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1. INTRODUCTION 

 

The flood flow in urban areas constitutes a serious hazard 

to both the population and infrastructure. Because most 

of the population is concentrated near the flood plain and 

a lot of buildings are along the rivers. The extreme events 

of urban flood cause damages, resulting in the loss of 

human life, property, crop and other losses (Sahoo and 

Saritha, 2015). Also, the presence of sewer system, 

impervious surfaces, etc. convert a high percentage of 

rainfall into runoff more quickly and the floods become 

flashier. For this reason, implementation of appropriate 

flood control activities and mitigation strategies are 

important to keep flood damage to a less level. Therefore, 

the advance prediction of flood characteristics such as 

peak, volume, etc. is essential in order to control its 

harmful effects. 

Different models are available for the rainfall-

runoff modelling in which the lumped model has been 

widely used. The storage function model, one of the 

lumped model, have gained popularity in different parts 

of the world, especially in Japan, due to the ease of 

expressing the nonlinear relationship of rainfall-runoff 

events with simple equations and its ability to provide 

easy computation (Kawamura et al., 2004). The first 

storage function model with three parameters was 

originally proposed by Kimura (1961) and it can express 

the nonlinearity in the outflow process with a relatively 

simple structural formula. It still has been widely used in 

Japan. Later, Prasad (1967) directly expressed the 

bivalence of the storage and discharge using the 

nonlinear storage equation with three parameters without 

using the lag time introduced in the Kimura’s storage 

function model. Furthermore, Hoshi and Yamaoka 

(1982) modified Prasad’s storage function model by 

adding another parameter and improved the strength of 

the model.  

All the above models are using effective rainfall as 

their input for the estimation of direct runoff, which 

involves errors and parameter uncertainty. In order to 

overcome this, Baba et al. (1999) developed a storage 

function model with loss mechanism that directly uses 

observed rainfall and observed discharge and is applied 

to the mountainous river basin in Hokkaido, Japan. 

However, the outflow characteristics of the urban 

watershed largely differ from those in the mountainous 

river basin due to the presence of impervious surface and 

sewer system in the urban area. Hence, it is difficult to 

reproduce the hydrograph of urban river discharge using 

Baba's storage function model. Therefore, Takasaki et al. 

(2009) proposed Urban Storage Function (USF) model 

which uses the observed rainfall and runoff directly 

without effective rainfall estimation and base flow 

separation for the flood prediction. It considers all the 

possible inflow and outflow components of the urban 

basin with combined sewer system such as storm 

drainage from the basin through the combined sewer 

system as one of the outflow, to improve the accuracy of 

the storage function model for flood prediction.  

The USF model solution can be achieved by using 

different numerical solution methods. In this study, we 

are comparing the effect of two numerical solution 

methods of (1) Runge-Kutta-Gill (RKG) method and (2) 

Difference method (DM) for solving the USF model. The 

root mean squared error (RMSE) and elapsed time taken 

for the program execution for different time increments 

were considered as the effect evaluation criteria of 

solution methods. For this comparison, we selected one 

flood event of the Kanda River basin, a small to medium-

sized urban watershed in Tokyo, Japan where the flood 

occurs every year.  

 

2. METHODOLOGY 

 

2.1 USF model 
The USF model proposed by Takasaki et al. (2009) is a 

lumped conceptual model. Fig. 1 shows the schematic 

diagram of all possible inflow and outflow components 

of an urban watershed. The inflow components in Fig.1 

comprise rainfall R (mm/min) and urban specific and 

ground water inflows from other basins I (mm/min). The 

urban specific inflows include leakage from water 

distribution pipes, irrigational flow, etc. The outflow 

components consist of river discharge Q (mm/min), 

evapotranspiration E (mm/min), storm drainage from the 

basin through the combined sewer system 𝑞𝑅 (mm/min), 

water intake from the basin O (mm/min) and ground 

water related loss 𝑞𝑙  (mm/min). In addition, the 

domestic sewage 𝑞𝑤 and total discharge from combined 

sewer system 𝑞𝑠  (𝑞𝑅 + 𝑞𝑤) are also depicted in Fig.1 

even though they do not directly contribute to the 

watershed storage s (mm). 

The bivalent relationship between the outflow from 

the basin (𝑄 + 𝑞𝑅) and storage s can be expressed by 

the following equation: 

𝑠 = 𝑘1(𝑄 + 𝑞𝑅)
𝑝1 + 𝑘2

𝑑

𝑑𝑡
{(𝑄 + 𝑞𝑅)

𝑝2}     (1) 

where t: time (min), k1, k2, p1, p2: model parameters.  
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Combining the above expression of storage with 

the following continuity equation yields the nonlinear 

expression of USF model. 

