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Abstract

Large atmospheric circulation has affected local/regional
hydro-meteorological variables such as precipitation and temperature.
The large-scale circulation represented by Southern Oscillation Index
(SOD) in the present study has played a driving force affecting the local
variables. The underlying interaction among them is difficult to detect
directly due to the existence of noise and strong nonlinearity. In the
present study, simultaneous predictability of SOI, precipitation, and tem-
perature at Fukuoka was verified through noise reduction by low pass
filtering and training of artificial neural networks (ANNs), presenting
remarkable properties that can represent the nonlinearity in a system.
Two types of transfer function (i.e., hyperbolic tangent and pure linear
functions) were applied to hidden nodes, while only pure linear function
was used for output layer. Possible extrapolation beyond the extreme
values in training was verified with the testing and validation datasets.
The observed and predicted values for the two cases were depicted in
three-dimensional phase space to reveal the dynamical behavior of the
interaction among the regional driving force and local hydro-
meteorological variables, as well as shown in the respective time series
plots. The identified parameters from training of ANNs were verified in
the testing and validation phase as well.

Keywords: Southern Oscillation Index (SOI), Precipitation, Tempera-
ture, Artificial neural networks (ANNSs), Prediction, Extrap-
olation, Transfer function

* Graduate Student, Institute of Environmental Systems
** Associate Professor, Institute of Environmental Systems
*** Professor, Institute of Environmental Systems
***#*% Graduate Student, Institute of Environmental Systems



46 Y.-H. JiN, A. KAwaMURA, K. JINNO and Y. ISERI

1. Introduction

El Nifio results from a large scale weakening of the trade wind and warming of sea
surface temperature in the eastern and central equatorial Pacific. The phenomenon of El
Nifio lasts typically 12~18 months and occurs irregularly at 2~7 year intervals. In contrast,
La Nifia phenomenon refers to the condition of lower sea surface temperature than normal.
There is an inter-annual seesaw phenomenon that is called Southern Oscillation (SO) in
tropical sea level pressure between the eastern and western hemispheres. The Southern
Oscillation Index (SOI), which is defined as the normalized difference in surface pressure
between Papeete at Tahiti in central Pacific Ocean and Darwin in northern Australia, is a
measure of the strength of the trade winds. The features are collectively known as the El
Nifio/Southern Oscillation (ENSO) phenomenon.

During the latest several decades there has been considerably interested in the influence
of ENSO on regional/local hydro-meteorological variables, such as temperature, precipita-
tion, and streamflow, etc???®. These studies showed that the influence of ENSO on hydro-
meteorological variables in the lower to mid-latitudes appears evident. For middle to high
latitudes the impact of ENSO on local variables is not clear. However, some studies have
also shown effects of La Nifia and SO on hydro-meteorological variables for the region®.
For south-east Asia, several studies have been made. One of them studied relationships
between SOI and precipitation in the Philippines/Malaysia and Japan, respectively®.
Although no quantitative relationship was calculated, a clear pattern similarity between SOI
and precipitation in the Philippines and Malaysia could be found. Kawamura et al. detected
quantitative and statistically significant correlation between SOI and precipitation/tempera-
ture in Japan, using a simple but efficient method in which SOI data were categorized into
five groups according to their magnitudes™®. The categorization method was used to reveal
the ENSO-influence on precipitation in Busan, Korea®.

As described above, the ENSO-influence has been considered as it has played a driving
force affecting local climate variation. The ENSO has been approved that it causes disasters
such as flood and drought with far distance by teleconnection. Vast losses by the disasters
are usually beyond human ability and have arisen with massive property damage and a heavy
toll of lives. Therefore, it is very important to understand how the regional driving force has
influenced the local variables.

The clear necessity of the research on ENSO-influence motivated this study. The better
understanding of the influence might prevent disasters from flood and drought caused by the
regional driving force. However, so far, there is little research showing the behavior of the
interaction between the regional driving force and local variables in time. The underlying
interaction among them is difficult to detect directly due to the existence of noise and strong
nonlinearity.

