0 Introduction : resonances in hadron physics

Hadrons

- Hadrons: particles interacting through the strong force
- Observed hadrons [1]
- Baryons (p, n, Λ, \cdots) : about 150 species
- Mesons (π, K, η, \cdots) : about 210 species
- All states emerge from QCD, color $\mathrm{SU}(3)$ gauge theory

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu a}+\bar{q}\left(i \not D-m_{q}\right) q
$$

color triplet quarks : \bar{q}, q
color octet gluons in $G_{\mu \nu}, D_{\mu}$

- Quarks have six kinds of flavor (u, d, s, c, b, t)

Regularity of observed states

- Hadrons belong to color singlet

No rule in QCD to forbid the appearance of colored states
\rightarrow problem of color confinement

- Flavor quantum numbers can be described by $q q q$ or $\bar{q} q$

No rule in QCD to forbid the appearance of $\bar{q} \bar{q} q q, \bar{q} q q q q, \cdots$
\rightarrow problem of exotic hadrons (genuine exotics)

- Experimental fact, nothing to do with quark models
- $J^{P C}$ exotic mesons have been observed : $\pi_{1}(1400)$ and $\pi_{1}(1600)$ have $J^{P C}=1^{-+}$

Exotic structure candidates (heavy quark system : c, b)

- Pentaquarks $P_{c}(4312), P_{c}(4440), P_{c}(4457)[2,3]$ (Fig. 1, left)

$$
P_{c} \rightarrow J / \psi(\bar{c} c)+p(u u d)
$$

- Tetraquarks $Z_{b}(10610), Z_{b}(10650)$ [4] (Fig. 1, right)

$$
Z_{b}^{ \pm} \rightarrow \Upsilon(\bar{b} b)+\pi^{ \pm}(\bar{d} u / \bar{u} d)
$$

- Only ~ 8 candidates out of 360 hadrons
- Internal structure (multiquarks, hadronic molecules, ...) has not been determined yet
- Flavor quantum numbers can be described by $P_{c} \sim u u d, Z_{b}^{+} \sim \bar{d} u$

But it is unnatural to explain their mass without heavy quark pairs

Figure 1: Examples of spectra of exotic hadrons. Left: spectrum of pentaquark P_{c}, adopted from R. Aaij et al., (LHCb collaboration), Phys. Rev. Lett. 122, 222001 (2019). Right: spectrum of tetraquark Z_{b}, adopted from A. Bondar et al., (Belle Collaboration) Phys. Rev. Lett. 108, 122001 (2012).

Exotic structure candidates (light quark system : u, d, s)

- $\Lambda(1405): S=-1, I=0, J^{P}=1 / 2^{-}[5]$
- Difficult to describe in quark models $u d s$ with orbital angular momentum $\ell=1 \rightarrow \sim 1.6-1.7 \mathrm{GeV}$ Experiments : $\sim 1.4 \mathrm{GeV}$
- $\bar{K} N$ molecular state? Pentaquarks?
- Scalar mesons: $\sigma, \kappa, f_{0}(980), a_{0}(980), J^{P}=0^{+}[6]$
- Difficult to describe in quark models Masses of $\bar{q} q$ states : $\bar{n} n(I=0, I=1)<\bar{n} s, \bar{s} n<\bar{s} s(I=0)$ Experiments : $\sigma(I=0)<\kappa<f_{0}, a_{0}(I=0, I=1)$
- Meson-meson molecular state? Tetraquarks?
- Flavor quantum numbers can be described by $\Lambda(1405) \sim u d s$, Scalar mesons $\sim \bar{q} q$

Excitation mechanism of hadrons

- Excitation in constituent quark models : internal excitation (Fig. 2)
- Excitation with $\bar{q} q$ pair creation is possible in $\mathrm{QCD} \rightarrow$ multiquarks and hadronic molecules
- States with same quantum numbers can mix with each other

$$
|\Lambda(1405)\rangle=C_{3 q}|u d s\rangle+C_{5 q}|u d s \bar{q} q\rangle+C_{M B}|M B\rangle+\cdots .
$$

How can we determine the weight C_{i} ? Well-defined decomposition?

Figure 2: Schematic illustration of the excitation mechanisms of baryons.

