
2 Scattering theory primer

2.1 Preliminaries

Setup

• Quantum scattering of distinguishable particles 1, 2 (mass m1, m2)

• Hamiltonian H = H0 + V (H0 : kinetic term, V : potential)

• Three spatial dimensions, nonrelativistic, ! = 1

• No internal degrees of freedom (spin, flavor, etc.)

• Elastic scattering (initial state = final state, no coupled channels)

• Rotational symmetry ⇔ spherical potential V (r)⇔ [H,L] = 0

• Short range interaction (potential V (r) vanishes at large distance r →∞ sufficiently rapidly)

Kinematics of the scattering

• Kinematics is specified by relative momentum (Fig. 8)

– Initial state: p [in CM frame, particle 1 (2) has momentum p (−p)]

– Final state: p′

• Elastic scattering does not change magnitude of momentum : p ≡ |p| = |p′|

• Two parameters which characterize scattering process

– Scattering angle

cos θ =
p · p′

p2

– Scattering energy (or momentum p)

E =
p2

2µ

reduced mass µ = m1m2/(m1 +m2)

• Physical scattering occurs for E > 0, p > 01

• Wave function is obtained by solving time-independent Schrödinger equation with energy E (§1)

1For physical scattering, we can use either E or p, but for the analytic continuation to complex plane, the S matrix and

the scattering amplitude given below should be considered as meromorphic functions of p.
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Figure 8: Schematic illustration of the kinematics of the scattering.

State vectors

• Momentum representation: initial state |p 〉, final state 〈p′ |, normalization is

〈p′ |p 〉 = δ3(p′ − p) (6)

These are eigenstates of H0 (H0|p 〉 =
p2

2µ
|p 〉)

• Angular momentum representation: initial state |E, #,m 〉, final state 〈E′, #′,m′ |, normalization is

〈E′, #′,m′ |E, #,m 〉 = δ(E′ − E)δ!′!δm′m (7)

• Relation between two:

〈p′ |E, #,m 〉 = 1
√
µp
δ(E′ − E)Y m

! (p̂), p̂ =
p

p
(8)

Exercise 2

1) Using the normalization condition (6), show that the coordinate space wave function is given by

〈 r |p 〉 = eip·r/(2π)3/2. Here the completeness relation of the coordinate basis is 1 =
∫
dr| r 〉〈 r |.

2) Because 〈 r |E, #,m 〉 is the solution without interaction, it is proportional to the spherical Bessel

function and the spherical harmonics. Using the normalization condition (7), derive the expression of

〈 r |E, #,m 〉. The spherical Bessel functions satisfy the following relation:
∫ ∞

0
dr r2j!(p

′r)j!(pr) =
1

2

π

p2
δ(p′ − p).

3) Expressing the plane wave by the spherical harmonics, show Eq. (8).

2.2 Scattering amplitude

• Scattering operator : transition from initial state to final state

S = Ω†
−Ω+ = lim

t→+∞
[eiH0te−iHt] lim

t→−∞
[eiHte−iH0t] (9)

Ω± : Møller operators
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• S-matrix element (also called S matrix) : s!(E) ∈ C

〈E′, #′,m′ |S|E, #,m 〉 = δ(E′ − E)δ!′!δm′ms!(E) (10)

• Phase shift : δ!(E) ∈ R

s!(E) = exp{2iδ!(E)} (11)

• T matrix : t(p′ ← p) ∈ C

〈p′ |(S− 1)|p 〉 = −2πiδ(E′ − E)t(p′ ← p)

• Scattering amplitude : f(E, θ) ∈ C

f(E, θ) = −(2π)2µ t(p′ ← p)

=
∑

!

(2#+ 1)f!(E)P!(cos θ) (partial wave decomposition) (12)

Relation to S matrix

f!(E) =
s!(E)− 1

2ip
(13)

• s!, δ!, f! are functions of E for each #

2.3 Unitarity and scattering cross section

• From definition (9), S operator is unitary (when H is hermitian)

S†S = 1

Norm (probability) is conserved during time evolution

• From the completeness relation 1 =
∫
dE
∑

!,m |E, #,m 〉〈E, #,m | and definition (10),

s∗! (E)s!(E) = |s!(E)|2 = 1 (14)

This indicates that phase shift is real (when E > 0)

exp{2i(δ!(E)− δ∗! (E))} = 1

• Scattering cross section

σ(E) =

∫
dΩ|f(E, θ)|2 =

∑

!