Therefore, in the present study, low pass filtering is applied to reduce the noise from the
used data. The low pass filter is especially designed to reduce high-frequency components of
the time series, which are usually regarded as noise!®. Also, artificial neural networks
(ANNSs) are used to represent the strong nonlinearity among variables and to reveal how the
relationship is changing dynamically in three-dimensional phase space.

Recently, ANNs have become extremely popular for prediction and forecasting in
various fields, such as finance, power generation, medicine, water resources and environmen-
tal science. The use of neural networks offers very useful properties such as nonlinearity,
input-output mapping, and adaptivity'?. In particular, the vast applications of ANNs to
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water resources, along with outlined steps to be followed for their development, are listed in
a paper of Maier et al., 2. Identification of inputs for multivariate artificial neural network
models can be referred to the previous study of the authors™.

The remarkable properties of ANNs are used in the present study to present the
nonlinear relationship between SOI as a regional driving force and local hydro-
meteorological variables. Input data used for the present study are the noise-reduced SOI,
precipitation, and temperature at Fukuoka. Two models of ANNs are structured with the
same number of input, hidden, and output nodes, but different transfer functions in hidden
layer. One of the two models shows possibility of extrapolation beyond the extremes in
training dataset.

The two models of ANNSs carry out the one-step ahead prediction to show simultaneous
predictability using the three variables. Both observed and predicted values from training,
testing and validation are shown in a three-dimensional phase space to depict how the
variables have been evolved dynamically. The ANNs model includes the influence of the
regional driving force on local hydro-meteorological variables and their interaction among all
of the three variables as well.

2. Data Used

SOI, precipitation, and temperature at Fukuoka were used to verify the simultaneous
predictability of multivariate time series using artificial neural networks (ANNs). Fukuoka
station was selected since it had long well recorded precipitation and temperature data. The
periods of each data were from January 1890 to December 2000. Annual mean precipitation/
temperature values are 1627 mm/15.6 °C during the periods, respectively. Time series plots
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Fig. 1 Time series plots of raw data for (a) SOI, (b) precipitation, and (c) temperature at Fukuoka.
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Fig. 2 Box-whisker plots of (a) SOI, (b) precipitation, and (c) temperature at Fukuoka
with median, quartiles, maximum, and minimum on a monthly basis.

of the three variables are shown in Fig. 1, whereas their box-whisker plots are represented
in Fig. 2 with median, quartiles, maximum, and minimum on a monthly basis. Figure 2 (a)
represents that SOI data are distributed normally in all months.

However, as is clearly seen in Fig. 1 (b), the time series of precipitation includes a clear
periodicity and, in Fig. 2 (b), the distributions of precipitation from January to December
reveal high skewness, especially during summer season. Meanwhile, the temperature depicts
slight upward trend in the second half of the period in Fig. 1 (¢) and approximately normal
distribution on a monthly basis with the clear periodicity, which is showing an annual cycle
as a whole in Fig. 1 (¢) and Fig. 2 (¢). The deterministic components such as periodicity,
seasonality, and trend should be removed and, sequentially, the data should be normally
standardized to ensure that all variables receive equal attention during the training process
in ANNs.

In the present study, the precipitation and temperature were normally standardized using
appropriate methods, respectively, while SOI was used as itself because it was already
normally standardized (Fig. 2 (a)). The precipitation data were normalized by cubic root
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Fig. 3 Transformed (a) precipitation and (b) temperature at Fukuoka.

transformation because its distribution was strongly skewed. The normalized data were,
then, standardized into a mean of zero and standard deviation of one, on a monthly basis from
January to December (Fig. 3 (a)). The temperature data were only standardized into a
mean of zero and standard deviation of one, after removing trend after January 1937 from
which temperature started to rise, because those were nearly distributed normally (Fig. 3
(b)). .