𝑑𝑠

𝑑𝑡
= 𝑅 + 𝐼 − 𝐸 − 𝑂 − (𝑄 + 𝑞𝑅) − 𝑞𝑙     (2) 

Further, the ground water related loss (𝑞𝑙 ) was 

defined by considering the infiltration hole height (𝑧) and 

is given by: 

𝑞𝑙 = {
𝑘3(𝑠 − 𝑧)(𝑠 ≥ 𝑧)
0                (𝑠 < 𝑧)

           (3) 

where k3, 𝑧: model parameters. 

The expression for storm drainage 𝑞𝑅  from the 

combined sewer system discharged out of the basin is 

developed by assuming a linear relationship between 

total discharge 𝑄 + 𝑞𝑅  and the storm drainage 𝑞𝑅 

immediately after the rainfall. The 𝑞𝑅 is defined as: 

𝑞𝑅 = {
𝛼(𝑄 + 𝑞𝑅 − 𝑄0), 𝛼(𝑄 + 𝑞𝑅 − 𝑄0) < 𝑞𝑅𝑚𝑎𝑥 

𝑞𝑅𝑚𝑎𝑥                  , 𝛼(𝑄 + 𝑞𝑅 − 𝑄0) ≥ 𝑞𝑅𝑚𝑎𝑥
(4) 

where 𝛼: the slope of the linear relationship between 

total discharge 𝑄 + 𝑞𝑅 and drainage 𝑞𝑅, 𝑄0: the initial 

river discharge just before the rain starts.  

The maximum volume of 𝑞𝑅  cannot exceed the 

sewer maximum carrying capacity 𝑞𝑅𝑚𝑎𝑥. Substituting 

Eq. (1) into Eq. (2) will lead to a second order Ordinary 

Differential Equation (ODE) as follows: 

𝑘2
𝑑2

𝑑𝑡2
(𝑄 + 𝑞𝑅)

𝑝2 = −𝑘1
𝑑

𝑑𝑡
(𝑄 + 𝑞𝑅)

𝑝1 + 𝑅 + 𝐼 − 𝐸 −

𝑂 − (𝑄 + 𝑞𝑅) − 𝑞𝑙              (5) 

     In order to solve the ODE, change of variables is 

performed as follows: 

𝑥1 = (𝑄 + 𝑞𝑅)
𝑝2             (6) 

𝑥2 =
𝑑

𝑑𝑡
{(𝑄 + 𝑞𝑅)

𝑝2}           (7) 

     By substituting Eq. (3) into Eq. (5) and performing 

change of variables will lead to the emergence of two 

first order ODE’s concerning two conditions shown in Eq. 

(3). 

When 𝑠 ≥ 𝑧, the first order ODE for is given as: 

{
 
 

 
 
𝑑𝑥1

𝑑𝑡
= 𝑥2                                                                                   

𝑑𝑥2

𝑑𝑡
= −

𝑘1

𝑘2

𝑝1

𝑝2
𝑥1
(𝑝1 𝑝2−1⁄ )

𝑥2 −
1

𝑘2
𝑥1
(1 𝑝2⁄ )

−
𝑘1𝑘3

𝑘2
𝑥1
(𝑝1 𝑝2)⁄

−𝑘3𝑥2 +
1

𝑘2
(𝑅 + 𝐼 − 𝐸 − 𝑂 + 𝑘3𝑧)

  

(8a) 

In the case of 𝑠 < 𝑧, the first order ODE is given 

as: 

{
 
 

 
 
𝑑𝑥1

𝑑𝑡
= 𝑥2                                                      

𝑑𝑥2

𝑑𝑡
= −

𝑘1

𝑘2

𝑝1

𝑝2
𝑥1
(𝑝1 𝑝2−1⁄ )

𝑥2 −
1

𝑘2
𝑥1
(1 𝑝2⁄ )

+
1

𝑘2
(𝑅 + 𝐼 − 𝐸 − 𝑂)

     (8b) 

Eq. (8) can be expressed in an expanded way as 

follows, (Morinaga et al., 2001) 

𝑑𝑋(𝑡)

𝑑𝑡
= [

𝑓1(𝑋)
𝑓2(𝑋)

] = [

𝑑𝑥1

𝑑𝑡
𝑑𝑥2

𝑑𝑡

] = 𝐹(𝑋)       (9) 

By solving the two simultaneous non-linear ODE’s 

of Eq. (8) numerically, we will obtain the total discharge 

𝑄 + 𝑞𝑅 . In order to solve this two first order 

simultaneous ODE’s, we used the RKG method and 

difference method. The river discharge 𝑄 will obtain as 

the solution after subtracting the 𝑞𝑅, which is calculated 

using Eq. (4), from the total discharge. 

