0 Introduction : resonances in hadron physics

Hadrons

- Hadrons: particles interacting through the strong force
- Observed hadrons [1]
 - Baryons (p, n, Λ, \cdots) : about 150 species
 - Mesons (π, K, η, \cdots) : about 210 species
- All states emerge from QCD, color SU(3) gauge theory

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu a} + \bar{q}(i\not\!\!D - m_q)q$$

color triplet quarks : \bar{q}, q color octet gluons in $G_{\mu\nu}, D_{\mu}$

• Quarks have six kinds of flavor (u, d, s, c, b, t)

Regularity of observed states

- Hadrons belong to color singlet
 No rule in QCD to forbid the appearance of colored states
 → problem of color confinement
- Flavor quantum numbers can be described by qqq or q̄q
 No rule in QCD to forbid the appearance of q̄q̄qqq, q̄qqqqq, ...
 → problem of exotic hadrons (genuine exotics)
- Experimental fact, nothing to do with quark models
- J^{PC} exotic mesons have been observed : $\pi_1(1400)$ and $\pi_1(1600)$ have $J^{PC} = 1^{-+}$

Exotic structure candidates (heavy quark system : c, b)

• Pentaquarks $P_c(4312), P_c(4440), P_c(4457)$ [2, 3] (Fig. 1, left)

 $P_c \to J/\psi(\bar{c}c) + p(uud)$

• Tetraquarks $Z_b(10610), Z_b(10650)$ [4] (Fig. 1, right)

$$Z_b^{\pm} \to \Upsilon(\bar{b}b) + \pi^{\pm}(\bar{d}u/\bar{u}d)$$

- Only ~ 8 candidates out of 360 hadrons
- Internal structure (multiquarks, hadronic molecules, \cdots) has not been determined yet
- Flavor quantum numbers can be described by $P_c \sim uud$, $Z_b^+ \sim \bar{d}u$ But it is unnatural to explain their mass without heavy quark pairs

Figure 1: Examples of spectra of exotic hadrons. Left: spectrum of pentaquark P_c , adopted from R. Aaij *et al.*, (LHCb collaboration), Phys. Rev. Lett. **122**, 222001 (2019). Right: spectrum of tetraquark Z_b , adopted from A. Bondar *et al.*, (Belle Collaboration) Phys. Rev. Lett. **108**, 122001 (2012).

Exotic structure candidates (light quark system : u, d, s)

- $\Lambda(1405)$: S = -1, I = 0, $J^P = 1/2^-$ [5]
 - − Difficult to describe in quark models uds with orbital angular momentum $\ell = 1 \rightarrow \sim 1.6$ -1.7 GeV Experiments : ~ 1.4 GeV
 - $\bar{K}N$ molecular state? Pentaquarks?
- Scalar mesons: $\sigma, \kappa, f_0(980), a_0(980), J^P = 0^+$ [6]
 - Difficult to describe in quark models Masses of $\bar{q}q$ states : $\bar{n}n(I = 0, I = 1) < \bar{n}s, \bar{s}n < \bar{s}s(I = 0)$ Experiments : $\sigma(I = 0) < \kappa < f_0, a_0(I = 0, I = 1)$
 - Meson-meson molecular state? Tetraquarks?
- Flavor quantum numbers can be described by $\Lambda(1405) \sim uds$, Scalar mesons $\sim \bar{q}q$

Excitation mechanism of hadrons

- Excitation in constituent quark models : internal excitation (Fig. 2)
- Excitation with $\bar{q}q$ pair creation is possible in QCD \rightarrow multiquarks and hadronic molecules
- States with same quantum numbers can mix with each other

 $|\Lambda(1405)\rangle = C_{3q}|uds\rangle + C_{5q}|uds\bar{q}q\rangle + C_{MB}|MB\rangle + \cdots$

How can we determine the weight C_i ? Well-defined decomposition?

Figure 2: Schematic illustration of the excitation mechanisms of baryons.