In general, observed time series data contain noise. Even though data transformation
was used as described above, the noise exists in the time series. Therefore, the time series
need to be cleaned by a noise reduction scheme. In the present study, a low pass filter as a
linear noise reduction scheme was applied to SOI, precipitation, and temperature time series.
A low pass filter is commonly used for noise reduction of any type of time series.

The low pass filter is especially designed to reduce high-frequency components of the
time series, which are usually regarded as noise. This scheme used for the present study is
expressed as following:

y()=1—-a)x(t)+ay(t—1) 1)

where ¢ is the time step; x is the raw data (in this study, transformed data) ; y is the smoothed
(noise-reduced) data, and « is the smoothing coefficient (0<a<1). Here, «a is selected as
0.995, which can make the smoothed values similar to the magnitudes of thirty-year moving
average. To obtain data more after noise reduction, the low pass filter is preferred to the
thirty-year moving average. The noise reduced time series of SOI, precipitation, and temper-
ature are plotted in Fig. 4, respectively, and a three dimensional phase space with the three
variables is shown in Fig. 5. These datasets are used for inputs in modeling ANNSs in the next
chapter.

3. Predictability of Artificial Neural Networks (ANNSs)

3.1 General theory of ANNs

Generally, the artificial neural network remarkably represents the nonlinear relationship
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Fig. 6 Architectural graph of the structure used in the present study.

and is well suited to the prediction of the variables based on the nonlinear interaction. For
the present study, three input variables with SOI, precipitation and temperature at the
present time are used to predict the three values of the next time simultaneously. That is,
the prediction is carried out one step ahead. A hidden layer, which can mainly express the
nonlinear relationship among the variables, has three nodes. Therefore, the model of the
artificial neural network used in the present study has the structure composed of three input,
hidden, and output nodes, respectively (Fig. 6)

This neural network model performs the usual error back-propagation algorithm for
training as a batch mode. In other words, weight updating is performed after all of the
training data are presented for computing the output values and this presentation of all the
training examples constitutes an epoch. An error from the epoch is calculated as an averaged
error from differences between all target and output values. This training method is well
known to be very efficient in terms of training speed as well as the training performance.

Briefly describing the error back-propagation algorithm, there are two main procedures
to train a neural network: forward and backward passes'¥. In the forward pass, the weights
remain unaltered throughout the network, and the function signals of the network are
computed on a neuron-by-neuron basis. The induced local field of neuron j, v;(#) in hidden
layer is defined by

Vj(n)zgowj,-(n)xi(n) (2

where m is the total number of inputs (excluding the bias, which is represented by 7=0)
applied to neuron 7, w;:(n) is the weight connecting neuron 7 in the input layer to neuron j
in hidden layer, and x:(#%) is the input signal of neuron j. The function signal appearing at
the output of neuron j in the hidden layer is computed as

yi(n)=o(v,(n)) (3)

The induced local field of neuron £, v« (%) in hidden output is computed by
vi(n)=2wi(n)y(n) (4)

where m, here, is the total number of hidden nodes (excluding the bias) applied to neuron £,
wk;(#) is the weight connecting neuron j in the hidden layer to neuron £ in output layer, and
y:(n) is the input signal of neuron £ or equivalently, the function signal appearing at the
output of neuron j. The function signal appearing at the output of neuron £ in the hidden
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layer is computed as

yi(n)=o(vi(n)) (5)

where y.(n) is the kth element of the output vector. This output is compared with the
desired response, dx (), obtaining the error signal ex (%) for the £th output neuron. Thus, the
forward phase of computation begins at the hidden layer by presenting it with the input
vector and terminates at the output layer by computing the error signal for each neuron of
this layer.

