2 Scattering theory primer

2.1 Preliminaries

Setup

- Quantum scattering of distinguishable particles 1, 2 (mass m_1, m_2)
- Hamiltonian $H = H_0 + V$ (H_0 : kinetic term, V: potential)
- Three spatial dimensions, nonrelativistic, $\hbar = 1$
- No internal degrees of freedom (spin, flavor, etc.)
- Elastic scattering (initial state = final state, no coupled channels)
- Rotational symmetry \Leftrightarrow spherical potential $V(r) \Leftrightarrow [H, L] = \mathbf{0}$
- Short range interaction (potential V(r) vanishes at large distance $r \to \infty$ sufficiently rapidly)

Kinematics of the scattering

- Kinematics is specified by relative momentum (Fig. 8)
 - Initial state: p [in CM frame, particle 1 (2) has momentum p (-p)]
 - Final state: p'
- Elastic scattering does not change magnitude of momentum : $p \equiv |\mathbf{p}| = |\mathbf{p}'|$
- Two parameters which characterize scattering process
 - Scattering angle

$$\cos\theta = \frac{\boldsymbol{p}\cdot\boldsymbol{p}'}{p^2}$$

- Scattering energy (or momentum p)

$$E = \frac{p^2}{2\mu}$$

reduced mass $\mu = m_1 m_2 / (m_1 + m_2)$

- Physical scattering occurs for E > 0, $p > 0^1$
- Wave function is obtained by solving time-independent Schrödinger equation with energy E (§1)

¹For physical scattering, we can use either E or p, but for the analytic continuation to complex plane, the S matrix and the scattering amplitude given below should be considered as meromorphic functions of p.

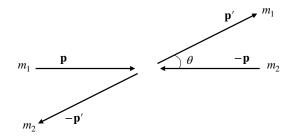


Figure 8: Schematic illustration of the kinematics of the scattering.

State vectors

• Momentum representation: initial state $|p\rangle$, final state $\langle p'|$, normalization is

$$\langle \mathbf{p}' | \mathbf{p} \rangle = \delta^3 (\mathbf{p}' - \mathbf{p}) \tag{6}$$

These are eigenstates of $H_0 \; (H_0 | \, \boldsymbol{p} \,\rangle = rac{p^2}{2 \mu} | \, \boldsymbol{p} \,\rangle)$

• Angular momentum representation: initial state $|E, \ell, m\rangle$, final state $\langle E', \ell', m'|$, normalization is

$$\langle E', \ell', m' | E, \ell, m \rangle = \delta(E' - E)\delta_{\ell'\ell}\delta_{m'm}$$
⁽⁷⁾

• Relation between two:

$$\langle \mathbf{p}' | E, \ell, m \rangle = \frac{1}{\sqrt{\mu p}} \delta(E' - E) Y_{\ell}^{m}(\hat{\mathbf{p}}), \quad \hat{\mathbf{p}} = \frac{\mathbf{p}}{p}$$
(8)

Exercise 2

1) Using the normalization condition (6), show that the coordinate space wave function is given by $\langle \mathbf{r} | \mathbf{p} \rangle = e^{i\mathbf{p}\cdot\mathbf{r}}/(2\pi)^{3/2}$. Here the completeness relation of the coordinate basis is $1 = \int d\mathbf{r} | \mathbf{r} \rangle \langle \mathbf{r} |$. 2) Because $\langle \mathbf{r} | E, \ell, m \rangle$ is the solution without interaction, it is proportional to the spherical Bessel

function and the spherical harmonics. Using the normalization condition (7), derive the expression of $\langle \mathbf{r} | E, \ell, m \rangle$. The spherical Bessel functions satisfy the following relation:

$$\int_0^\infty dr \ r^2 j_\ell(p'r) j_\ell(pr) = \frac{1}{2} \frac{\pi}{p^2} \delta(p'-p).$$

3) Expressing the plane wave by the spherical harmonics, show Eq. (8).