Decays via strong interaction

• Hadrons of interest are unstable against strong decay

$$P_c \to J/\psi + p$$

$$Z_b \to \Upsilon + \pi^{\pm}$$

$$\Lambda(1405) \to \pi + \Sigma$$

$$\sigma \to \pi + \pi, \quad \kappa \to \pi + K, \quad \cdots$$

In fact, stable hadrons are $\sim 20/360$

• Unstable states should be treated as resonances in hadron scattering

Goal and plan of this lecture

- Structure of exotic hadrons How can we define the "structure" of unstable resonances?
- What are resonance "states"?
 - §1 Resonances in quantum mechanics (5 Oct.) \rightarrow eigenstates with complex energy
 - §2 Scattering theory primer (12 Oct.)
 - \rightarrow definition of scattering amplitude
 - §3 Resonances in scattering theory (12 Oct.)
 - \rightarrow poles of scattering amplitude
 - §4 Theory of Feshbach resonances (19 Oct.)
 - \rightarrow bound state embedded in continuum
 - §5 Nonrelativistic effective field theory (19 Oct.)
 - \rightarrow description of low-energy scattering
 - §6 Compositeness and weak-binding relation (26 Oct.)
 - \rightarrow application to hadron systems

Relation to other fields

- Nuclear physics Cluster structure of near-threshold excited states : ⁸Be ~ $\alpha\alpha$, Hoyle state of ¹²C ~ $\alpha\alpha\alpha$, etc.
- Particle physics

Higgs particle : $H \to \gamma \gamma$, $H \to ZZ$ Observed through the decays into known particles \to a resonance Higgs in the standard model? Composite of new particles?

• Atomic physics

Feshbach resonance by cold atoms [7]

 \rightarrow controlling scattering length (interaction strength) via external magnetic field Broad/narrow Feshbach resonance : entrance channel fraction \approx compositeness

References

- Resonances in quantum mechanics
 Textbook : A. Bohm [8], Kukulin-Krasnopol'sky-Horacek [9], N. Moiseyev [10]
 Review article : Ashida-Gong-Ueda [11]
- Scattering theory Textbook : J.R. Taylor [12], R.G. Newton [13] Review article : Hyodo-Niiyama [14]
- Feshbach resonances Review articles : Köhler-Góral-Julienne [15], Chin-Grimm-Julienne-Tiesinga [16]
- Effective field theory Review article : Braaten-Kusunoki-Zhang [17]
- Compositeness and weak-binding relation
 Original papers : S. Weinberg [18], Kamiya-Hyodo [19, 20]
 Review article : T. Hyodo [21]
 JPS journal (in Japanese) : T. Hyodo [22]
- This lecture is partly based on the intensive lectures by Naomichi Hatano (YITP, Kyoto Univ., Feb. 2017) and by Yusuke Nishida (YITP, Kyoto Univ., Feb. 2014)
- For Japanese students:同じ内容の都立大講義の講義ノート(日本語版)が http://www.comp.tmu.ac.jp/hyodo/2020Tokuron.html にあります。

1 Resonances in quantum mechanics

1.1 Overview of resonance states

Resonances and scattering states

- Resonance : quantum mechanically formed quasi-stable "state" which decays as time goes by
- Schrödinger equation is time reversal invariant
 ↔ Resonances only decay, namely, not invariant under time reversal
 Solution breaks symmetry of theory (equation) : spontaneous breaking?
- Decay products are scattering states (continuum) \rightarrow need for scattering theory Example) $\Lambda(1405) \rightarrow \pi\Sigma$: $\Lambda(1405)$ is a resonance in the $\pi\Sigma$ scattering
- Inelastic scattering and scattering channels
 - Elastic scattering : initial state = final state $(\pi\Sigma \rightarrow \pi\Sigma)$
 - Inelastic scattering : transition to different final states $(\pi\Sigma \to \bar{K}N, \pi\Sigma \to \pi\pi\Sigma, \text{etc.})$
 - Channels : states connected through inelastic scatterings ($\pi\Sigma$, $\bar{K}N$, $\pi\pi\Sigma$, etc.)
- Threshold : lowest energy of scattering states Example) Threshold is E = 0 if potential vanishes at $r \to \infty$

Exercise 1

1) Let Θ be the time-reversal operator. Considering the classical time-reversal operation for the coordinate r and the momentum p, derive $\Theta r \Theta^{-1}$ and $\Theta p \Theta^{-1}$.