4π(2#+ 1)|f!(E)|2

Substituting Eq. (13)

σ(E) =
∑

!

σ!(E)

σ!(E) =
2π(2#+ 1)

µE
sin2 δ!(E) (15)
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Figure 9: Schematic figure of cross section. Dashed line shows the unitarity bound 2π(2#+ 1)/(µE).

• Unitarity bound : because sin2 δ!(E) ≤ 1, cross section has upper bound (Fig. 9)

σ!(E) ≤ 2π(2#+ 1)

µE

Equality holds for sin δ! = ±1, namely, δ! =
π

2
(modulo

π

2
)

• For E → 0, upper bound of σ!(E) is ∞ (unitary limit)

2.4 Jost functions

Relation of scattering amplitude and wave function

• Riccati functions

– 3d wave function ψ!,m(r) with V = 0 (p =
√
2µE) :

ψ!,m(r) = Aj!(pr) +Bn!(pr) = Ch−! (pr) +Dh+! (pr)

j!(z) [n!(z)] : spherical Bessel (Neumann) function, h±(z) : spherical Hankel functions

– Radial wave function χ!(r) ∝ rψ!,m(r)

– Riccati-Bessel/Neumann function : useful to expand χ!(r)

ĵ!(z) = zj!(z), n̂!(z) = zn!(z),

– Riccati-Hankel functions

ĥ±! (z) = zh±! (z)→ exp{±i(z − #π/2)} z →∞ (16)

Namely, ĥ+! (pr) ∼ e+ipr [ĥ−! (pr) ∼ e−ipr ] is outgoing (incoming) wave

• Regular solution φ!,p(r) : χ!(r) with eigenmomentum p normalized as

φ!,p(r)

ĵ!(pr)
→ 1 (r → 0) (17)

In addition to φ!,p(r)→ 0, its normalization is fixed
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• Asymptotic form of φ!,p(r) at r →∞ : superposition of Riccati functions because of V = 0

φ!,p(r)→
i

2

[
f !(p)ĥ−! (pr)− f !(−p)ĥ+! (pr)

]
(r →∞)

• Jost function f !(p) : amplitude of incoming wave ← Eq. (16)

Amplitude of outgoing wave is given by the same function with substitution of −p

• Outgoing boundary condition = zero of Jost function f !(p)

• Jost function is an analytic function of p (∼ having no singularity)2

• Expansion of f !(p) for small p : shown by integral representation

f !(p) = 1 + [α! + β!p
2 +O(p4)]︸ ︷︷ ︸

even powers of p

+i [γ!p
2!+1 +O(p2!+3)]︸ ︷︷ ︸
odd powers of p

, α!,β!, γ!, · · · ∈ R (18)

• Complex conjugate of Jost function ← Eq. (18)

[f !(p)
]∗

= f !(−p∗) (19)

Example

• s-wave case (# = 0) : ĵ0(pr) = sin(pr), ĥ±0 (pr) = e±ipr

• Solution (3) of square well potential in §1.3

χ(r)→ C sin(kr) = Ckr +O(r3)

• Normalization of Eq. (17) : from ĵ0(pr) = pr +O(r3)

φ!,p(r) = χ(r)
∣∣∣
C= p

k

• Jost function of square well potential

i

2
f !(p) = A−(p)

∣∣∣
C= p

k

f !(p) =
[
cos(kb)− i

p

k
sin(kb)

]
eipb

This follows expansion (18) for p→ 0, and we obtain A+(p) = − i

2
f !(−p) with C =

p

k

2Strictly speaking, region of analyticity in complex p plane is determined by the behavior of the potential.
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3 Resonances in scattering theory

3.1 Resonances as poles of scattering amplitude

• §1 : resonances are discrete eigenstates of Hamiltonian (complex p)← outgoing boundary condition

• §2 : outgoing boundary condition in scattering theory is zero of Jost function f !(p) = 0