2.2 Scattering amplitude

• Scattering operator : transition from initial state to final state

$$\mathsf{S} = \Omega_{-}^{\dagger} \Omega_{+} = \lim_{t \to +\infty} [e^{iH_0 t} e^{-iHt}] \lim_{t \to -\infty} [e^{iHt} e^{-iH_0 t}] \tag{9}$$

 Ω_{\pm} : Møller operators

• S-matrix element (also called S matrix) : $s_{\ell}(E) \in \mathbb{C}$

$$\langle E', \ell', m' | \mathsf{S} | E, \ell, m \rangle = \delta(E' - E) \delta_{\ell'\ell} \delta_{m'm} s_{\ell}(E)$$
(10)

• Phase shift : $\delta_{\ell}(E) \in \mathbb{R}$

$$s_{\ell}(E) = \exp\{2i\delta_{\ell}(E)\}\tag{11}$$

• T matrix : $t(\mathbf{p}' \leftarrow \mathbf{p}) \in \mathbb{C}$

$$\langle \mathbf{p}' | (\mathsf{S}-1) | \mathbf{p} \rangle = -2\pi i \delta(E'-E) t(\mathbf{p}' \leftarrow \mathbf{p})$$

• Scattering amplitude : $f(E, \theta) \in \mathbb{C}$

$$f(E,\theta) = -(2\pi)^2 \mu \ t(\mathbf{p}' \leftarrow \mathbf{p})$$

= $\sum_{\ell} (2\ell + 1) f_{\ell}(E) P_{\ell}(\cos \theta)$ (partial wave decomposition) (12)

Relation to S matrix

$$f_{\ell}(E) = \frac{s_{\ell}(E) - 1}{2ip}$$
(13)

• $s_{\ell}, \delta_{\ell}, f_{\ell}$ are functions of E for each ℓ

2.3 Unitarity and scattering cross section

• From definition (9), **S** operator is unitary (when *H* is hermitian)

$$S^{\dagger}S = 1$$

Norm (probability) is conserved during time evolution

• From the completeness relation $1 = \int dE \sum_{\ell,m} |E, \ell, m\rangle \langle E, \ell, m|$ and definition (10),

$$s_{\ell}^{*}(E)s_{\ell}(E) = |s_{\ell}(E)|^{2} = 1$$
(14)

This indicates that phase shift is real (when E > 0)

$$\exp\{2i(\delta_{\ell}(E) - \delta_{\ell}^*(E))\} = 1$$

• Scattering cross section

$$\sigma(E) = \int d\Omega |f(E,\theta)|^2 = \sum_{\ell} 4\pi (2\ell+1) |f_{\ell}(E)|^2$$

Substituting Eq. (13)

$$\sigma(E) = \sum_{\ell} \sigma_{\ell}(E)$$

$$\sigma_{\ell}(E) = \frac{2\pi(2\ell+1)}{\mu E} \sin^2 \delta_{\ell}(E)$$
(15)

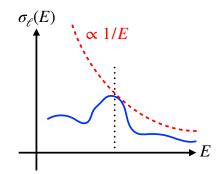


Figure 9: Schematic figure of cross section. Dashed line shows the unitarity bound $2\pi(2\ell+1)/(\mu E)$.

• Unitarity bound : because $\sin^2 \delta_{\ell}(E) \leq 1$, cross section has upper bound (Fig. 9)

$$\sigma_{\ell}(E) \leq \frac{2\pi(2\ell+1)}{\mu E}$$

Equality holds for $\sin \delta_{\ell} = \pm 1$, namely, $\delta_{\ell} = \frac{\pi}{2} \pmod{\frac{\pi}{2}}$

• For $E \to 0$, upper bound of $\sigma_{\ell}(E)$ is ∞ (unitary limit)

2.4 Jost functions

Relation of scattering amplitude and wave function

- Riccati functions
 - 3d wave function $\psi_{\ell,m}(\mathbf{r})$ with V = 0 $(p = \sqrt{2\mu E})$:

$$\psi_{\ell,m}(\mathbf{r}) = Aj_{\ell}(pr) + Bn_{\ell}(pr) = Ch_{\ell}^{-}(pr) + Dh_{\ell}^{+}(pr)$$

 $j_{\ell}(z) [n_{\ell}(z)]$: spherical Bessel (Neumann) function, $h^{\pm}(z)$: spherical Hankel functions

