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1. Introduction

A relatively simple and efficient way to estimate local and regional rainfall, as well as other hydrometeorological variables,
is by establishing statistical relationships with large-scale atmospheric variables. This is known as statistical atmospheric
downscaling. In the present study, such downscaling is performed for the Chikugo River basin (~3000 km?) located in the
northern part of Kyushu Island. This basin is important for the water supply of Fukuoka City, which sometimes experience
severe droughts. For proper management of the water resources during droughts, accurate rainfall prediction is important. In
the downscaling procedure, three large-scale meteorological variables are used as input: precipitable water, and zonal and
meridional wind speeds. Output is the mean rainfall intensity in Chikugo River basin during a 12-hour period. To find the
optimum input-output relationships, artificial neural networks are employed. The outputs are compared with the mean
observed Chikugo River basin rainfall data. ’

2. Experimental setup
2.1 Data.

The downscaling output, i.e., mean 12-hour rainfall intensity in Chikugo River basin (CRb), was obtained as the average of
the intensity measured in 11 stations (so-called AMeDAS network) located within the basin. The large-scale atmospheric state
was specified by grid point meteorological data (GPV) at 00Z and 12Z (9am. and 9pm. JST) in a region spanning
approximately 105-160°E and 20-55°N (Fig.1), provided by Japan Meteorological Agency. Three variables were considered
for the downscaling, as these have been previously found most efficient for rainfall prediction (Uvo et al."): (a) precipitable
water (vertically integrated humidity), and (b) zonal and (c) meridional wind speed at 850 hPa. These variables, specified at a
100x100 km resolution over the area (43x51 points), were correlated with the mean rainfall in CRb. The mean values over
areas correlated with 95% statistical significance (Fig. 1) were used as input in the downscaling procedure. Data from four
summer seasons (Jun-Aug 1996-1999; 717 values) were used.

S0E

40E

30E

Fig.1 Correlation fields representing the covariance between mean rainfall in Chikugo River basin and GPV variables:
a) precipitable water, b)zonal, and c) meridional wind speed (at 850 hPa). Shading denotes 95% statistical significance.

2.2 Methodology -Artificial neural networks-

An artificial neural network (ANN) is a flexible mathematical tool for identifying and utilizing complex and nonlinear
relationships between data sets. An ANN meodel is usually made up of a number of layers of processing elements (neurons)
with multiple connections between the elements of each layer. Information enters through the input layer of theANN, is passed
through hidden layers which have weighted connections, and is transformed by means of particular transfer functions. The
response of the ANN for a particular input is produced in the output layer.

In the present experiments, feedforward ANNs were trained by a backpropagation algorithm for the determination of ANN
parameters (weights and biases). The ANNs consisted of an input layer with three neurons representing the three
meteorological variables described in Section 2.1, an output layer with one neuron representing the mean rainfall in CRb, and in
between hidden layers whose number and sizes were optimized (sce below). To every neuron was allocated a log-sigmoid
transfer function having a continuous output confined between zero and one.

We used the first 75% of the data (1996-1998) for ANN calibration and the last 25% (1999) for independent validation. A
common problem when calibrating ANNs is so-called overfitting, which means that the ANN adjusts to noise in the data and
becomes poor at generalizing to other data sets. To avoid overfitting, the calibration set was divided into one training set (80%)
and one testing set (20%). During calibration, (1) the training set was used to repeatedly adjust the values of weights and biases
so the output of the ANN becomes as close as possible to the target values, i.e., the actual mean CRb rainfall during the
training period, and (2) ANN performance for the testing set was continuously checked, and when this performance started to
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decrease training was stopped. Performance was mainly assessed by comparing ANN output and actual target in terms of the
correlation coefficient (cc) and root mean square error (rmse).