On the other hand, the backward pass starts at the output layer by passing the error
signal backward through the network, layer by layer, and recursively computing the § (i.e.,
the local gradient) for each neuron. This recursive process permits the weights of the
network to undergo changes in accordance with the delta rule defined by

Weight leayning-rate local input signal
corrvection |=| parameter .| gradient |.| of neuron j (6).
Awiin) 7 S(n) yi(n)

For a neuron located in the output layer, the ¢ is simply equal to the error signal of that
neuron multiplied by the first derivative of its nonlinearity. Eq. (6) computes the changes to
the weights of all the connections feeding into the output layer. After calculating the Js for
the neurons of the output layer, the ds for all neurons in the hidden layer are computed as

()= @i(v/(n)) Zox(n)wis(n) )

Therefore, the changes to the weights of all connections are fed into the hidden layer.
3.2 Application of ANNs

As mentioned earlier, the observed data usually contain noise. Therefore, the multivar-
iate time series need to be cleaned by a noise reduction scheme. In the present study, a low
pass filter was applied to the time series of SOI, precipitation, and temperature with the
smoothing coefficient of 0.995 that can make the smoothed values similar to the magnitudes
of thirty-year moving average. The noise-reduced data were used for the input data after
scaling the data into the range of [-0.8, 0.8]. Also, the whole data were divided into three
subsets for training, testing and validation.

The scaling should be performed in order to ensure that all variables receive equal
attention during the training process. In the present study, the scaling was carried out with
the training and testing data. In other words, a set of minimum and maximum corresponding
the two datasets were used to scale the smoothed data linearly into [-0.8, 0.8], at the same
time. Then, the maximum and minimum values were reused to scale the data for validation.
That is, the data beyond the extreme values for training and testing procedures can exist in
the testing and validation datasets. The distinguishable difference between testing and
validation is that the information of testing was used for training phase but no prior
knowledge for validation was considered. The period from 1890 to 1940 data was used for
training and 1941 to 1970 for testing, while the data of the three variables from 1970 to 2000
were used for validation.

In the present study, the transfer function in hidden the layer took hyperbolic tangent and
pure linear functions, whereas the output layer took only a pure linear function. An adaptive
learning rate was also used to improve the performance of the training. This adaptive
learning rate attempts to keep the learning step size as large as possible while keeping
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learning stable and the learning rate in every epoch is made responsive to the complexity of
the local error surface. The learning rate was set as 0.7 initially, whereas 0.1 was set for the
momentum constant. Training was carried out during a total epoch number of 1000.

4. Results

4.1 Training with hyperbolic tangent function in hidden layer

Figure 7 shows the performance of the network composed for the present study with
three input, hidden, and output nodes, respectively. The model used the hyperbolic tangent
function in hidden layer. As mentioned earlier, the periods of the respective data for training
is from 1890 to 1940. Also, the three input data use the noise-reduced data by low pass filter
with @ of 0.995. In the present study, the updated weights in training of the artificial neural
network are applied for testing and validation in every epoch, as seen in Fig. 7.

It reveals that the network was well trained enough with no more decreasing of errors
in both training and testing after the specified epoch number. The error in validation also
converged into the similar magnitude with the error in testing. Average root mean squared
error (RMSE) was around 0.035 for training. Respective results for SOI, precipitation and
temperature from training are shown in Fig. 8 with target (observed values) and predicted
values (outputs from network), and their respective RMSEs are shown in for each phase,
respectively. As can be clearly seen in the figure, the outputs of the respective variables well
predicted the corresponding target values in the training phase.

However, for the results of testing, the respective plots of observed and predicted values
for SOI, precipitation, and temperature are shown in Fig. 9. RMSE for testing revealed about
0.14, as seen in Table 1, when the weights from the trained network were applied to the
noise-reduced data of the three variables from 1941 to 1970 in every epoch. As mentioned
earlier, a set of minimum and maximum values from training and testing was used for scaling
of the corresponding data. The maximum values during the periods were in the data for
testing of precipitation and temperature, while it was in training phase for SOI. Therefore,
the scaled data for training had no the scaled maximum values for precipitation and
temperature.