- Radial wave function $\chi_{\ell}(r) \propto r \psi_{\ell,m}(\boldsymbol{r})$
- Riccati-Bessel/Neumann function : useful to expand $\chi_{\ell}(r)$

$$\hat{j}_\ell(z) = z j_\ell(z), \quad \hat{n}_\ell(z) = z n_\ell(z),$$

Riccati-Hankel functions

$$\hat{h}_{\ell}^{\pm}(z) = zh_{\ell}^{\pm}(z) \to \exp\{\pm i(z - \ell\pi/2)\} \quad z \to \infty$$
(16)

Namely, $\hat{h}^+_\ell(pr)\sim e^{+ipr}~[\hat{h}^-_\ell(pr)\sim e^{-ipr}~]$ is outgoing (incoming) wave

• Regular solution $\phi_{\ell,p}(r)$: $\chi_{\ell}(r)$ with eigenmomentum p normalized as

$$\frac{\phi_{\ell,p}(r)}{\hat{j}_{\ell}(pr)} \to 1 \quad (r \to 0) \tag{17}$$

In addition to $\phi_{\ell,p}(r) \to 0$, its normalization is fixed

• Asymptotic form of $\phi_{\ell,p}(r)$ at $r \to \infty$: superposition of Riccati functions because of V = 0

$$\phi_{\ell,p}(r) \to \frac{i}{2} \left[\swarrow_{\ell}(p) \hat{h}_{\ell}^{-}(pr) - \swarrow_{\ell}(-p) \hat{h}_{\ell}^{+}(pr) \right] \quad (r \to \infty)$$

- Jost function $\swarrow_{\ell}(p)$: amplitude of incoming wave \leftarrow Eq. (16) Amplitude of outgoing wave is given by the same function with substitution of -p
- Outgoing boundary condition = zero of Jost function $\swarrow_{\ell}(p)$
- Jost function is an analytic function of $p \ (\sim \text{having no singularity})^2$
- Expansion of $\swarrow_{\ell}(p)$ for small p : shown by integral representation

$$\mathscr{F}_{\ell}(p) = 1 + \underbrace{[\alpha_{\ell} + \beta_{\ell} p^2 + \mathcal{O}(p^4)]}_{\text{even powers of } p} + i \underbrace{[\gamma_{\ell} p^{2\ell+1} + \mathcal{O}(p^{2\ell+3})]}_{\text{odd powers of } p}, \quad \alpha_{\ell}, \beta_{\ell}, \gamma_{\ell}, \dots \in \mathbb{R}$$
(18)

• Complex conjugate of Jost function \leftarrow Eq. (18)

$$\left[\mathscr{L}_{\ell}(p) \right]^* = \mathscr{L}_{\ell}(-p^*) \tag{19}$$

Example

- s-wave case $(\ell = 0)$: $\hat{j}_0(pr) = \sin(pr), \ \hat{h}_0^{\pm}(pr) = e^{\pm ipr}$
- Solution (3) of square well potential in §1.3

$$\chi(r) \to C\sin(kr) = Ckr + \mathcal{O}(r^3)$$

• Normalization of Eq. (17) : from $\hat{j}_0(pr) = pr + \mathcal{O}(r^3)$

$$\phi_{\ell,p}(r) = \chi(r) \Big|_{C = \frac{p}{k}}$$

• Jost function of square well potential

$$\begin{split} & \frac{i}{2} \swarrow_{\ell}(p) = A^{-}(p) \Big|_{C = \frac{p}{k}} \\ & \swarrow_{\ell}(p) = \left[\cos(kb) - i\frac{p}{k}\sin(kb) \right] e^{ipb} \end{split}$$

This follows expansion (18) for $p \to 0$, and we obtain $A^+(p) = -\frac{i}{2} \swarrow_{\ell}(-p)$ with $C = \frac{p}{k}$

²Strictly speaking, region of analyticity in complex p plane is determined by the behavior of the potential.

