0 Introduction : resonances in hadron physics
Hadrons

e Hadrons: particles interacting through the strong force

e Observed hadrons [1]

— Baryons (p,n,A,--+) : about 150 species
— Mesons (m, K,n,---) : about 210 species

e All states emerge from QCD, color SU(3) gauge theory

1 .
Lqcp = —ZGZVGWG +q(i) —mq)q

color triplet quarks : q,q

color octet gluons in G, D,

e Quarks have six kinds of flavor (u,d, s, ¢, b, t)

Regularity of observed states

e Hadrons belong to color singlet
No rule in QCD to forbid the appearance of colored states

— problem of color confinement

e Flavor quantum numbers can be described by qqq or gq
No rule in QCD to forbid the appearance of Ggqq, ggqqq, - - -

— problem of exotic hadrons (genuine exotics)
e Experimental fact, nothing to do with quark models

e JPC exotic mesons have been observed : m(1400) and 71 (1600) have JF¢ = 1=+

Exotic structure candidates (heavy quark system : c,b)
e Pentaquarks P.(4312), P,(4440), P.(4457) [2, 3] (Fig. 1, left)

P, — J/¢(éc) + p(uud)

Tetraquarks Z,(10610), Z;(10650) [4] (Fig. 1, right)

ZiE — Y (bb) + 7 (du/ud)

Only ~ 8 candidates out of 360 hadrons

Internal structure (multiquarks, hadronic molecules, - - -) has not been determined yet

Flavor quantum numbers can be described by P. ~ uud, Z; ~ du

But it is unnatural to explain their mass without heavy quark pairs
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Figure 1: Examples of spectra of exotic hadrons. Left: spectrum of pentaquark P,, adopted from R. Aaij
et al., (LHCb collaboration), Phys. Rev. Lett. 122, 222001 (2019). Right: spectrum of tetraquark Z,
adopted from A. Bondar et al., (Belle Collaboration) Phys. Rev. Lett. 108, 122001 (2012).

Exotic structure candidates (light quark system : u,d, s)
e A(1405) : S=—1,I=0,JF =1/27 [5]

— Difficult to describe in quark models
uds with orbital angular momentum £ =1 — ~ 1.6-1.7 GeV
Experiments : ~ 1.4 GeV

— KN molecular state? Pentaquarks?
e Scalar mesons: o, x, f5(980), ap(980), J© = 0T [6]

— Difficult to describe in quark models
Masses of gq states : an(I =0, =1) < ns,sn < ss(I =0)
Experiments : ¢(I =0) < k < fo,a0(I =0,1 =1)

— Meson-meson molecular state? Tetraquarks?

e Flavor quantum numbers can be described by A(1405) ~ uds, Scalar mesons ~ Gq

Excitation mechanism of hadrons
e Excitation in constituent quark models : internal excitation (Fig. 2)
e Excitation with gq pair creation is possible in QCD — multiquarks and hadronic molecules
e States with same quantum numbers can mix with each other
| A(1405) ) = C3q| uds ) + Csq| udsqq) + Cryyp| MB) + - - - .

How can we determine the weight C;? Well-defined decomposition?
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Figure 2: Schematic illustration of the excitation mechanisms of baryons.

Decays via strong interaction

e Hadrons of interest are unstable against strong decay

Pe— J/Y+p
Zb — T—l—wi
A(1405) — 7+ %

oc—-n+m, kK—oT+ K,
In fact, stable hadrons are ~ 20/360

e Unstable states should be treated as resonances in hadron scattering

Goal and plan of this lecture

e Structure of exotic hadrons

How can we define the “structure” of unstable resonances?

e What are resonance “states”?

— §1 Resonances in quantum mechanics (5 Oct.)
— eigenstates with complex energy

— §2 Scattering theory primer (12 Oct.)
— definition of scattering amplitude

— §3 Resonances in scattering theory (12 Oct.)
— poles of scattering amplitude

— §4 Theory of Feshbach resonances (19 Oct.)
— bound state embedded in continuum

— §5 Nonrelativistic effective field theory (19 Oct.)
— description of low-energy scattering

— §6 Compositeness and weak-binding relation (26 Oct.)

— application to hadron systems



Relation to other fields

e Nuclear physics

Cluster structure of near-threshold excited states : ®Be ~ aa, Hoyle state of 1?C ~ aaa, etc.

e Particle physics
Higgs particle : H — vy, H - ZZ
Observed through the decays into known particles — a resonance

Higgs in the standard model? Composite of new particles?

e Atomic physics
Feshbach resonance by cold atoms [7]
— controlling scattering length (interaction strength) via external magnetic field

Broad/narrow Feshbach resonance : entrance channel fraction ~ compositeness
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1 Resonances in quantum mechanics

1.1 Overview of resonance states
Resonances and scattering states
e Resonance : quantum mechanically formed quasi-stable “state” which decays as time goes by

e Schrodinger equation is time reversal invariant
<> Resonances only decay, namely, not invariant under time reversal

Solution breaks symmetry of theory (equation) : spontaneous breaking?

e Decay products are scattering states (continuum) — need for scattering theory
Example) A(1405) — 7% : A(1405) is a resonance in the 73 scattering

e Inelastic scattering and scattering channels

— Elastic scattering : initial state = final state (7% — 73)
— Inelastic scattering : transition to different final states (71X — KN, 7% — 7%, etc.)