Sequentially the neural network model was trained using the data with the narrower
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Fig. 7 Performance of artificial neural network with hyperbolic tangent for transfer
function in hidden layer composed of three inputs, hidden nodes, and outputs,
respectively, with maximum epoch number of 1000.
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Fig. 8 Observed and predicted values from the artificial neural network with hyperbolic
tangent for transfer function in hidden layer in training.
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Fig. 9 Observed and predicted values from the artificial neural network with hyperbolic
tangent for transfer function in hidden layer in testing.
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Table 1 Root mean squared errors (RMSEs) in the respective phases from the model with
hyperbolic tangent function for hidden layer.

Phasi

Training Testing Validation
RMSE
Average RMSE | 0.0348 0.1361 0.1734
RMSE for SOI 0.0349 0.1044 0.2580°
RMSE for precipitation 0.0423 - 0.1549 0.1231
RMSE for temperature 0.0249 0.1437 0.0920

range than [-0.8, 0.8] and has lower predictability for the data beyond the range used for
training. As clearly seen in Fig. 9, there are considerable under-estimating in the second half
of the testing data for the respective variables. The average RMSE of three variables is
about 0.14 in testing, while the respective RMSEs are shown in Table 1. It is considered that
the under-estimating for SOI was influenced by low prediction for precipitation and tempera-
ture, because the weights in the network was identified from the average RMSE of each error
for the three variables simultaneously.

The limited applicability of the parameters identified by the narrow range in training can
be clearly seen in Fig. 10, which shows the observed and predicted values for validation for
the respective variables. Average RMSE of three variables is about 0.17 and the respective
RMSEs are about 0.26 for SOI, 0.12 for precipitation, and 0.09 for temperature, as seen in
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Fig. 10 Observed and predicted values from the artificial neural network with hyperbolic
tangent for transfer function in hidden layer in validation.
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Table 1. Especially, there is significant under- and over estimation in the validation for SOI,
due to the existence of highly extreme values beyond the range in training and testing. The
smoothed extreme values for SOI in the whole period used for the present study occurred in
1976 and 1998, respectively. The scaled range of [-2.03, 1.32] for SOI in validation by the
minimum and maximum values during training and testing periods considerably exceeds that
of [-0.8, 0.8] in training.

Therefore, the problem for extrapolation of the data beyond the range used for training
is not trivial but instead critical for the simultaneous prediction of the three variables by
ANNS in the present study. In the next section, the alternative using pure linear function in
hidden layer for the training of neural network is proposed and the results are described in
detail.

4.2 Training with pure linear function in hidden layer

Pure linear function in hidden layer as an alternative to overcome the limitation
described above was applied to extrapolate the extreme values beyond the data used in
training. The RMSEs with pure linear function in hidden layer are listed in Table 2 and the
variations through epochs were depicted in Fig. 11 for the respective phases of training,
testing, and validation, respectively. As seen in the figure, the RMSEs of the each phase after

Table 2 Root mean squared errors (RMSEs) in the respective phases from the model with
pure linear function for hidden layer.

Phas:
Training Testing Validation
RMSE o
Average RMSE 0.0334 0.0366 0.0355
RMSE for SOI 0.0344 0.0331 0.0368
RMSE for precipitation 0.0396 0.0442 0.0419
RMSE for temperature 0.0245 0.0313 0.0259
10" 4 e
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Fig. 11 Performance of artificial neural network with pure linear for transfer function in
hidden layer composed of three inputs, hidden nodes, and outputs, respectively,
with maximum epoch number of 1000.
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the maximum epoch number converged into the similar values listed in Table 2.

Compared to the results from the neural network with hyperbolic tangent function in
hidden layer, the results with pure linear function in the same layer show significant improve-
ment in the all phases of training, testing, and validation, in general. The observed and
predicted values were plotted in Fig. 12 and three-dimensional phase space was used to depict
the dynamical behavior of the interaction among the three variables in Fig. 13. It is clear
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Fig. 12 Observed and predicted values from the artificial neural network with pure linear
for transfer function in hidden layer in training.
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Fig. 13 Three-dimensional phase space representing observed and predicted values in training
of the artificial neural network with pure linear for transfer function in hidden layer.
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that the neural network performed very well for the one step ahead prediction in training. As
clearly seen in Fig. 13, even though the interaction among variables is randomly evolving in
time, the identified model is well representing the dynamical behavior of the interaction as
prediction.