 

2.2 Runge-Kutta-Gill method  
In order to solve the Eq. (9), the formula for RKG 

numerical solution is as follows (Kojima and Machida, 

1982):  

 

Fig. 1 Schematic diagram of all inflow and outflow components of an urban watershed. 
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𝑋𝑛+1 = 𝑋𝑛 +
1

6
[𝑢1 + (2 − √2)𝑢2 + (2 + √2)𝑢3+𝑢4]              

(10) 

where 

𝑢1 = ∆𝑡𝐹(𝑡𝑛, 𝑋𝑛)           (11) 

𝑢2 = ∆𝑡𝐹 (𝑡𝑛 +
1

2
∆𝑡, 𝑋𝑛 +

1

2
𝑢1)      (12) 

𝑢3 = ∆𝑡𝐹 (𝑡𝑛 +
1

2
∆𝑡, 𝑋𝑛 +

√2−1

2
𝑢1 +

2−√2

2
𝑢2) (13) 

𝑢4 = ∆𝑡𝐹 (𝑡𝑛 + ∆𝑡, 𝑋𝑛 −
√2

2
𝑢2 +

2+√2

2
𝑢3)  (14) 

where ∆𝑡: time increment. 

 

2.3 Difference method 

The nonlinear vector function in Eq. (9) is 

calculated by using the Taylor’s theorem using known 

𝑋 = 𝑋∗ in advance and then the vector function 𝐹(𝑋) 
is transformed into a linear equation expressed by Eq. 

(15) by omitting terms after the quadratic term. 

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐽(𝑋∗)𝑋 + 𝐵(𝑋∗)          (15) 

     𝐽(𝑋∗) is the Jacobian of 𝐹(𝑋) and it is expressed 

by the following equation, 

[𝐽(𝑋∗)]𝑖𝑗 = [
𝜕𝑓𝑖

𝜕𝑥𝑗
]
𝑋=𝑋∗

= [
0 1
𝑗1 𝑗2

]      (16) 

Here 𝑗1 and 𝑗2 are given by, 

𝑗1 = −
𝑘1
𝑘2

𝑝1
𝑝2
(
𝑝1
𝑝2
− 1)𝑥1

(𝑝1 𝑝2−2⁄ )
𝑥2 −

1

𝑘2

1

𝑝2
𝑥1
(1 𝑝2⁄ −1)

−
𝑘1𝑘3
𝑘2

𝑝1
𝑝2
𝑥1
(𝑝1 𝑝2−1)⁄

 

𝑗2 = −
𝑘1
𝑘2

𝑝1
𝑝2
(
𝑝1
𝑝2
− 1)𝑥1

(𝑝1 𝑝2−2⁄ )
𝑥2 

The matrix 𝐵(𝑋∗) can be expressed as, 

𝐵(𝑋∗) = 𝐹(𝑋) − 𝐽(𝑋∗)𝑋∗         (17) 

In addition, we transformed the continuous linear 

Eq. (15) into a discretized format in order to make the 

calculations easier and is given as, 

𝑋(𝑘 + 1) = 𝛹(𝑘)𝑋(𝑘) + 𝛬(𝑘)𝐵(𝑘)     (18) 

Here, 𝑘 is the discretized computation time 

point and the matrices 𝛹(𝑘) and 𝛬(𝑘) are calculated 
using the following equation, 

𝛹(𝑘) = 𝑒𝑥𝑝(𝐽∆𝑡) ≡ 𝐼 + 𝐽∆𝑡 +
(𝐽∆𝑡)2

2!
+
(𝐽∆𝑡)3

3!
+
(𝐽∆𝑡)4

4!
+

∙∙∙                (19) 

𝛬(𝑘) = [𝑒𝑥𝑝(𝐽∆𝑡) − 𝐼]𝐽−1 = ∆𝑡 [𝐼 +
𝐽∆𝑡

2!
+

(𝐽∆𝑡)2

3!
+
(𝐽∆𝑡)3

4!
∙∙∙]              (20) 

 

3. RESULTS AND DISCUSSION 

 

The inflow component 𝐼 was fixed at 0.0012 mm/min 

based on the business annual report of the TMG. The 

water intake  𝑂 and evapotranspiration 𝐸 were set at 0 

since there is no water intake from the target basin and 

evapotranspiration during heavy rainfall is insignificant. 

