2 Scattering theory primer
2.1 Preliminaries
Setup

e Quantum scattering of distinguishable particles 1, 2 (mass mq, ma)

Hamiltonian H = Hy + V' (Hyp : kinetic term, V' : potential)

Three spatial dimensions, nonrelativistic, A = 1

No internal degrees of freedom (spin, flavor, etc.)

Elastic scattering (initial state = final state, no coupled channels)

Rotational symmetry < spherical potential V (r) < [H, L] =0

Short range interaction (potential V' (r) vanishes at large distance r — oo sufficiently rapidly)

Kinematics of the scattering

e Kinematics is specified by relative momentum (Fig. 8)

— Initial state: p [in CM frame, particle 1 (2) has momentum p (—p)]

— Final state: p/
e Elastic scattering does not change magnitude of momentum : p = |p| = |p/|
e Two parameters which characterize scattering process

— Scattering angle

p-p
p2

cosf =

— Scattering energy (or momentum p)

p2

E="—
2p

reduced mass p = mima/(mi + ma)

e Physical scattering occurs for £ > 0, p > 0*

e Wave function is obtained by solving time-independent Schrédinger equation with energy E (§1)

1For physical scattering, we can use either E or p, but for the analytic continuation to complex plane, the S matrix and
the scattering amplitude given below should be considered as meromorphic functions of p.
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Figure 8: Schematic illustration of the kinematics of the scattering.

State vectors

e Momentum representation: initial state | p), final state {p’ |, normalization is
(p'|p) =38 ~p) (6)
P
These are eigenstates of Hy (Ho|p) = 2—|p>)
L
e Angular momentum representation: initial state | E, ¢, m ), final state ( ', ¢',m’ |, normalization is
<E/7€/>m,|E7£7m> :5(E/_E)6f’€6m’m (7)
e Relation between two:

@Wﬂam>=¢;aﬂ—EnW@x p=" (s)

Exercise 2
1) Using the normalization condition (6), show that the coordinate space wave function is given by
(r|p) = €PT/(2m)3/2. Here the completeness relation of the coordinate basis is 1 = [ dr|r)({r|.

2) Because (7| E,¢,m) is the solution without interaction, it is proportional to the spherical Bessel

function and the spherical harmonics. Using the normalization condition (7), derive the expression of

(r|E,¢,m). The spherical Bessel functions satisfy the following relation:

T
2

> . . 1
/dw%@WMﬂzéW—m
0 2p

3) Expressing the plane wave by the spherical harmonics, show Eq. (8).

2.2 Scattering amplitude
e Scattering operator : transition from initial state to final state
S=0'Q, = lim [¢ote 1Y lim [e'Hle oY) (9)
t——+o00 t——o0

Q4 : Mgller operators
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2.3

S-matrix element (also called S matrix) : sy(E) € C
(E' 0, m"|S|E,&,;m) = §(E — E)dps0mmse(E)
Phase shift : 0,(E) € R
s¢(E) = exp{2i6s(E)}
T matrix : t(p’ + p) € C
(p'I(S=1)|p) = —2mid(E' — E)t(p' + p)
Scattering amplitude : f(E,0) € C

f(E,0) = —(27)°u t(p’ < p)

Z 20+ 1) fo(E)Py(cosf) (partial wave decomposition)
l

Relation to S matrix
se(E) —1

fo(E) = %ip

s¢, 0¢, f¢ are functions of F for each ¢

Unitarity and scattering cross section
From definition (9), S operator is unitary (when H is hermitian)
Sis=1

Norm (probability) is conserved during time evolution

From the completeness relation 1 = [dE Y, | E,{,m)(E,¢,m|and definition (10),

st (B)se(B) = |se(E)]* =1

This indicates that phase shift is real (when E > 0)
exp{2i(6,(E) — ;(E))} = 1

Scattering cross section

o(E) = /dQ\fEG Z47r2€—|—1\fg( )2

Substituting Eq. (13)

= Zag(E
)4

o(E) = 271-(25;—1) sin? 0, (F)
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Figure 9: Schematic figure of cross section. Dashed line shows the unitarity bound 27 (2¢ 4+ 1) /(uE).

e Unitarity bound : because sin? §,(E) < 1, cross section has upper bound (Fig. 9)

27(20 + 1)
< ———~
ou(E) < "\
. . T T
Equality holds for sind; = +1, namely, §, = 5 (modulo 5)
e For E — 0, upper bound of o/(E) is oo (unitary limit)

2.4 Jost functions
Relation of scattering amplitude and wave function

e Riccati functions
— 3d wave function 9y, (r) with V' =0 (p = \/2uFE) :
Yem(r) = Aje(pr) + Bng(pr) = Chy (pr) + Dhy (pr)

je(2) [ne(2)] : spherical Bessel (Neumann) function, h*(2) : spherical Hankel functions
— Radial wave function x(7) & rt)gm,(r)

