplitude through the zero of the Jost function.

- $s$-wave case $(\ell=0)$

$$
f_{0}(p)=\frac{1}{-\frac{1}{a_{0}}+\frac{r_{0}}{2} p^{2}+\mathcal{O}\left(p^{4}\right)-i p}
$$

- $a_{0}$ : scattering length, opposite sign convention is also used in hadron physics
- $r_{0}$ : effective range, roughly corresponds to the interaction range, but can be negative
- Eq. (28) can have a pole (CDD pole [29])

When CDD pole exists at low energy, Padé approximant is useful [20]

- Low-energy scattering : assuming higher order terms of $p$ is negligible

$$
f_{0}(p) \approx \frac{1}{-\frac{1}{a_{0}}-i p}
$$

Pole at $p=\frac{i}{a_{0}}$

- $a_{0}>0$ : pole in the upper-half plane, bound state
- $a_{0}<0$ : pole in the lower-half plane, virtual state

In both cases, energy is $E=-\frac{1}{2 \mu a_{0}^{2}}$

### 3.6 Summary of §2 and §3

- Definition of $S$ matrix, phase shift, scattering amplitude, etc.
- Correspondence between pole of scattering amplitude and resonance state (Fig. 11)
- Effective range expansion : description of low-energy scattering


[^0]:    ${ }^{1}$ For physical scattering, we can use either $E$ or $p$, but for the analytic continuation to complex plane, the $S$ matrix and the scattering amplitude given below should be considered as meromorphic functions of $p$.

[^1]:    ${ }^{2}$ Strictly speaking, region of analyticity in complex $p$ plane is determined by the behavior of the potential.