Decays via strong interaction

- Hadrons of interest are unstable against strong decay

$$
\begin{aligned}
P_{c} & \rightarrow J / \psi+p \\
Z_{b} & \rightarrow \Upsilon+\pi^{ \pm} \\
\Lambda(1405) & \rightarrow \pi+\Sigma \\
\sigma & \rightarrow \pi+\pi, \quad \kappa \rightarrow \pi+K, \quad \cdots
\end{aligned}
$$

In fact, stable hadrons are $\sim 20 / 360$

- Unstable states should be treated as resonances in hadron scattering

Goal and plan of this lecture

- Structure of exotic hadrons

How can we define the "structure" of unstable resonances?

- What are resonance "states"?
- §1 Resonances in quantum mechanics (5 Oct.)
\rightarrow eigenstates with complex energy
- §2 Scattering theory primer (12 Oct.)
\rightarrow definition of scattering amplitude
- §3 Resonances in scattering theory (12 Oct.)
\rightarrow poles of scattering amplitude
- §4 Theory of Feshbach resonances (19 Oct.)
\rightarrow bound state embedded in continuum
- $\S 5$ Nonrelativistic effective field theory (19 Oct.)
\rightarrow description of low-energy scattering
- §6 Compositeness and weak-binding relation (26 Oct.)
\rightarrow application to hadron systems

Relation to other fields

－Nuclear physics
Cluster structure of near－threshold excited states ：${ }^{8} \mathrm{Be} \sim \alpha \alpha$ ，Hoyle state of ${ }^{12} \mathrm{C} \sim \alpha \alpha \alpha$ ，etc．
－Particle physics
Higgs particle ：$H \rightarrow \gamma \gamma, H \rightarrow Z Z$
Observed through the decays into known particles \rightarrow a resonance
Higgs in the standard model？Composite of new particles？
－Atomic physics
Feshbach resonance by cold atoms［7］
\rightarrow controlling scattering length（interaction strength）via external magnetic field
Broad／narrow Feshbach resonance ：entrance channel fraction \approx compositeness

References

－Resonances in quantum mechanics
Textbook ：A．Bohm［8］，Kukulin－Krasnopol＇sky－Horacek［9］，N．Moiseyev［10］
Review article ：Ashida－Gong－Ueda［11］
－Scattering theory
Textbook：J．R．Taylor［12］，R．G．Newton［13］
Review article ：Hyodo－Niiyama［14］
－Feshbach resonances
Review articles ：Köhler－Góral－Julienne［15］，Chin－Grimm－Julienne－Tiesinga［16］
－Effective field theory
Review article ：Braaten－Kusunoki－Zhang［17］
－Compositeness and weak－binding relation
Original papers ：S．Weinberg［18］，Kamiya－Hyodo［19，20］
Review article：T．Hyodo［21］
JPS journal（in Japanese）：T．Hyodo［22］
－This lecture is partly based on the intensive lectures by Naomichi Hatano（YITP，Kyoto Univ．， Feb．2017）and by Yusuke Nishida（YITP，Kyoto Univ．，Feb．2014）
－For Japanese students：同じ内容の都立大講義の講義ノート（日本語版）が http：／／www．comp．tmu．ac．jp／hyodo／2020Tokuron．html
にあります。

1 Resonances in quantum mechanics

1.1 Overview of resonance states

Resonances and scattering states

- Resonance : quantum mechanically formed quasi-stable "state" which decays as time goes by
- Schrödinger equation is time reversal invariant
\leftrightarrow Resonances only decay, namely, not invariant under time reversal
Solution breaks symmetry of theory (equation) : spontaneous breaking?
- Decay products are scattering states (continuum) \rightarrow need for scattering theory

Example) $\Lambda(1405) \rightarrow \pi \Sigma: \Lambda(1405)$ is a resonance in the $\pi \Sigma$ scattering

- Inelastic scattering and scattering channels
- Elastic scattering : initial state $=$ final state $(\pi \Sigma \rightarrow \pi \Sigma)$
- Inelastic scattering : transition to different final states ($\pi \Sigma \rightarrow \bar{K} N, \pi \Sigma \rightarrow \pi \pi \Sigma$, etc.)
- Channels : states connected through inelastic scatterings ($\pi \Sigma, \bar{K} N, \pi \pi \Sigma$, etc.)
- Threshold : lowest energy of scattering states

