■特集/"令和"時代の地下水の課題とその解決に向けた取り組み(その2)

東日本大地震に伴う地下水の変化 一東京の地下水位変動を事例として-

Fluctuation Characteristics of Groundwater Levels in Tokyo Caused by Tohoku-Pacific Ocean Earthquake キーワード:東日本大地震(東北地方太平洋沖地震)、地下水位、自己組織化マップ(SOM)、東京

石原 成幸 Shigeyuki ISH	IHARA	K	という	
首都大学東京 客員准教授	大学院都市環境科学研究科	751	-	K

1. はじめに

2011年3月11日14時46分頃、東北地方三 陸沖を震源とするモーメントマグニチュード 9.0の地震となった東北地方太平洋沖地震(以 下「東日本大地震」と記す)が発生し、関東地 方でも震度5強の本震や余震等に伴う液状化現 象のほか、地下水位にも特異な変動が観測され た。このような地下水位の変動を正確に捉える ことは地盤沈下対策等に加え、地下水マネジメ ントの観点からも非常に重要となってきている。

一方、(独)産業技術総合研究所では、地震予 知研究を目的とした地下水総合観測ネットワー クによる観測記録を公表しているが、東京地方 は観測対象地域となっていない¹⁾。

本論では、東京都の地下水位観測システムが 捉えた非常に稀有な東日本大地震時を含む地下 水位データを用い、被圧・不圧地下水位変動の パターン特性を抽出し、時系列変動特性に基づ き分類した事例ととともに、管見の限り世界で 初めて地下水位解析に自己組織化マップ(SOM) を適用して分析した事例について紹介する^{2).3)}。 なお近年、首都圏では首都直下型地震などの予 測確率が高まる中、地下水位観測システムの活 用や地震時の地下水位挙動を把握することは、 震災復旧等に資する貴重な知見になると考える。

2. 使用データ

使用したデータは、東京都が地盤沈下の監視 目的で都内42箇所に設置した地下水位観測局 の2011年3月の一箇月・1時間単位(毎正時)

<mark>河村</mark> 明 Akira KAWAM	IURA
首都大学東京 教授	大学院都市環境科学研究科

の観測値である。観測概要は図-1 に位置図を、 表-1 に観測施設諸元(井戸番号・深度、地盤 高)の抜粋を示す。42 観測局の区分としては、 被圧地下水位観測井が91 井、不圧地下水位観 測井が13 井の計104 観測井である⁴⁾。

図-1 東京都内の地下水位観測局の配置

表-1 観測局並びに施設諸元(抜粋)

局No.	局 名	所在地	観測井No.	井戸深度(m)	ストレーナ深度(m)	地盤高(m)	
1	南砂町	江東区南砂町	1, 2	70 130	65- 70 125-130	T. P. −2	
2	亀 戸	江東区亀戸	1, 2	61 144	56- 61 139-144	T. P. −2	
41	三 鷹	三鷹市牟礼	1, 2, 3	118 15 260	97-113 10- 15 178-233	T. P. +56	
42	昭島	昭島市美堀町	1, 2, 3	110 13 236	92-103 8- 13 187-210	T. P. +119	

※) 〇付観測井 No.: 不圧井を示す

3. 東日本大地震時の地下水位変動パターン

図-2には、東日本大地震に伴い各局で観測 された地下水位の主な変動傾向を示す²⁾。ここ では東京での余震等の状況を考慮し、11日14 時と16時の地下水位を比較した(停電で欠測 した局は14時と15時の水位差)。その際の閾値 として5 cm 以上の水位上昇を〔▲〕、同じく低下 を[▼]、5 cm 未満を「大きな変動なし」として[-] で表した。さらに表-2 に、これら水位差の最大 値と最小値を、被圧・不圧地下水位の別に示し た。図-2並びに表-2より、被圧地下水の多くは、 全般的に低下傾向を示している。また、不圧地 下水の水位低下は被圧地下水に比べて小さく、 反対に水位上昇は大きい傾向が読み取れる。

表-2 地震時の地下水位変動量

変動量		水位	低下		水位上昇				
種別	最大値	井No.	最小値	井No.	最大値	井No.	最小値	井No.	
不圧地下水	14.4cm	23-2	0.1cm	25-4	23.4cm	14-4	0.2cm	35-3	
被圧地下水	83.3cm	8-2	0.4cm	3-1	14.8cm	8-1	0.9cm	33-1	