— Riccati-Bessel /Neumann function : useful to expand x;(r)
Je(2) = zje(2),  fu(z) = zna(2),
— Riccati-Hankel functions
hE(2) = 2hf(2) — exp{Fi(z — In/2)} 2 — o0 (16)
Namely, ﬁj (pr) ~ etirr [ﬁe_ (pr) ~ e~ ] is outgoing (incoming) wave

e Regular solution ¢y p(7) : x¢(r) with eigenmomentum p normalized as

%01 ) (s 0) (17)

Je(pr)

In addition to ¢ p(r) — 0, its normalization is fixed
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Asymptotic form of ¢y ,(r) at r — oo : superposition of Riccati functions because of V' =0

¢€,p

Jost function /;(p)

> 5 bt r

— /= )] (> o0)

: amplitude of incoming wave < Eq. (16)

Amplitude of outgoing wave is given by the same function with substitution of —p

Outgoing boundary condition = zero of Jost function /,(p)

Jost function is an analytic function of p (~ having no singularity)?

Expansion of /(p)

for small p : shown by integral representation

S4(p) = 1+ [ag + Bep® + O] +i [yep™ ™ + O(* )], g, Brve,- - €R

even powers of p odd powers of p

Complex conjugate of Jost function < Eq. (18)

Example

s-wave case (£ =

0) : jo(pr) = sin(pr), izoi(pr) — Eipr

e Solution (3) of square well potential in §1.3

e Normalization of Eq. (17) :

x(r) — Csin(kr)

Gep(r) =

This follows expansion (18) for p — 0, and we obtain A (p) = —%//Z(—p) with ¢ = 2

—

= Ckr + O(r?)

from j'o(pr) =pr-+ (’)(r3)

cos(kb) — i~ sm(k‘b)]

k

2Strictly speaking, region of analyticity in complex p plane is determined by the behavior of the potential.
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3 Resonances in scattering theory

3.1

3.2

Resonances as poles of scattering amplitude
§1 : resonances are discrete eigenstates of Hamiltonian (complex p) <— outgoing boundary condition
§2 : outgoing boundary condition in scattering theory is zero of Jost function //Q(p) =0

S matrix : amplitude of outgoing wave normalized by that of incoming wave

amplitude of outgoing wave /2(—17)

se(p) = amplitude of incoming wave —/(p)

= discrete eigenstates are represented by poles of S matrix

From Eq. (19), unitarity condition (14) follows

i )sln) = VP ACD) _ A1) fion)
¢ %(p)]* /Z(p) /2(—])*) /2(]))

instead, sj(p)se(p) # 1 for p ¢ R

(p>0)

Scattering amplitude : from Eq. (13)

2ip 2ip/,(p)
= discrete eigenstates are represented by poles of scattering amplitude

se(p) and fy(p) are meromorphic functions of p (~ no singularity except for poles)

Eigenenergies and Riemann sheets
Analytic continuation of /;(p), s¢(p), f¢(p) defined in physical region p > 0 to complex plane

Complex momentum p, complex energy F
p=Iple’, E=|E|e”"

Relations
2 2
B = b _ ﬂe%ﬂp
21 21
p?

— When 6, varies 0 — 27, O moves 0 — 47

— pand —p (6, and 6, + ) are mapped onto the same E

Meromorphic functions of p (s¢(p), fe(p)) are defined on two-sheeted Riemann surface of E
0 < 0p < 27 : 1st Riemann sheet of E' (upper half plane of p, 0 < 6, < )
2m < 0 < 47 : 2nd Riemann sheet of E (lower half plane of p, m < 6, < 27)

Complex p and E planes : Fig. 10
Cut on real axis of E plane (branch point at £ = 0)
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Im 4 |p_ Im 4 E(I) Im 4 E(II)

() (b) (c)

Figure 10: Poles in complex plane. (a) : p plane, (b) : E plane (1st Riemann sheet), (c¢) : E plane (2nd

Riemann sheet). B, V, R, and R represent bound state, virtual state, resonance, and Anti-resonance.

3.3 Classification of eigenstates

e Eigenstate of Hamiltonian : zero of Jost function /,(p) =0

e From Eq. (19), when /,(p) = 0,

= If p is a solution, —p* (point which is symmetric about imaginary axis) is also a solution
e Solutions with p = —p* (on imaginary axis)
— bound state (B) : x in Fig. 10
Re [pp] =0, Im [pp] >0

Energy Ep is real and negative (1st Riemann sheet)

— Virtual state (anti-bound state, V') : $
Re [pv] =0, Im [pv] <0

Energy Ey is real and negative (2nd Riemann sheet)

Residue of pole (~ norm) is negative : non-physical degree of freedom?[26]
e Solutions with p # —p* (always appear in pairs)