• S matrix : amplitude of outgoing wave normalized by that of incoming wave

s!(p) =
amplitude of outgoing wave

amplitude of incoming wave
=
f !(−p)
f !(p)

⇒ discrete eigenstates are represented by poles of S matrix

• From Eq. (19), unitarity condition (14) follows

s∗! (p)s!(p) =
[f !(−p)]∗
[f !(p)]∗

f !(−p)
f !(p)

=
f !(p∗)
f !(−p∗)

f !(−p)
f !(p)

= 1 (p > 0)

instead, s∗! (p)s!(p) /= 1 for p /∈ R

• Scattering amplitude : from Eq. (13)

f!(p) =
s!(p)− 1

2ip
=
f !(−p)− f !(p)

2ipf !(p)
(20)

⇒ discrete eigenstates are represented by poles of scattering amplitude

• s!(p) and f!(p) are meromorphic functions of p (∼ no singularity except for poles)

3.2 Eigenenergies and Riemann sheets

• Analytic continuation of f !(p), s!(p), f!(p) defined in physical region p > 0 to complex plane

• Complex momentum p, complex energy E

p = |p|eiθp , E = |E|eiθE

• Relations

E =
p2

2µ
=

|p|2

2µ
e2iθp

⇒ |E| = |p|2

2µ
, 2θp = θE

– When θp varies 0→ 2π, θE moves 0→ 4π

– p and −p (θp and θp + π) are mapped onto the same E

• Meromorphic functions of p (s!(p), f!(p)) are defined on two-sheeted Riemann surface of E

0 ≤ θE < 2π : 1st Riemann sheet of E (upper half plane of p, 0 ≤ θp < π)

2π ≤ θE < 4π : 2nd Riemann sheet of E (lower half plane of p, π ≤ θp < 2π）

• Complex p and E planes : Fig. 10

Cut on real axis of E plane (branch point at E = 0)
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Figure 10: Poles in complex plane. (a) : p plane, (b) : E plane (1st Riemann sheet), (c) : E plane (2nd

Riemann sheet). B, V , R, and R̄ represent bound state, virtual state, resonance, and Anti-resonance.

3.3 Classification of eigenstates

• Eigenstate of Hamiltonian : zero of Jost function f !(p) = 0

• From Eq. (19), when f !(p) = 0,

f !(−p∗) = [f !(p)]∗ = 0

⇒ If p is a solution, −p∗ (point which is symmetric about imaginary axis) is also a solution

• Solutions with p = −p∗ (on imaginary axis)

– bound state (B) : × in Fig. 10

Re [pB] = 0, Im [pB] > 0

Energy EB is real and negative (1st Riemann sheet)

– Virtual state (anti-bound state, V ) : ♦

Re [pV ] = 0, Im [pV ] < 0

Energy EV is real and negative (2nd Riemann sheet)

Residue of pole (∼ norm) is negative : non-physical degree of freedom?[26]

• Solutions with p /= −p∗ (always appear in pairs)

– Solutions exist only in lower half plane of p

← complex E is allowed only when wave function is not square integrable

– Resonance (R) : 2

Re [pR] > 0, Im [pR] < 0

Energy Re [ER] > 0, Im [ER] < 0 (2nd Riemann sheet)
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– Anti-resonance (R̄) : 3

Re [pR̄] < 0, Im [pR̄] < 0

appears together with resonance

Growing solution with time [27] (“conjugate” of resonance)

3.4 Resonances and observables

• Only real energies are experimentally accessible

• Effect on observables by resonance pole at E = ER = MR − iΓR/2 in partial wave #

• Laurent expansion of scattering amplitude around E = ER

f!(E) = f!,BW(E) + f!,BG(E), (21)

Breit-Wigner term f!,BW(E) : contribution from resonance pole

f!,BW(E) =
ZR

E − ER
=

ZR(E −MR − iΓR/2)

(E −MR)2 + Γ2
R/4

, ZR = − ΓR

2pR
(22)

Nonresonant background f!,BG(E) : analytic at E = ER

f!,BG(E) =
∞∑

n=0

Cn(E − ER)
n. (23)

• At real energy E ∼MR, contribution from f!,BW(E) increases (in particular, narrow ΓR case)