3 Resonances in scattering theory

3.1 Resonances as poles of scattering amplitude

- §1 : resonances are discrete eigenstates of Hamiltonian (complex p) \leftarrow outgoing boundary condition
- §2 : outgoing boundary condition in scattering theory is zero of Jost function $\swarrow_{\ell}(p) = 0$
- S matrix : amplitude of outgoing wave normalized by that of incoming wave

$$s_{\ell}(p) = \frac{\text{amplitude of outgoing wave}}{\text{amplitude of incoming wave}} = \frac{\ell_{\ell}(-p)}{\ell_{\ell}(p)}$$

 \Rightarrow discrete eigenstates are represented by **poles of** S **matrix**

• From Eq. (19), unitarity condition (14) follows

$$s_{\ell}^{*}(p)s_{\ell}(p) = \frac{[\ell_{\ell}(-p)]^{*}}{[\ell_{\ell}(p)]^{*}}\frac{\ell_{\ell}(-p)}{\ell_{\ell}(p)} = \frac{\ell_{\ell}(p^{*})}{\ell_{\ell}(-p^{*})}\frac{\ell_{\ell}(-p)}{\ell_{\ell}(p)} = 1 \quad (p > 0)$$

instead, $s_{\ell}^*(p)s_{\ell}(p) \neq 1$ for $p \notin \mathbb{R}$

• Scattering amplitude : from Eq. (13)

$$f_{\ell}(p) = \frac{s_{\ell}(p) - 1}{2ip} = \frac{\swarrow(-p) - \swarrow(p)}{2ip\swarrow(p)}$$
(20)

 \Rightarrow discrete eigenstates are represented by **poles of scattering amplitude**

• $s_{\ell}(p)$ and $f_{\ell}(p)$ are meromorphic functions of p (~ no singularity except for poles)

3.2 Eigenenergies and Riemann sheets

- Analytic continuation of $\mathcal{J}_{\ell}(p), s_{\ell}(p), f_{\ell}(p)$ defined in physical region p > 0 to complex plane
- Complex momentum p, complex energy E

$$p = |p|e^{i\theta_p}, \quad E = |E|e^{i\theta_E}$$

• Relations

$$E = \frac{p^2}{2\mu} = \frac{|p|^2}{2\mu} e^{2i\theta_p}$$
$$\Rightarrow \quad |E| = \frac{|p|^2}{2\mu}, \quad 2\theta_p = \theta_E$$

- When θ_p varies $0 \to 2\pi$, θ_E moves $0 \to 4\pi$
- -p and $-p(\theta_p \text{ and } \theta_p + \pi)$ are mapped onto the same E
- Meromorphic functions of p ($s_{\ell}(p)$, $f_{\ell}(p)$) are defined on two-sheeted Riemann surface of E $0 \le \theta_E < 2\pi$: 1st Riemann sheet of E (upper half plane of p, $0 \le \theta_p < \pi$) $2\pi \le \theta_E < 4\pi$: 2nd Riemann sheet of E (lower half plane of p, $\pi \le \theta_p < 2\pi$)
- Complex p and E planes : Fig. 10
 Cut on real axis of E plane (branch point at E = 0)

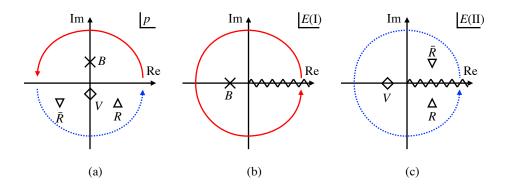


Figure 10: Poles in complex plane. (a) : p plane, (b) : E plane (1st Riemann sheet), (c) : E plane (2nd Riemann sheet). B, V, R, and \overline{R} represent bound state, virtual state, resonance, and Anti-resonance.

3.3 Classification of eigenstates

- Eigenstate of Hamiltonian : zero of Jost function $\swarrow_{\ell}(p) = 0$
- From Eq. (19), when $\swarrow_{\ell}(p) = 0$,

$$\mathscr{p}_\ell(-p^*) = [\mathscr{p}_\ell(p)]^* = 0$$

 \Rightarrow If p is a solution, $-p^*$ (point which is symmetric about imaginary axis) is also a solution

- Solutions with $p = -p^*$ (on imaginary axis)
 - bound state (B) : \times in Fig. 10

$$\operatorname{Re}\left[p_B\right] = 0, \quad \operatorname{Im}\left[p_B\right] > 0$$

Energy E_B is real and negative (1st Riemann sheet)