Example) Threshold is $E=0$ if potential vanishes at $r \rightarrow \infty$

Exercise 1

1) Let Θ be the time-reversal operator. Considering the classical time-reversal operation for the coordinate \boldsymbol{r} and the momentum \boldsymbol{p}, derive $\Theta \boldsymbol{r} \Theta^{-1}$ and $\Theta \boldsymbol{p} \Theta^{-1}$.
2) Calculate the commutation relation $\left[L_{i}, p_{j}\right]$ with the angular momentum $L_{i}=\epsilon_{i j k} r_{j} p_{k}(\hbar=1)$.
3) To satisfy the same commutation relation $\left[L_{i}, p_{j}\right]$ after the time reversal, it turns out that Θ must be an antilinear operator $\left(\Theta \alpha \psi=\alpha^{*} \Theta \psi\right.$ for $\alpha \in \mathbb{C}, \psi \in \mathcal{H}$ where \mathcal{H} is the Hilbert space). When the Hamiltonian is time-reversal invariant $\left(\Theta H \Theta^{-1}=H\right)$, show the time-reversal invariance of the Schrödinger equation

$$
i \frac{\partial \Psi(\boldsymbol{r}, t)}{\partial t}=H \Psi(\boldsymbol{r}, t),
$$

namely, show that $\Theta \Psi(\boldsymbol{r}, t)$ follows the same equation.

Characterization of resonances

- Various definitions : how are they related?
- Peak in spectra/cross sections: Fig. 3(a)
- $\pi / 2$ crossing of phase shift $\delta(E)$: Fig. 3(b)
- Pole of scattering amplitude in complex energy plane : Fig. 3(c)
- Eigenstate of Hamiltonian (with complex energy)

(a)

(b)

(c)

Figure 3: Schematic illustration of characterization of resonances. (a): peak in total cross section $\sigma(E)$, (b) : $\pi / 2$ crossing of phase shift $\delta(E)$, (c) : pole of scattering amplitude.

Shape resonance and Feshbach resonance

- Resonances can be classified into two classes
- Shape resonance, potential resonance : Fig. 4(b)
- Single-channel scattering

Typical potential : short range attraction + repulsive barrier

- Energy $E>0$
- Unstable via tunneling effect
- Feshbach resonance : Fig. 4(c)
- Coupled-channel scattering P : entrance channel, Q : closed channel
- Threshold of Q at $E=\Delta>0$ with threshold of P being $E=0$
- A bound state of channel Q at $0<E<\Delta$
- Unstable via $Q \rightarrow P$ transition
- They are different in origin

Method to distinguish \rightarrow compositeness

Figure 4: Illustration of resonances. (a) : bound state, (b) : shape resonance, (c): Feshbach resonance.

1.2 Resonances as eigenstates of Hamiltonian

- Ref. [23]: To describe α decay of atomic nuclei, imaginary part of eigenenergy is introduced by hand (opposite sign from current convention $\operatorname{Im} E<0$)

$$
E=E_{0}+i \frac{h \lambda}{4 \pi}=E_{0}+i \frac{\hbar \lambda}{2}
$$

λ : decay constant, related to the decay width through $\Gamma=\hbar \lambda$

- Time evolution of wave function (opposite sign from current convention $e^{-i E t}$)

$$
\Psi(t) \propto \exp \{+i E t / \hbar\}=\exp \left\{+i E_{0} t / \hbar\right\} \exp \{-\lambda t / 2\}
$$

Probability decreases exponentially $|\Psi(t)|^{2} \propto \exp \{-\lambda t\}$

- Inconsistent with "expectation value of hermitian operator is real"?
\leftarrow Space on which the operator acts (domain $D(H)$) needs to be specified
c.f. definition of hermitian conjugate : $\left\langle H^{\dagger} \Psi, \Phi\right\rangle=\langle\Psi, H \Phi\rangle, \Psi, \Phi \in D(H)$
- Eigenvalues are real if $D(H)$ is Hilbert space (\sim square integrable function space $L^{2}\left(\mathbb{R}^{d}\right)$)

$$
\int|\Psi(x)|^{2} d x<\infty
$$

If domain is extended, H can have complex eigenvalues

- Example of non-square-integrable wave function : plane wave $\Psi(x) \sim e^{ \pm i p x}$

$$
\int_{-\infty}^{\infty}|\Psi(x)|^{2} d x=\int_{-\infty}^{\infty} 1 d x \rightarrow \infty
$$

Resonances couple with scattering states through decay : non-square-integrable wave function

1.3 Square well potential

Definitions and scattering states

- Schrödinger equation $(\hbar=1, m=1)$

$$
\begin{equation*}
\left(-\frac{1}{2} \frac{d^{2}}{d r^{2}}+V(r)\right) \chi(r)=E \chi(r), \quad 0 \leq r \leq \infty \tag{1}
\end{equation*}
$$