• When f!,BG(E) is assumed to be small and negligible

f!(E) ≈ f!,BW(E) (f!,BG(E)→ 0). (24)

• Resonance phenomena for real energy

(valid only when f!,BG(E) is neglected)

(i) Re [f!(E)] = 0 and Im [f!(E)] becomes maximum at E = MR

← Z = −ΓR/(2p) < 0 and Eq. (22) (residue Z is given on the real axis)

(ii) cross section σ(E) peaks at E = MR

← (i) and optical theorem (See Exercise 3)

(iii) phase shift δ!(E) increases rapidly and crosses
π

2
at E = MR

← From Eq. (13), Im [s!(MR)] = 0 when Re [f!(MR)] = 0

Except for the non-interacting case (δ! = 0), we have δ! =
π

2
(modulo π) for Im [s!(MR)] = 0

• When f!,BG(E) is nonnegligible, interference term contributes

|f!(E)|2 = |f!,BW(E)|2 + |f!,BG(E)|2 + 2Re [f!,BW(E)f∗
!,BG(E)], (25)
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• Peaks can be generated kinematically by cusps and triangle singularities [28]

• Importance of accurate analysis to determine resonance pole instead of simply fitting peak

Exercise 3

1) Express f!(E) in terms of sin δ!(E) and cos δ!(E).

2) Show Eq. (15).

3) Show the following optical theorem :

Im f(E, θ = 0) =
p

4π
σ(E).

4) Argue that the optical theorem is violated when the time evolution is not unitary.

3.5 Effective range expansion

• Low-energy (small p) behavior of scattering amplitude f!(p)

f!(p) =
s!(p)− 1

2ip
← (13)

=
p2!

p2!+1 cot δ!(p)− ip2!+1
(26)

• From Eq. (18), Jost function is written as

f !(p) = F!(p
2) + ipG!(p

2)

F! and G! are functions of p2 and behave at p→ 0 as

F!(p
2) = O(p0), G!(p

2) = O(p2!)

From this,

f !(−p) = F!(p
2)− ipG!(p

2)

• From Eq. (20)

f!(p) =
f !(−p)− f !(p)

2ipf !(p)

=
p2!

−p2!F!(p2)/G!(p2)− ip2!+1
(27)

• Comparison of Eqs. (26) and (27)

p2!+1 cot δ!(p) = −p2!
F!(p2)

G!(p2)
(28)

Right-hand-side is a function of p2 with O(p0) for p→ 0 : Taylor expansion reads

⇒ p2!+1 cot δ!(p) = −
1

a!
+

r!
2
p2 +O(p4) (29)

which is called effective range expansion
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pole of s-matrix/
scattering amplitude

|sℓ(p) | → ∞
- bound states (E < 0)

- resonances (E ∈ ℂ)

Schrödinger eq. + outgoing b.c.
at energy E (p = 2μE)

zero of Jost function

| fℓ(p) | → ∞
p = iκ (κ > 0)

p ∈ ℂ (Im p < 0)

⇔ ⇔f
`
(p) = 0

<latexit sha1_base64="LwDYLv/3PHA+BN+zK6dqOoSVCKw="></latexit>

Figure 11: Various conditions for resonances. The outgoing boundary condition of the wave function is

related to the pole of the scattering amplitude through the zero of the Jost function.

• s-wave case (# = 0)

f0(p) =
1

− 1

a0
+

r0
2
p2 +O(p4)− ip

– a0 : scattering length, opposite sign convention is also used in hadron physics

– r0 : effective range, roughly corresponds to the interaction range, but can be negative

– Eq. (28) can have a pole (CDD pole [29])

When CDD pole exists at low energy, Padé approximant is useful [20]

• Low-energy scattering : assuming higher order terms of p is negligible

f0(p) ≈
1

− 1

a0
− ip

Pole at p =
i

a0

– a0 > 0 : pole in the upper-half plane, bound state

– a0 < 0 : pole in the lower-half plane, virtual state

In both cases, energy is E = − 1

2µa20

3.6 Summary of §2 and §3

• Definition of S matrix, phase shift, scattering amplitude, etc.

• Correspondence between pole of scattering amplitude and resonance state (Fig. 11)

• Effective range expansion : description of low-energy scattering
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