Due to the frequent presence of dry periods, i.e., 12-hour periods during which it did not rain, using the original rainfall time
series as ANN target creates two main problems: (1) the ANN usually produces a small rainfall during actual dry periods,
leading to an underestimated probability of dry periods, P(0), and (2) the ANN generally underestimates the most intense peaks
which are few and thus difficult to make the ANN fully reproduce. Attempting to overcome these problems, we use two ANNs
in series. The first (ANN1) is trained to determine whether it will rain or not, and the second (ANN2) to determine the intensity
of rainy periods. The idea behind this approach is that ANN1 will produce an accurate value of P(0), and ANN2 will have a .
better chance to reproduce high intensities.

Another usual difficulty when using ANNSs is output variability. Particularly when using ANNs with only one or a few
hidden layers and a small number of nodes in each layer, training becomes very sensitive to the initial values of the ANN
weights and biases (which are essentially randomly assigned). Consequently, some trained ANNs will perform better than
others, and a screening procedure is required to select the best ones. For this purpose we calibrated the ANN 25 times, each
time with different initial parameters. For each calibrated ANN, performance for the whole calibration period was assessed,
and the five ANNs with the highest performance were selected. The final ANN output for the validation period was the mean
values of the validation period output from the selected ANNs. A critical issue in ANN applications is to optimize the number
of hidden layers and the number of neurons in each layer. If too many layers and neurons, the ANN may easily overfit; if too
few, the ANN may not be able to reproduce the full variability in the data. We tested using both one and two hidden layers
with up to eight neurons in each layer. The best result was obtained using one hidden layer with two neurons in ANN1 and one
hidden layer with four neurons in ANN2.
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2.3 Results :

Table 1 indicates a typical example of ANN1 output for the validation periods. The outputs of ANN1 are 1 or 0. These
indicate that it will rain or not. The probability of the hit number of the validation periods was 0.77. Table 2 indicates the
performance of the ANN2(only rain periods). Fig.2 shows the time series of output from the two ANN combined model
(ANN1+ANN2 model) for validation period, compared with the observed mean CRb rainfall. From these results,
ANN1+ANN2 can well identify when rainfall occurs or not, but is not able to fully reproduce the variability of rainfall
amounts. The model tends to often generate a similar rainfall amount, less than 20 mm, which means that large observed
amounts become underestimated and small amounts overestimated. This is probably related to the small number of layers and
neurons that had to be used, more data would be required to use a larger ANN that could better reproduce the rainfall
variability. Table 3 indicates the performance of the ANN1+ANN2.

Table 2 The typical performance for ANN2, respectively, in terms of
correlation coefficient (cc), root mean square error (rmse) of rain periods.

Table 1 Output from ANN1, compared with the observed mean
CRb, rainfall (rain or not rain). Hit number indicates the count
of CRb= 0 and ANN1= 0 (70), as well as, the count of CRb=1

and ANN1= 1 (57). Hit rate indicates the ratio of the hit number Validation cc rmse
between CRb and ANNT1. (0.77 indicates the probability of the
hit number of the whole validation periods.) ANN2 0.55 18.1

Validation CRb | ANNT | hit number | hit rate Table 3 Average performance for the ANN1+ANN2, respectively, in
Count of 0 94 85 70 0.75 terms of correlation coefficient (cc), root mean square error (rmse)and
Count of 1 71 80 57 0.80 probability of dry periods (P(0); the observed P(0) is 0.57) of whole
iods.
Sum of data points| 165 | 165 127 0.77 periods S—
Validation cc rmse P(0)
ANNT+ANN2 | 0.57 129 0.51
3. Conclusions 100
On'th.e basis of the present expeFiments, ANN-based o | ANN1+ANN2
statistical atmospheric downscaling appears to be a useful to '
rainfall prediction by numerical weather prediction. The e v |77 CRb
ANN-based statistical method is relatively simple, but has 70
the output accuracy comparable to the more advanced 60 |

physically based model. However, it is clear that the design,  gq, |
training, and application of the ANNs are very important for

the method to be successful. For further studies, need to o
establish the applicability of the approach, for example, for 30
other seasons and other geographical locations. 20 f
10 ‘
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Fig.2 Time series of output from ANN1+ANN2 model, compared
with the observed mean Chikugo River basin rainfall.
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