- In this unit system, physical quantities are counted by dimension of length

$$
(\text { energy })=(\text { length })^{-2}, \quad(\text { momentum })=(\text { length })^{-1}
$$

$-\chi(r) \sim$ radial wave function of spherical 3d potential : $\psi_{\ell, m}(\boldsymbol{r})=\frac{\chi_{\ell}(r)}{r} Y_{\ell}^{m}(\hat{\boldsymbol{r}})$

- Attractive square well potential ($V_{0}>0$, Fig. 5(a))

$$
V(r)= \begin{cases}-V_{0} & 0 \leq r \leq b \tag{2}\\ 0 & b<r\end{cases}
$$

Figure 5: Width b rectangular potentials. (a) : attraction with depth V_{0}, (b) : repulsion with height V_{0}.

- General solutions (no boundary condition)

$$
\chi(r) \propto \begin{cases}e^{ \pm i k r} & 0 \leq r \leq b, \quad k=\sqrt{2\left(E+V_{0}\right)} \\ e^{ \pm i p r} & b<r, \quad p=\sqrt{2 E}\end{cases}
$$

- Scattering solutions (boundary condition $\chi(r \rightarrow 0)=0$)

$$
\begin{align*}
\chi(r) & = \begin{cases}C \sin (k r) & 0 \leq r \leq b \\
A^{-}(p) e^{-i p r}+A^{+}(p) e^{+i p r} & b<r\end{cases} \tag{3}\\
A^{ \pm}(p) & =\frac{C}{2}\left[\sin (k b) \mp i \frac{k}{p} \cos (k b)\right] e^{\mp i p b}
\end{align*}
$$

- Scattering solutions are not normalizable (non-vanishing at $r \rightarrow \infty$)
\rightarrow Overall normalization C is arbitrary
- $A^{ \pm}(p)$ is determined by continuity of χ and $d \chi / d r$ at $r=b$
- Scattering phase shift is determined by the wave function at $r \rightarrow \infty$ (see §2)
- Scattering solutions satisfy Schrödinger equation (1) for any $E>0$: continuous spectrum
- Wave $e^{ \pm i p r}$ propagates in $\pm r$ direction : $A^{+}\left(A^{-}\right)$is the amplitude of outgoing (incoming) wave

Discrete eigenstates and boundary conditions

- Discrete eigenstates are obtained by imposing boundary conditions both at $r \rightarrow 0$ and $r \rightarrow \infty$
- Bound state solution : eigenenrgy $E<0 \Leftrightarrow$ pure imaginary eigenmomentum $p=\sqrt{2 E}$

$$
p=i \kappa, \quad \kappa>0
$$

Wave function at $r \rightarrow \infty$ behaves as

$$
\chi(r)=A^{-}(i \kappa) e^{+\kappa r}+A^{+}(i \kappa) e^{-\kappa r} \quad(r \rightarrow \infty)
$$

Table 1: Numerical solutions of Eq. (4) (discrete eigenstates of attractive square well) with $V_{0}=10 b^{-2}$.

	$p\left[b^{-1}\right]$	$E=p^{2} / 2\left[b^{-2}\right]$
Bound state B	$+3.68 i$	-6.78
1st resonance R_{1}	$1.06-1.02 i$	$0.05-1.08 i$
2nd resonance R_{2}	$6.29-1.41 i$	$18.8-8.86 i$
3rd resonance R_{3}	$9.90-1.69 i$	$47.6-16.8 i$
$\quad \vdots$		

- Boundary condition : $\chi(r)$ is square integrable \rightarrow eliminate diverging component $e^{+\kappa r}$

$$
A^{-}(i \kappa)=0
$$

For $p=i \kappa$, incoming wave $\left(e^{-i p r}\right)$ vanishes, leaving outgoing wave $\left(e^{+i p r}\right)$ only

- $A^{-}(p)=0$: outgoing boundary condition

$$
\begin{equation*}
\tan \left(\sqrt{p^{2}+2 V_{0}} b\right)=-i \frac{\sqrt{p^{2}+2 V_{0}}}{p} \tag{4}
\end{equation*}
$$

Substituting $p=i \kappa$, we obtain bound state condition for square well potential $\kappa=-k \cot (k b)$