In Fig. 14, the observed and predicted data in testing were plotted and reveal the
identified model is very well performing for testing as well. Especially, the identified model
extrapolated the extreme values beyond the data used for training in testing phase. Also,
Fig. 15 shows the dynamical behavior of interaction among variables in testing and present
that the model has the considerable ability of extrapolation for data beyond the range of
training. However, it should be note that the information for testing was involved in training
phase, i.e., the maximum and minimum values from the dataset for testing could possibly
used for training. Therefore, the identified model should be retested with the independent
dataset of obtaining the generalized evidence for the model.

Sequentially, validation was carried out with the independent dataset from training
procedure and its results were plotted in Fig. 16 using the observed and predicted data for
this phase. Remarkably, the ability for extrapolation of the identified model was represented
in this phase, especially for SOI. As mentioned earlier, the range for validation data [-2.03,
1.32] greatly exceeds that for training and testing, [-0.8, 0.8]. Nevertheless, the results from
validation phase showed the significant and remarkable ability for extrapolation of the most
extreme data beyond the range for training. Also, Fig. 17 clearly show the model can work
well for the one step ahead prediction of the interaction among variables as well as reveal
that it can represent the dynamical behavior of the interaction by the prediction.
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Fig. 14 Observed and predicted values from the artificial neural network with pure linear
for transfer function in hidden layer in testing.
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Fig. 17 Three-dimensional phase space representing observed and predicted values in
validation of the artificial neural network with pure linear for transfer function in
hidden layer.

5. Conclusions and Discussions

ENSO-influence has been considered as it has played a driving force affecting local
climate variation, causing great disasters with far distance by teleconnection. It is impera-
tive to understand how the regional driving force has influenced the local variables and how
the relationship among them has evolved dynamically.

In the present study, artificial neural networks (ANNs) were employed to show the
dynamical behavior of the interaction among them and to predict the interaction. It is
apparent that ANNs can obtain its computing power through, first, massively parallel-
distributed structure and, second, its ability to learn and therefore generalize. These two
information-processing capabilities make it possible for ANNs to solve complex problems
and predict more accurately. The remarkable characteristics of ANNs were used to
represent the nonlinear relationship among SOI, precipitation and temperature at Fukuoka.
The three variables were used for input data simultaneously, after applying the low pass
filter to reduce noise contained in the time series. Error back-propagation algorithm was
applied to the training phase to identify the weights of the network. There were two types
of transfer functions in hidden layer, i.e., hyperbolic tangent and pure linear functions.

The neural network with hyperbolic tangent function in hidden layer showed the limita-
tion in validation that it cannot extrapolate the extreme values beyond the data range for
training. Especially, this phenomenon was remarkable on the validation for SOI. However,
the network with pure linear function in hidden layer revealed that it could predict well and
at the same time, extrapolate the extreme values, which have never occurred in training and
testing periods.

Consequently, the performance of identified model of ANNs with pure linear function
was considerably successful in testing and validation as well as training. In other words, the
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simultaneous predictability of multivariate time series was well performed. The identified
neural network model includes the interaction among a regional driving force of ENSO and
local hydro-meteorological variables such as precipitation and temperature.

Additionally, the interaction of the three variables was depicted in three-dimensional
phase space to see the dynamical variation. Observed and predicted values in training,
testing, and validation phases of the identified neural network with pure linear function in
hidden layer were used to show the behavior of interaction among variables in time as well
as shown as the respective time series plots. Even though generalization of the evolving
interaction among them could not formulated, it was considerably meaningful in the sense
that the trial to understand the behavior dynamically was performed for the first time
considering a regional driving force and local hydro-meteorological variables. Furthermore,
it is strongly recommended to carry out the procedure to obtain better understanding of
nonlinear dynamics underlain among the variables.
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