— Channels : states connected through inelastic scatterings (7%, KN, 7Y, etc.)

e Threshold : lowest energy of scattering states

Example) Threshold is E = 0 if potential vanishes at r — oo

Exercise 1
1) Let © be the time-reversal operator. Considering the classical time-reversal operation for the coordinate
r and the momentum p, derive Or©~! and OpO~—.

2) Calculate the commutation relation [L;, p;] with the angular momentum L; = €;,rjpr (b =1).

3) To satisfy the same commutation relation [L;, p;] after the time reversal, it turns out that © must be an
antilinear operator (Oay) = a*0Ov for a € C, ¢ € H where H is the Hilbert space). When the Hamiltonian
is time-reversal invariant (@ HO~! = H), show the time-reversal invariance of the Schrédinger equation
oV (r,t)

ot

namely, show that ©WU(r,t) follows the same equation.

7

= HY¥(r,t),

Characterization of resonances

e Various definitions : how are they related?

— Peak in spectra/cross sections : Fig. 3(a)
— m/2 crossing of phase shift §(E) : Fig. 3(b)
— Pole of scattering amplitude in complex energy plane : Fig. 3(c)

— Figenstate of Hamiltonian (with complex energy)
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Figure 3: Schematic illustration of characterization of resonances. (a): peak in total cross section o(FE),

(b) : /2 crossing of phase shift §(F), (c) : pole of scattering amplitude.

Shape resonance and Feshbach resonance
e Resonances can be classified into two classes

e Shape resonance, potential resonance : Fig. 4(b)

— Single-channel scattering

Typical potential : short range attraction + repulsive barrier
— Energy £ >0

— Unstable via tunneling effect
e Feshbach resonance : Fig. 4(c)

— Coupled-channel scattering

P : entrance channel, Q) : closed channel
— Threshold of @ at £ = A > 0 with threshold of P being £ =0
— A bound state of channel Q at 0 < £ < A

— Unstable via Q — P transition

e They are different in origin

Method to distinguish — compositeness
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Figure 4: Illustration of resonances. (a) : bound state, (b) : shape resonance, (c) : Feshbach resonance.



1.2 Resonances as eigenstates of Hamiltonian

e Ref. [23] : To describe « decay of atomic nuclei, imaginary part of eigenenergy is introduced by

hand (opposite sign from current convention Im F < 0)

h h
EZEQ-Fif)\:Eo-i-if)\
47 2

A : decay constant, related to the decay width through I' = A\

e Time evolution of wave function (opposite sign from current convention e~*#t)

U(t) x exp{+iEt/h} = exp{+iEot/h} exp{—A\t/2}
Probability decreases exponentially |W¥(#)[? o< exp{—\t}

e Inconsistent with “expectation value of hermitian operator is real”?
< Space on which the operator acts (domain D(H)) needs to be specified
c.f. definition of hermitian conjugate : (HTW,®) = (U, H®), ¥, € D(H)

— Eigenvalues are real if D(H) is Hilbert space (~ square integrable function space L?(R%))
/|\I/(x)\2dx < 00

If domain is extended, H can have complex eigenvalues

— Example of non-square-integrable wave function : plane wave ¥(z) ~ e=P*

/ MO / ldx — oo

—0o0 — 00

Resonances couple with scattering states through decay : non-square-integrable wave function

1.3 Square well potential
Definitions and scattering states
e Schrédinger equation (A =1,m =1)
1 d?
(~5a V)X =Bx(, 0sr< 1

— In this unit system, physical quantities are counted by dimension of length

(energy) = (length) 2, (momentum) = (length)™*

— x(r) ~ radial wave function of spherical 3d potential : ¢y, (1) = Xe(r) Y, ™ (7)
r
e Attractive square well potential (Vp > 0, Fig. 5(a))
Vo 0<r<b
V(r) = (2)
0 b<r



V()4 V()4
+Vy

(@ (b)

Figure 5: Width b rectangular potentials. (a) : attraction with depth Vp, (b) : repulsion with height V5.

e General solutions (no boundary condition)

efihr 0<r<b, k=+2(E+W)

x(ryocq
et b<r, p=+2E

e Scattering solutions (boundary condition x(r — 0) = 0)

C'sin(kr) 0<r<b
A= (p)e™" + At (p)et™ b<r

— Scattering solutions are not normalizable (non-vanishing at r — c0)