Resonance solutions

- Bound states : solution of Eq. (4) with pure imaginary p
\leftrightarrow physical scattering occurs for real and positive p
\Rightarrow bound state solution is obtained by analytic continuation of (4)
- Resonance states : solution of Eq. (4) with complex p
- Attractive square well potential have infinitely many resonance solutions [24, 10]

Table 1 : numerical solutions of Eq. (4) with $V_{0}=10 b^{-2}$
Poles of $1 /\left|A^{-}(p)\right|$ in complex p plane (Fig. 6)

- Imaginary part of eigenmomentum is negative

$$
p=p_{R}-i p_{I}, \quad p_{R}, p_{I}>0
$$

behavior of wave function

$$
\chi(r) \rightarrow A^{+}(p) e^{i p r} \propto \underbrace{e^{i p_{R} r}}_{\text {oscillation }} \underbrace{e^{+p_{I} r}}_{\text {increasing }}
$$

$\chi(r)$ diverges with oscillation for $r \rightarrow \infty$, not square integrable (Fig. 6, right)

Figure 6: Left: contour plot of $1 /\left|A^{-}(p)\right|$ of square well potential (2) with $V_{0}=10 b^{-2}$. Right : real part of wave function of the third resonance R_{3}.

1.4 Localization of resonance wave function

Resonance phenomena at real energies

- Only real energies are experimentally accessible
- Repulsive square barrier potential $\left(V_{0}>0\right.$, Fig. $\left.5(\mathrm{~b})\right)[10,25]$

$$
V(r)= \begin{cases}+V_{0} & 0 \leq r \leq b \\ 0 & b<r\end{cases}
$$

(Solutions of attractive potential are special examples, not suitable to see localization.)

- Condition for solution : replace $V_{0} \rightarrow-V_{0}$ in the solution of attractive case

$$
\begin{equation*}
\tan \left(\sqrt{p^{2}-2 V_{0}} b\right)=-i \frac{\sqrt{p^{2}-2 V_{0}}}{p} \tag{5}
\end{equation*}
$$

- No bound state solution, but infinitely many resonances mainly in the region $E>V_{0}$ (Table 2) (shifting origin of energy to $E=+V_{0}$, there is attraction for $r>b$)
- Behavior of scattering wave functions at real energies (Fig. 7)
- Wave function localizes in $r<b$ (interaction region) near resonance energies
- Away from resonances, approximately plane wave

Quantification of localization

- Ratio of amplitudes of interaction region and outer region

$$
\chi(r)= \begin{cases}C \sin (k r) & 0 \leq r \leq b \\ C^{\text {out }} \sin (p r+\delta) & b<r, \quad \delta: \text { phase shift }\end{cases}
$$

Table 2: Numerical solutions of Eq. (5) (discrete eigenstates of repulsive barrier) with $V_{0}=10 b^{-2}$.

	$p\left[b^{-1}\right]$	$E=p^{2} / 2\left[b^{-2}\right]$
1st resonance R_{1}	$5.37-0.36 i$	$14.4-1.9 i$
2nd resonance R_{2}	$7.56-0.92 i$	$28.2-6.9 i$
\vdots		

Figure 7: Localization of wave function. Wave functions at near-resonance energies $E=14.4 b^{-2}, E=$ $28.2 b^{-2}$ and at far from resonance $E=21 b^{-2}$ by repulsive square barrier potential with $V_{0}=10 b^{-2}$.

- Localization rate R : from continuity at $r=b$,

$$
R=\left|\frac{C}{C^{\text {out }}}\right|^{2}=\left(1+\frac{k^{2}-p^{2}}{p^{2}} \cos ^{2}(k b)\right)^{-1}
$$

From $p=\sqrt{2 E}, k=\sqrt{2\left(E-V_{0}\right)}$ and $V_{0}>0$, we have $k<p$, so $R \geq 1$

- Numerical calculation : Resonance with small imaginary part (narrow width) localizes strongly

$$
R= \begin{cases}3.05 & \left(E=14.4 b^{-2}, \text { first resonance }\right) \\ 1.00 & \left(E=21 b^{-2}\right) \\ 1.49 & \left(E=28.2 b^{-2}, \text { second resonance }\right)\end{cases}
$$

1.5 Summary of §1

- Discrete eigenstates \leftarrow outgoing boundary condition
- Resonances : eigenstates of Hamiltonian with complex eigenenergy
(Same with bound states, analytic continuation of eigenmomentum)
- Resonance wave function
- diverges at $r \rightarrow \infty$ (complex $p)$
- localises in interaction region (real p)