Virtual state (anti-bound state, V) : \diamondsuit

Re $[p_V] = 0$, Im $[p_V] < 0$

Energy E_V is real and negative (2nd Riemann sheet) Residue of pole (~ norm) is negative : non-physical degree of freedom?[26]

- Solutions with $p \neq -p^*$ (always appear in pairs)
 - Solutions exist only in lower half plane of p \leftarrow complex E is allowed only when wave function is not square integrable
 - Resonance (R) : \triangle

 $\operatorname{Re}\left[p_{R}\right] > 0, \quad \operatorname{Im}\left[p_{R}\right] < 0$

Energy Re $[E_R] > 0$, Im $[E_R] < 0$ (2nd Riemann sheet)

– Anti-resonance (\bar{R}) : \bigtriangledown

Re $[p_{\bar{R}}] < 0$, Im $[p_{\bar{R}}] < 0$

appears together with resonance Growing solution with time [27] ("conjugate" of resonance)

3.4 Resonances and observables

- Only real energies are experimentally accessible
- Effect on observables by resonance pole at $E = E_R = M_R i\Gamma_R/2$ in partial wave ℓ
- Laurent expansion of scattering amplitude around $E = E_R$

$$f_{\ell}(E) = f_{\ell,\text{BW}}(E) + f_{\ell,\text{BG}}(E),$$
(21)

Breit-Wigner term $f_{\ell,BW}(E)$: contribution from resonance pole

$$f_{\ell,\text{BW}}(E) = \frac{Z_R}{E - E_R} = \frac{Z_R(E - M_R - i\Gamma_R/2)}{(E - M_R)^2 + \Gamma_R^2/4}, \quad Z_R = -\frac{\Gamma_R}{2p_R}$$
(22)

Nonresonant background $f_{\ell,BG}(E)$: analytic at $E = E_R$

$$f_{\ell,\text{BG}}(E) = \sum_{n=0}^{\infty} C_n (E - E_R)^n.$$
 (23)

- At real energy $E \sim M_R$, contribution from $f_{\ell,BW}(E)$ increases (in particular, narrow Γ_R case)
- When $f_{\ell,BG}(E)$ is **assumed** to be small and negligible

$$f_{\ell}(E) \approx f_{\ell,\mathrm{BW}}(E) \quad (f_{\ell,\mathrm{BG}}(E) \to 0).$$
 (24)

- Resonance phenomena for real energy (valid only when $f_{\ell,BG}(E)$ is neglected)
 - (i) Re $[f_{\ell}(E)] = 0$ and Im $[f_{\ell}(E)]$ becomes maximum at $E = M_R$ $\leftarrow Z = -\Gamma_R/(2p) < 0$ and Eq. (22) (residue Z is given on the real axis)
 - (ii) cross section $\sigma(E)$ peaks at $E = M_R$ \leftarrow (i) and optical theorem (See Exercise 3)
 - (iii) phase shift $\delta_{\ell}(E)$ increases rapidly and crosses $\frac{\pi}{2}$ at $E = M_R$ \leftarrow From Eq. (13), Im $[s_{\ell}(M_R)] = 0$ when Re $[f_{\ell}(M_R)] = 0$ Except for the non-interacting case $(\delta_{\ell} = 0)$, we have $\delta_{\ell} = \frac{\pi}{2}$ (modulo π) for Im $[s_{\ell}(M_R)] = 0$
- When $f_{\ell,BG}(E)$ is nonnegligible, interference term contributes

$$|f_{\ell}(E)|^2 = |f_{\ell,BW}(E)|^2 + |f_{\ell,BG}(E)|^2 + 2\text{Re} \left[f_{\ell,BW}(E)f_{\ell,BG}^*(E)\right],$$
(25)

- Peaks can be generated kinematically by cusps and triangle singularities [28]
- Importance of accurate analysis to determine resonance pole instead of simply fitting peak

Exercise 3

1) Express $f_{\ell}(E)$ in terms of $\sin \delta_{\ell}(E)$ and $\cos \delta_{\ell}(E)$.

2) Show Eq. (15).

3) Show the following optical theorem :

Im
$$f(E, \theta = 0) = \frac{p}{4\pi}\sigma(E)$$
.

4) Argue that the optical theorem is violated when the time evolution is not unitary.