2) Calculate the commutation relation $[L_i, p_i]$ with the angular momentum $L_i = \epsilon_{ijk} r_j p_k$ $(\hbar = 1)$.

3) To satisfy the same commutation relation $[L_i, p_j]$ after the time reversal, it turns out that Θ must be an antilinear operator ($\Theta \alpha \psi = \alpha^* \Theta \psi$ for $\alpha \in \mathbb{C}, \psi \in \mathcal{H}$ where \mathcal{H} is the Hilbert space). When the Hamiltonian is time-reversal invariant ($\Theta H \Theta^{-1} = H$), show the time-reversal invariance of the Schrödinger equation

$$i\frac{\partial\Psi(\boldsymbol{r},t)}{\partial t} = H\Psi(\boldsymbol{r},t)$$

namely, show that $\Theta \Psi(\mathbf{r}, t)$ follows the same equation.

Characterization of resonances

- Various definitions : how are they related?
 - Peak in spectra/cross sections : Fig. 3(a)
 - $\pi/2$ crossing of phase shift $\delta(E)$: Fig. 3(b)
 - Pole of scattering amplitude in complex energy plane : Fig. 3(c)
 - Eigenstate of Hamiltonian (with complex energy)

Figure 3: Schematic illustration of characterization of resonances. (a): peak in total cross section $\sigma(E)$, (b) : $\pi/2$ crossing of phase shift $\delta(E)$, (c) : pole of scattering amplitude.

Shape resonance and Feshbach resonance

- Resonances can be classified into two classes
- Shape resonance, potential resonance : Fig. 4(b)
 - Single-channel scattering
 Typical potential : short range attraction + repulsive barrier
 - Energy E > 0
 - Unstable via tunneling effect
- Feshbach resonance : Fig. 4(c)
 - Coupled-channel scattering P: entrance channel, Q: closed channel
 - Threshold of Q at $E = \Delta > 0$ with threshold of P being E = 0
 - A bound state of channel Q at $0 < E < \Delta$
 - Unstable via $Q \rightarrow P$ transition
- They are different in origin

Method to distinguish \rightarrow compositeness

Figure 4: Illustration of resonances. (a) : bound state, (b) : shape resonance, (c) : Feshbach resonance.

1.2 Resonances as eigenstates of Hamiltonian

• Ref. [23] : To describe α decay of atomic nuclei, imaginary part of eigenenergy is introduced by hand (opposite sign from current convention Im E < 0)

$$E = E_0 + i\frac{h\lambda}{4\pi} = E_0 + i\frac{\hbar\lambda}{2}$$

 λ : decay constant, related to the decay width through $\Gamma=\hbar\lambda$

• Time evolution of wave function (opposite sign from current convention e^{-iEt})

 $\Psi(t) \propto \exp\{+iEt/\hbar\} = \exp\{+iE_0t/\hbar\} \exp\{-\lambda t/2\}$

Probability decreases exponentially $|\Psi(t)|^2 \propto \exp\{-\lambda t\}$

- Inconsistent with "expectation value of hermitian operator is real"?
 - \leftarrow Space on which the operator acts (domain D(H)) needs to be specified
 - c.f. definition of hermitian conjugate : $\langle H^{\dagger}\Psi, \Phi \rangle = \langle \Psi, H\Phi \rangle, \ \Psi, \Phi \in D(H)$
 - Eigenvalues are real if D(H) is Hilbert space (~ square integrable function space $L^2(\mathbb{R}^d)$)

$$\int |\Psi(x)|^2 dx < \infty$$

If domain is extended, H can have complex eigenvalues

– Example of non-square-integrable wave function : plane wave $\Psi(x) \sim e^{\pm ipx}$

$$\int_{-\infty}^{\infty} |\Psi(x)|^2 dx = \int_{-\infty}^{\infty} 1 \, dx \to \infty$$

Resonances couple with scattering states through decay : non-square-integrable wave function