表-3 では、これら明示的な時系列変動特性 に基づき、計画停電等による欠測の少ない40 観測局の98 観測井(被圧85井、不圧13井) を被圧・不圧地下水の変動別に、被圧7パター ンと不圧3パターンに分類した。

図-3には、不圧・被圧地下水の観測記録か ら特徴的な水位変動が生じた各2井について、 3月一箇月間の時系列データを、気象庁による 東京大手町の降水量ととともに示す。地下水位 は東京湾平均海面を基準(T.P.+)とし、図中 のグラフ線が欠けている箇所は、地震後に生じ

表-3 被圧・不圧地下水位の変動パターン特性

被圧		水位変動傾向		不圧	水位変動傾向	井数
	C-D I	水位低下後に反転上昇	42	U-D	水位低下	1
C-D	C-DC	水位低下し、そのまま継続	20	U-I	水位上昇	2
	C-DR	水位低下後,元の水位に復元	13	U-N	大きな変動なし	10
	0-I I	水位上昇・低下後に反転上昇	1			
1 - C	0-I C	水位上昇し、そのまま継続	1			
	C-I D	水位上昇後,元の水位に低下	1			
C-N	C-N	大きな変動なし	7			

た停電又は計画停電による欠測である。なお、 地震前後の観測システムには、故障・異常がな いことを確認している²⁾。

4. SOM を用いた地下水位の変動特性評価

この東日本大地震の観測データは非常に稀有 な記録であり、比較・検証が難しい状況にあ る。このような地下水の複雑な挙動を有する変 動特性の分類には、より客観的なパターン分類 手法の適用が望まれる。そこで筆者らは、地震 時の地下水位変動特性を自己組織化マップ (Self-Organizing Maps: SOM)を用いて客観的に 評価し、前述の時系列変動に基づく主観的な変 動パターン特性との比較検討を通じて、より詳 細な変動・分類特性等を明らかにした。

SOM は、入力データの関連性を類似度とし てマップ上で描画できるニューラルネットワー ク手法の一種である^{5).6)}。この機能により、複雑 な相互関連性を二次元マップ上に視覚化・分類 することで、データ特性の分類等を客観的に表 現することが可能となる。紙面の関係から、SOM の詳細については既往研究を参照頂きたい^{2).3)}。 解析に使用した水位データとしては、前述し た欠測の少ない40局98井(被圧85井、不圧 13井)における次の(a)~(e)の5項目について、 データを指標化して入力した。

- (a) 地震前後の水位差:3月11日16:00-14:00
- (b) 地震直後と22時間後(12日)の水位差
- (c) 地震1日後と同2日後(14日)の水位差
- (d) 地震2日後と3月31日の水位差

 (e)各観測井のストレーナ深度の標高値(T.P.) 指標化に際しては東京での地殻変動量(4 cm 程度)を考慮し、(a)~(d)に閾値5 cmを設定 した。

SOM のマップ配列を決める全ノード数は、 データ数に基づく経験式から、縦 $10 \times df_5 = 50$ ノードの構成とした^{5).6)}。また、クラスター数は k-means 法を適用した最小 DBI(Davies-Bouldin Index)値から8とし、クラスター分類は Ward 法を用いて4階層と決定した³⁾。

図-4 には、SOM ノードマップにクラスター配置と観測井の分類結果を示した。また、図-5 は 各クラスターにおける水位差(a)~(d)と深度 (e)の分布特性をレーダーチャートで示した。

この図-4・図-5 に基づく各クラスターの変 動特性は、**表-4** に示すとおりである³³。

図-4 ノードマップとクラスター配列・観測井の分類結果 凡例:観測所-観測井No. 但し○ No.: 不圧井

水循環 貯留と浸透 2020 vol.115

次に、上記の時系列変動に基づく分類(**表-3**) と SOM による比較分類結果を**表-5** に示した³⁾。

表−4	クラスター毎の地震後の水位変動特性

Cluster	水	ストレーナ		
No.	No. 11日·地震直後 3月14日		3月末	深度
Cluster-1	大きく低下	回復·上昇	高水位	若干深い
Cluster-2	大きく低下	低下·回復	継続	中間
Cluster-3	最大の低下	地震前を上回る	継続	やや浅い
Cluster-4	若干の変動	大きな変動なし	継続	非常に浅い
Cluster-5	大きく低下	ほぼ回復	上昇	最も深い
Cluster-6	若干上昇	低下·回復	回復後低下	非常に浅い
Cluster-7	大きく低下	上昇	継続	中間
Cluster-8	低下後に上昇	地震前に戻る	再び上昇	やや浅い