— Solutions exist only in lower half plane of p

< complex F is allowed only when wave function is not square integrable

— Resonance (R) : A
Re [pR] >0, Im [pR] <0

Energy Re [Eg] > 0, Im [Eg] < 0 (2nd Riemann sheet)
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— Anti-resonance (R) : v
Re [pR] <0, Im [pR] <0

appears together with resonance

Growing solution with time [27] (“conjugate” of resonance)

3.4 Resonances and observables
e Only real energies are experimentally accessible
e Effect on observables by resonance pole at E = Egr = Mg —il'gr/2 in partial wave ¢

e Laurent expansion of scattering amplitude around F = Eg

fl(E) = fepw(E) + fepa(E), (21)
Breit-Wigner term fy gw(F) : contribution from resonance pole

Zr  Zr(E— Mg —iTR/2) Tr

FE) = = =— 22
fopw(E) E—En~ (B-Mp2iT3/4° 2R~ g, (22)
Nonresonant background f;pg(E) : analytic at £ = Eg
oo
fesa(E) =Y Cu(E — Eg)". (23)
n=0

o At real energy E ~ Mg, contribution from f; gw(F) increases (in particular, narrow I'r case)

e When f;pc(F) is assumed to be small and negligible
fo(E) = fepw(E)  (fesa(E) = 0). (24)

e Resonance phenomena for real energy

(valid only when fypg(E) is neglected)

(i) Re [fe(E)] = 0 and Im [f;(F)] becomes maximum at E = Mg
«— Z =-Tgr/(2p) <0 and Eq. (22) (residue Z is given on the real axis)

(ii) cross section o(FE) peaks at E = Mp
< (i) and optical theorem (See Exercise 3)

(iii) phase shift §;(E) increases rapidly and crosses g at = Mp
< From Eq. (13), Im [s¢(Mg)] = 0 when Re [f¢,(Mr)] =0
Except for the non-interacting case (6y = 0), we have &y = g (modulo 7) for Im [s;(Mg)] =0

e When f;pc(F) is nonnegligible, interference term contributes
[fe(B)? = | fepw (B) + | fepa(B)? + 2Re [fraw(E) fipa(E), (25)
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e Peaks can be generated kinematically by cusps and triangle singularities [28]

e Importance of accurate analysis to determine resonance pole instead of simply fitting peak

Exercise 3

1) Express f;(E) in terms of sin dy(F) and cos §;(E).
2) Show Eq. (15).

3) Show the following optical theorem :

Im f(E,0=0) = %U(E).

4) Argue that the optical theorem is violated when the time evolution is not unitary.

3.5 Effective range expansion

e Low-energy (small p) behavior of scattering amplitude f(p)

se(p) — 1
iy = 221y
20
p
= 2
p2€+1 cot 5€(p) _ Z‘p2£+1 ( 6)

e From Eq. (18), Jost function is written as
/4(0) = Fo(p*) + ipGe(p?)
F; and Gy are functions of p? and behave at p — 0 as
F(p*) = 0(0°),  Gup*) = O(*)
From this,
/(=p) = Fo(p”) — ipGe(p?)
e From Eq. (20)

/i(=p) = /4(p)
2ip/,(p)
p2f

PR/ Glr?) — i )

e Comparison of Eqs. (26) and (27)

Fy(p?)
2041 oot § _ 2t 28

fo(p) =

Right-hand-side is a function of p? with O(p°) for p — 0 : Taylor expansion reads
1 T
= P eotdp) = -+ 507+ 00" (20)

which is called effective range expansion
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Schrédinger eq. + outgoing b.c. zero of Jost function pole of s-matrix/
atenergy E (p =+/2uE) N /( ) P scattering amplitude
y -0
o\P
|fAp)| = o

p=ix (k>0) [sAp)| = o0

- bound states (E < 0)

- resonances (E € C)

peC (Imp<0)

Figure 11: Various conditions for resonances. The outgoing boundary condition of the wave function is

related to the pole of the scattering amplitude through the zero of the Jost function.

o s-wave case (¢ =0)

1

fo(p) = 1
—— + 2p2+ O(pt) —ip
ag 2

— ag : scattering length, opposite sign convention is also used in hadron physics

— 1o : effective range, roughly corresponds to the interaction range, but can be negative

— Eq. (28) can have a pole (CDD pole [29])
When CDD pole exists at low energy, Padé approximant is useful [20]

e Low-energy scattering : assuming higher order terms of p is negligible
1

folp) ~ ———

ap

Pole at p = =z
ao

— ag > 0 : pole in the upper-half plane, bound state

— ag < 0 : pole in the lower-half plane, virtual state

In both cases, energy is £ = —

2,ua(2)

3.6 Summary of §2 and §3
e Definition of S matrix, phase shift, scattering amplitude, etc.
e Correspondence between pole of scattering amplitude and resonance state (Fig. 11)

e Effective range expansion : description of low-energy scattering
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