1.3 Square well potential

Definitions and scattering states

• Schrödinger equation $(\hbar = 1, m = 1)$

$$\left(-\frac{1}{2}\frac{d^2}{dr^2} + V(r)\right)\chi(r) = E\chi(r), \quad 0 \le r \le \infty$$
(1)

- In this unit system, physical quantities are counted by dimension of length

 $(\text{energy}) = (\text{length})^{-2}, \quad (\text{momentum}) = (\text{length})^{-1}$

- $\chi(r) \sim \text{radial wave function of spherical 3d potential} : \psi_{\ell,m}(\mathbf{r}) = \frac{\chi_{\ell}(r)}{r} Y_{\ell}^{m}(\hat{\mathbf{r}})$

• Attractive square well potential $(V_0 > 0, \text{ Fig. 5(a)})$

$$V(r) = \begin{cases} -V_0 & 0 \le r \le b\\ 0 & b < r \end{cases}$$

$$(2)$$

Figure 5: Width b rectangular potentials. (a) : attraction with depth V_0 , (b) : repulsion with height V_0 .

• General solutions (no boundary condition)

$$\chi(r) \propto \begin{cases} e^{\pm ikr} & 0 \le r \le b, \quad k = \sqrt{2(E+V_0)} \\ e^{\pm ipr} & b < r, \quad p = \sqrt{2E} \end{cases}$$

• Scattering solutions (boundary condition $\chi(r \to 0) = 0$)

$$\chi(r) = \begin{cases} C\sin(kr) & 0 \le r \le b \\ A^{-}(p)e^{-ipr} + A^{+}(p)e^{+ipr} & b < r \end{cases}$$

$$A^{\pm}(p) = \frac{C}{2} \left[\sin(kb) \mp i\frac{k}{p}\cos(kb) \right] e^{\mp ipb}$$

$$(3)$$

- Scattering solutions are not normalizable (non-vanishing at $r \to \infty$) \rightarrow Overall normalization C is arbitrary
- $A^{\pm}(p)$ is determined by continuity of χ and $d\chi/dr$ at r = b
- Scattering phase shift is determined by the wave function at $r \to \infty$ (see §2)
- Scattering solutions satisfy Schrödinger equation (1) for any E > 0: continuous spectrum
- Wave $e^{\pm ipr}$ propagates in $\pm r$ direction : A^+ (A^-) is the amplitude of outgoing (incoming) wave

Discrete eigenstates and boundary conditions

- Discrete eigenstates are obtained by imposing boundary conditions both at $r \to 0$ and $r \to \infty$
- Bound state solution : eigenenrgy $E < 0 \Leftrightarrow$ pure imaginary eigenmomentum $p = \sqrt{2E}$

$$p = i\kappa, \quad \kappa > 0$$

Wave function at $r \to \infty$ behaves as

$$\chi(r) = A^{-}(i\kappa)e^{+\kappa r} + A^{+}(i\kappa)e^{-\kappa r} \quad (r \to \infty)$$

	$p \ [b^{-1}]$	$E = p^2/2 \ [b^{-2}]$
Bound state B	+ 3.68i	- 6.78
1st resonance ${\cal R}_1$	1.06 - 1.02i	0.05 - 1.08i
2nd resonance R_2	6.29 - 1.41i	18.8 - 8.86i
3rd resonance R_3	9.90 - 1.69i	47.6 - 16.8i
:		

Table 1: Numerical solutions of Eq. (4) (discrete eigenstates of attractive square well) with $V_0 = 10b^{-2}$.

• Boundary condition : $\chi(r)$ is square integrable \rightarrow eliminate diverging component $e^{+\kappa r}$

$$A^{-}(i\kappa) = 0$$

For $p = i\kappa$, incoming wave (e^{-ipr}) vanishes, leaving outgoing wave (e^{+ipr}) only

• $A^{-}(p) = 0$: outgoing boundary condition

$$\tan(\sqrt{p^2 + 2V_0} \ b) = -i\frac{\sqrt{p^2 + 2V_0}}{p} \tag{4}$$

Substituting $p = i\kappa$, we obtain bound state condition for square well potential $\kappa = -k \cot(kb)$