表-5 SOM 解析結果と時系列に基づく変動特性の関係

SOMによる 分類			視に	よる時系	、列変	変動に基	Ź	E観的な	分類	(表-3)	
分類/井戸	■数	SOMI	:対応	する被	Ξ·7	<u>「圧地下</u> 」	水の	変動パタ	ーン	と観測井	数
Cluster -1	21	C-D I	12	C-DR	5	C-DC	1	C-N	2	U-N	1
Cluster -3	24	C-DI	21	C-DR	2	C-DC	1				
Cluster -8	7	C-D I	5	C-DC	1	C-DR	1				
Cluster -5	10	C-DC	5	C-DR	3	C-D I	2				
Cluster- 7	9	C-DC	6	C-DI	2	C-DR	1				
Cluster- 2	7	C-DC	6	U-D	1						
Cluster -4	11	U-N	4	C-N	4	C-II	1	C-IC	1	C-DR	1
Clustre- 6	9	U-N	5	U-I	2	C-N	1	C-ID	1		

5. 地震直後の被圧・不圧地下水位の変動要因

地震直後の地下水位に生じた特異的な水位上 昇・低下の要因について、各資料に照らして調 査した。その結果、被圧地下水の水位低下の原 因は、地震時の断層変位に伴う静的な体積歪変 化量の膨張傾向(歪み感度による水位換算:1 ~10cm 程度の低下)や電子基準点の変動状況 (30cm 程度)等から、主に地震による洪積層の 地殻膨張に起因する圧力低下により水位低下し たものと判断できる^{7.8}。

一方、不圧地下水位の上昇については、水位 上昇した観測井がN値0~10以下の軟弱層に設 置され、地震前後における降水がなく、帯水層 上部にも難透水層が存在しないこと、また砂層 に帯水した地下水位が上昇したこと等が明らか になった。このため、地震動により一時的に砂 層中の過剰間隙水圧が高まり、有効応力の減少 を招き地盤の不安定化とともに、液状化に似た 状態となり、地下水位が短期的に上昇したもの と考察できる^{2).9}。これらの水位変動要因の詳 解については、既往研究を参照願いたい^{2).3)}。

なお、本考察については、現時点で他の地震 時における観測データがほぼ得られていないこ とから、新たなデータが得られた段階で、より 詳細な検証を行う必要があると考える。

6. おわりに

本論では、比較検証等の難しい特異な事象への SOM 適用によるパターン解析の有用性を示 すとともに、地下水位の常時広域観測の重要性 も再認識できる一例として紹介させて頂いた。

<参考文献>

- 北川有一、小泉尚嗣:東北地方太平洋沖地震
 (9.0)後1日間での地下水位・地下水圧・自 噴量変化、活断層・古地震研究報告、No.11 pp309-318、2011 ほか
- 2)石原成幸、河村明、天口英雄、高崎忠勝、川 合将文:東北地方太平洋沖地震に伴う東京に おける不圧・被圧地下水位の変動特性、土木 学会論文集 B1(水工学)、Vol.68 No.4 pp.I_595-I_600、2012
- 石原成幸、河村明、天口英雄、高崎忠勝、川 合将文:自己組織化マップを用いた東北地方 太平洋沖地震に伴う東京における地下水位の 変動特性評価、土木学会論文集 B1 (水工学)、 Vol69 No.4 pp.I_541-I_546、2013
- 4)東京都土木技術支援・人材育成センター:
 平成23年の地下水位変動の特徴、平成24年度センター年報、pp131-150、2012 ほか
- Kohonen T: Self-Organizing Maps, Proceedings of The IEEE, 78 (9), pp1646–1480, 1990
- Juha V, Johan H, Esa A, and Juha P: SOM Toolbox for Matlab 5, Helsinki University of Technology, 2000
- 7) 産業技術総合研究所:平成23年東北地方太 平洋沖地震速報 地震後の地下水・温泉の変 化、地質調査研究センターHP、2011 ほか https://unit.aist.go.jp/ievg/report/jishin/tohoku/ chikasui.html(令和元年10月19日確認)
- 8) 国土地理院:GPS連続観測から得られた電子基準点の地殻変動、国土地理院HP、2011 https://www.gsi.go.jp/chibankansi/chikakukansi 40005.html(令和元年10月19日確認)
- (4) 佐田頼光、林宏親:地震時の地盤における 過剰間隙水圧、開発土木研究所月報 No.554、 pp.22-26、1999