— Overall normalization C' is arbitrary
— A*(p) is determined by continuity of y and dx/dr at r = b

— Scattering phase shift is determined by the wave function at r — oo (see §2)

e Scattering solutions satisfy Schrédinger equation (1) for any £ > 0 : continuous spectrum

e Wave e™P" propagates in £r direction : AT (A7) is the amplitude of outgoing (incoming) wave

Discrete eigenstates and boundary conditions
e Discrete eigenstates are obtained by imposing boundary conditions both at » — 0 and r — oo

e Bound state solution : eigenenrgy F < (0 < pure imaginary eigenmomentum p = v2F
p=1ik, k>0
Wave function at r — oo behaves as

x(r) = A" (ir)et™™ + AT (ik)e™™  (r — o)

10



Table 1: Numerical solutions of Eq. (4) (discrete eigenstates of attractive square well) with Vo = 1062

pb] E=p*/2 b7
Bound state B +3.68: | — 6.78

1st resonance Ry | 1.06 — 1.02:¢ 0.05 — 1.082
2nd resonance Ry | 6.29 — 1.414 18.8 — &.86:
3rd resonance R3 | 9.90 — 1.69¢ 476 —16.8¢

e Boundary condition : x(r) is square integrable — eliminate diverging component e™*"
A (i) =0
For p = ik, incoming wave (e~P") vanishes, leaving outgoing wave (e*?") only

e A~ (p) =0 : outgoing boundary condition

VP2 + 2V,
tan(y/p2 + 2Vp b) = —i Y2210 (4)

p

Substituting p = ik, we obtain bound state condition for square well potential k = —k cot(kb)

Resonance solutions

e Bound states : solution of Eq. (4) with pure imaginary p
<> physical scattering occurs for real and positive p

= bound state solution is obtained by analytic continuation of (4)
e Resonance states : solution of Eq. (4) with complex p

e Attractive square well potential have infinitely many resonance solutions [24, 10]
Table 1 : numerical solutions of Eq. (4) with Vg = 10b~2
Poles of 1/|A™ (p)| in complex p plane (Fig. 6)

e Imaginary part of eigenmomentum is negative

P =DRr—1p1, PR,P1>0
behavior of wave function

+ ipr IPRT +prr
x(r) = AT (p)e*" x ¢ e

oscillation increasing

x(r) diverges with oscillation for r — oo, not square integrable (Fig. 6, right)

11
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Figure 6: Left: contour plot of 1/|A~(p)| of square well potential (2) with V5 = 10b2. Right : real part

of wave function of the third resonance Rg.

1.4 Localization of resonance wave function
Resonance phenomena at real energies

e Only real energies are experimentally accessible

Repulsive square barrier potential (Vp > 0, Fig. 5(b)) [10, 25]

+W 0<r<b
0 b<r

V(r) =

(Solutions of attractive potential are special examples, not suitable to see localization.)

Condition for solution : replace Vi — —V{ in the solution of attractive case

tan(/p? — 2V b) = —i—"pZ_ZVO (5)

p

No bound state solution, but infinitely many resonances mainly in the region £ > V|, (Table 2)

(shifting origin of energy to E = +V}, there is attraction for r > b)

Behavior of scattering wave functions at real energies (Fig. 7)

— Wave function localizes in 7 < b (interaction region) near resonance energies

— Away from resonances, approximately plane wave

Quantification of localization

e Ratio of amplitudes of interaction region and outer region

C'sin(kr) 0<r<b
C°"sin(pr +48) b<r, 4 : phase shift

12



Table 2: Numerical solutions of Eq. (5) (discrete eigenstates of repulsive barrier) with Vo = 1062

p b7 E=p*/2 b7
1st resonance Ry | 5.37 —0.36¢ | 14.4 — 1.9
2nd resonance Ro | 7.56 — 0.927 | 28.2 — 6.9
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Figure 7: Localization of wave function. Wave functions at near-resonance energies £ = 14.4b=2, E =

28.2b~2 and at far from resonance F = 21b~2 by repulsive square barrier potential with Vj = 10b~2.

e Localization rate R : from continuity at r = b,

2 2 2 -1
k- —
= <1 + p2p cosQ(kzb)>

C
Cout

R-|

From p = V2E, k= /2(E — V}) and V) > 0, we have k < p,so R > 1

e Numerical calculation : Resonance with small imaginary part (narrow width) localizes strongly

3.05 (E =14.4b2, first resonance)
R=1¢1.00 (E=21b"2)
1.49 (E = 28.2b~2, second resonance)

1.5 Summary of §1
e Discrete eigenstates <— outgoing boundary condition

e Resonances : eigenstates of Hamiltonian with complex eigenenergy

(Same with bound states, analytic continuation of eigenmomentum)

e Resonance wave function

— diverges at r — oo (complex p)

— localises in interaction region (real p)
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