The maximum drainage, 𝑞𝑅𝑚𝑎𝑥 was estimated at 0.033 

mm/min using the Manning’s equation. 

We synthetically generated the discharge values 

using the inflow and outflow components along with 

fixed parameters with RKG as the solution method and 

0.01 as the time increment. The fixed parameters were 

set as 𝑘1 =50, 𝑘2 =600, 𝑘3 =0.05, 𝑝1 =0.3, 𝑝2 =0.4, 

𝑧=30, 𝛼=0.5 based on the average values described by 

Takasaki et al. (2009). This synthetically generated 

discharge forms the base value for further calculations. 

Fig. 2 shows the RMSE values generated by the 

USF model for different solution methods with different 

time increments. We considered a total of 5 time 

increments of 0.01, 0.1, 0.2, 0.5, and 1.0. From Fig. 2, 

we can see that both the methods generate same RMSE 

values and they are overlapping for a time increment of 

0.01. When the time increment has increased by 10 times 

(∆𝑡 = 0.1), there was no significant difference in the 

RMSE values by both the methods. However, it was 

found that there was a notable change in the RMSE value 

estimated by the difference method as compared with the 

RKG method at a time increment of 0.2. The difference 

method produced a higher RMSE value even though it is 

of very small magnitude (0.81×10-5). When ∆𝑡 equals 

to 0.5 and 1.0, the RMSE values estimated using RKG 

method were quite consistent. However, there was an 

abrupt change in the values produced by the difference 

method. The results indicate that the RKG method is 

 

Fig. 2 Effect of time increment on RMSE values 

generated by USF model for RKG and Difference 

solution methods. 
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more stable compared with difference method for all the 

considered time increments. The difference method 

generated comparable results with RKG method only at 

very small time increments of 0.01 and 0.1.   

Fig. 3 shows the effect of time increment on the 

elapsed time taken by the USF model for the program 

execution using both the solution methods. From Fig. 3, 

we can see that the elapsed time is higher for the 

difference method compared with RKG method at the 

time increment of 0.01. When the time increment starts 

increasing, the elapsed time taken by difference method 

has gradually reduced and become equal with that of 

taken by RKG method at ∆𝑡 equals to 0.5. The RKG 

method also shows a higher elapsed time at a time 

increment of 0.01 compared with other time increments. 

The results reveal that the RKG method is faster 

compared to the difference method in program execution 

with very small increments. Even though the differences 

in the elapsed time between two methods are very small, 

it will considerably affect long data sets for years. 

From both the figures, we can envisage that the 

RKG method is giving better performance over the 

difference method in all aspects. Even though the 

difference method giving almost same RMSE as that of 

RKG method at lower time increments, the elapsed time 

taken by the difference method is high. In a similar way, 

the elapsed time taken by both the methods are same for 

time increments of 0.2, 0.5, and 1. However, the RMSE 

generated by the difference method at these time 

increments is far higher than that produced by RKG 

method.  

In Fig. 2, If we are comparing the RMSE of RKG 

method when ∆𝑡 equals to 0.5 (0.18×10-5) with that of 

difference method when ∆𝑡 equals to 0.2 (0.37×10-5), 

the RMSE value of RKG method is 2 times smaller than 

that of the difference method. Therefore, we can 

conclude that the method is dominating over the time 

increment. 

 

 

CONCLUSION 

 

In this study, we compared the effect of different time 

increment used in two different numerical solution 

methods of RKG method and difference method on USF 

model with fixed parameters in terms of RMSE and 

elapsed time taken for the program execution.  

The results indicated that the RKG method exhibits 

better performance compared with difference method for 

solving USF model for all the considered time 

increments in terms of RMSE. The RMSE values were 

stable for the RKG method, while the same estimated by 

difference method was highly fluctuating with increasing 

time increments. Furthermore, the RKG method showed 

faster program execution in terms of elapsed time at 

smaller time increments compared with difference 

method. 

As a conclusion, the RKG method was found to be 

superior to the difference method in terms of both RMSE 

and elapsed time. Even though the difference method is 

not demonstrating an equal performance with RKG 

method, it is needed for the real time flood prediction 

using Kalman filter. 
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Fig. 3 Effect of time increment on elapsed time taken 

for the program execution of USF model by both the 

methods. 
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