Resonance solutions

- Bound states : solution of Eq. (4) with pure imaginary p
 - \leftrightarrow physical scattering occurs for real and positive p
 - \Rightarrow bound state solution is obtained by analytic continuation of (4)
- Resonance states : solution of Eq. (4) with complex p
- Attractive square well potential have infinitely many resonance solutions [24, 10] Table 1 : numerical solutions of Eq. (4) with $V_0 = 10b^{-2}$ Poles of $1/|A^-(p)|$ in complex p plane (Fig. 6)
- Imaginary part of eigenmomentum is negative

 $p = p_R - ip_I, \quad p_R, p_I > 0$

behavior of wave function

$$\chi(r) \to A^+(p) e^{ipr} \propto \underbrace{e^{ip_R r}}_{\text{oscillation increasing}} \underbrace{e^{+p_I r}}_{\text{oscillation increasing}}$$

 $\chi(r)$ diverges with oscillation for $r \to \infty$, not square integrable (Fig. 6, right)

Figure 6: Left: contour plot of $1/|A^-(p)|$ of square well potential (2) with $V_0 = 10b^{-2}$. Right : real part of wave function of the third resonance R_3 .

1.4 Localization of resonance wave function

Resonance phenomena at real energies

- Only real energies are experimentally accessible
- Repulsive square barrier potential $(V_0 > 0, \text{ Fig. 5(b)})$ [10, 25]

$$V(r) = \begin{cases} +V_0 & 0 \le r \le b\\ 0 & b < r \end{cases}$$

(Solutions of attractive potential are special examples, not suitable to see localization.)

• Condition for solution : replace $V_0 \rightarrow -V_0$ in the solution of attractive case

$$\tan(\sqrt{p^2 - 2V_0} \ b) = -i\frac{\sqrt{p^2 - 2V_0}}{p} \tag{5}$$

- No bound state solution, but infinitely many resonances mainly in the region $E > V_0$ (Table 2) (shifting origin of energy to $E = +V_0$, there is attraction for r > b)
- Behavior of scattering wave functions at real energies (Fig. 7)
 - Wave function localizes in r < b (interaction region) near resonance energies
 - Away from resonances, approximately plane wave

Quantification of localization

• Ratio of amplitudes of interaction region and outer region

$$\chi(r) = \begin{cases} C \sin(kr) & 0 \le r \le b \\ C^{\text{out}} \sin(pr + \delta) & b < r, \quad \delta : \text{ phase shift} \end{cases}$$

	$p [b^{-1}]$	$E = p^2/2 \ [b^{-2}]$
1st resonance R_1	5.37 - 0.36i	14.4 - 1.9i
2nd resonance R_2	7.56 - 0.92i	28.2 - 6.9i
:		

Table 2: Numerical solutions of Eq. (5) (discrete eigenstates of repulsive barrier) with $V_0 = 10b^{-2}$.

Figure 7: Localization of wave function. Wave functions at near-resonance energies $E = 14.4b^{-2}$, $E = 28.2b^{-2}$ and at far from resonance $E = 21b^{-2}$ by repulsive square barrier potential with $V_0 = 10b^{-2}$.

• Localization rate R: from continuity at r = b,

$$R = \left|\frac{C}{C^{\text{out}}}\right|^2 = \left(1 + \frac{k^2 - p^2}{p^2}\cos^2(kb)\right)^{-1}$$

From $p = \sqrt{2E}$, $k = \sqrt{2(E - V_0)}$ and $V_0 > 0$, we have k < p, so $R \ge 1$

• Numerical calculation : Resonance with small imaginary part (narrow width) localizes strongly

$$R = \begin{cases} 3.05 & (E = 14.4b^{-2}, \text{ first resonance}) \\ 1.00 & (E = 21b^{-2}) \\ 1.49 & (E = 28.2b^{-2}, \text{ second resonance}) \end{cases}$$

1.5 Summary of §1

- Discrete eigenstates \leftarrow outgoing boundary condition
- Resonances : eigenstates of Hamiltonian with complex eigenenergy (Same with bound states, analytic continuation of eigenmomentum)
- Resonance wave function
 - diverges at $r \to \infty$ (complex p)
 - localises in interaction region (real p)