3.5 Effective range expansion

• Low-energy (small p) behavior of scattering amplitude $f_{\ell}(p)$

$$f_{\ell}(p) = \frac{s_{\ell}(p) - 1}{2ip} \leftarrow (13) = \frac{p^{2\ell}}{p^{2\ell+1} \cot \delta_{\ell}(p) - ip^{2\ell+1}}$$
(26)

• From Eq. (18), Jost function is written as

$$\mathscr{J}_{\ell}(p) = F_{\ell}(p^2) + ipG_{\ell}(p^2)$$

 F_ℓ and G_ℓ are functions of p^2 and behave at $p\to 0$ as

$$F_{\ell}(p^2) = \mathcal{O}(p^0), \quad G_{\ell}(p^2) = \mathcal{O}(p^{2\ell})$$

From this,

$$\mathscr{J}_{\ell}(-p) = F_{\ell}(p^2) - ipG_{\ell}(p^2)$$

• From Eq. (20)

$$f_{\ell}(p) = \frac{\swarrow_{\ell}(-p) - \swarrow_{\ell}(p)}{2ip \swarrow_{\ell}(p)} = \frac{p^{2\ell}}{-p^{2\ell} F_{\ell}(p^2) / G_{\ell}(p^2) - ip^{2\ell+1}}$$
(27)

• Comparison of Eqs. (26) and (27)

$$p^{2\ell+1} \cot \delta_{\ell}(p) = -p^{2\ell} \frac{F_{\ell}(p^2)}{G_{\ell}(p^2)}$$
(28)

Right-hand-side is a function of p^2 with $\mathcal{O}(p^0)$ for $p \to 0$: Taylor expansion reads

$$\Rightarrow \quad p^{2\ell+1} \cot \delta_{\ell}(p) = -\frac{1}{a_{\ell}} + \frac{r_{\ell}}{2} p^2 + \mathcal{O}(p^4) \tag{29}$$

which is called effective range expansion

$$\begin{array}{c} \text{Schrödinger eq. + outgoing b.c.} \\ \text{at energy } E \ (p = \sqrt{2\mu E}) \\ \text{- bound states } (E < 0) \\ p = i\kappa \quad (\kappa > 0) \\ \text{- resonances } (E \in \mathbb{C}) \\ p \in \mathbb{C} \quad (\text{Im } p < 0) \end{array} \qquad \Leftrightarrow \qquad \begin{array}{c} \text{zero of Jost function} \\ \swarrow_{\ell}(p) = 0 \\ \Leftrightarrow \\ \swarrow_{\ell}(p) = 0 \\ \Leftrightarrow \\ \swarrow_{\ell}(p) = 0 \\ \Leftrightarrow \\ \downarrow_{\ell}(p) = 0 \\ \Leftrightarrow \\ \downarrow_{\ell}(p) \mid \to \infty \\ |s_{\ell}(p)| \to \infty \\ |s_{\ell}(p)| \to \infty \end{array}$$

Figure 11: Various conditions for resonances. The outgoing boundary condition of the wave function is related to the pole of the scattering amplitude through the zero of the Jost function.

• s-wave case $(\ell = 0)$

$$f_0(p) = \frac{1}{-\frac{1}{a_0} + \frac{r_0}{2}p^2 + \mathcal{O}(p^4) - ip}$$

- $-a_0$: scattering length, opposite sign convention is also used in hadron physics
- $-r_0$: effective range, roughly corresponds to the interaction range, but can be negative
- Eq. (28) can have a pole (CDD pole [29])
 When CDD pole exists at low energy, Padé approximant is useful [20]
- Low-energy scattering : assuming higher order terms of p is negligible

$$f_0(p) \approx \frac{1}{-\frac{1}{a_0} - ip}$$

Pole at $p = \frac{i}{a_0}$

- $-a_0 > 0$: pole in the upper-half plane, bound state
- $-a_0 < 0$: pole in the lower-half plane, virtual state

In both cases, energy is $E = -\frac{1}{2\mu a_0^2}$

3.6 Summary of §2 and §3

- Definition of S matrix, phase shift, scattering amplitude, etc.
- Correspondence between pole of scattering amplitude and resonance state (Fig. 11)
- Effective range expansion : description of low-energy scattering