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A B S T R A C T

The predictions made using rainfall-runoff models are inherently uncertain and it is important to recognize and
account for this uncertainty, especially in urban watersheds due to the high flood risk in these areas. Recent
studies on hydrological model uncertainty mostly refer to the identification of model parameter uncertainty.
However, such studies are somewhat limited using the bootstrap approach, a nonparametric method which
makes less prior assumptions on the model structure and thus is more flexible. Hence, a residual-based bootstrap
approach associated with the SCE-UA global optimization algorithm is demonstrated in this study for the ana-
lysis of calibrated parameter uncertainty and its subsequent effect on the model simulation of an urban-specific
rainfall-runoff model, urban storage function (USF) model, under two different data scenarios of individual
event-based and whole data-based scenarios. Initially, the parameter uncertainty was expressed by estimating
the confidence interval (CI) of the USF model parameters obtained from bootstrapping and then the parameters
from the highest to the lowest uncertainties were derived by utilizing two newly proposed parameter uncertainty
indices which can make the best use of CI. Moreover, investigations on the effect of calibrated parameter un-
certainty on model simulations revealed that the model was able to bracket most of the observations within the
prediction range of considered scenarios. This further indicates that the residual-based bootstrap approach along
with the SCE-UA method reasonably well predicted the uncertainty range of the USF model. For a better un-
derstanding of simulation uncertainty, we defined and demonstrated two model simulation uncertainty indices
and these indices could be useful in future studies to analyze the simulation uncertainty of different rainfall-
runoff models in the watersheds worldwide.

1. Introduction

In urban watersheds, the urban areas occupy most of the basin from
upstream to downstream and are under constant development in terms
of buildings, roads, other infrastructures, etc. (Kawamura, 2018). There
is no specific definition of urban watersheds quantitatively in terms of
the threshold urban area. However, according to Kjeldsen (2010) and
Salavati et al. (2016), the watersheds with an urban area percentage
greater than 15% can be considered as urban watersheds. The modeling
of urban watershed processes is complicated due to the increasing
complexities of the urban hydrologic system, that can be attributed to
urbanization, rapid population growth, model scale, etc. (McPherson
and Schneider, 1974). Urbanization is a radical form of land-use change
and will replace the natural land-use with impervious surfaces and

storm drainage system (Kjeldsen, 2010). This further inhibits the nat-
ural infiltration capacity and reduces the lag time. The other hydro-
logical impacts of urbanization can be listed as the increase of low re-
turn period floods more than the high return period floods, increase in
drainage density and channel cross-sectional area, flashiness of storm
flow, etc. (Graf, 1977; Hollis, 1975). These changes alter the runoff
process significantly and accelerate the rainfall-runoff transformation
process which could lead to higher and rapid flood flows (Hollis, 1975;
Salavati et al., 2016). In addition, the urban watersheds face constant
and drastic changes in terms of frequent occurrence of high intensity
rainfall due to the heat island phenomena (Bornstein and Lin, 2000),
leakage from the water distribution system, increased flood and in-
undation risk (Suriya and Mudgal, 2012), increase in human settlement
and associated activities, removal of vegetation and natural storage,
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etc. (Amaguchi et al., 2012; WMO, 2008).
In contrast to urban watersheds, the percentage impervious areas as

well as the installed sewer system density is either very low or absent in
rural watersheds and will undergo slow and steady changes of hydro-
logic and hydraulic characteristics. They will retain a significant
amount of rainfall due to the presence of natural land-use (Hollis, 1975;
Sheng and Wilson, 2009) and will substantially decrease the peak dis-
charge and increases the flood duration (Sheng and Wilson, 2009).
Further, Oudin et al. (2018) analyzed the effect of distance of urban
areas from the catchment outlet on runoff response and the results re-
vealed that the location of urban areas has a secondary effect compared
with the percentage impervious surfaces. Hence, the corresponding
flood risk will be moderate in rural watersheds although it includes
urban areas at the outlet due to the relatively low population and set-
tlements it accommodates. Therefore, it is very important to detect
urban flood flows compared to those in rural areas as they are asso-
ciated with increased risks and costs (Mason et al., 2012). For this
purpose, the rainfall-runoff models are important tools and they play a
central role in urban watersheds (Padiyedath et al., 2018a).

However, the predictions made using rainfall-runoff models are
inherently uncertain. The uncertainties in the modeling mainly arise
from parameter uncertainties, measurement errors associated with the
input data, and from model structure errors arising from the aggrega-
tion of spatially distributed watershed processes into a relatively simple
runoff model (Sivakumar and Berndtsson, 2010). The models which are
not parameterized properly or lack input data of reasonable quality
could provide an inaccurate representation of the actual hydrological
processes (Shrestha, 2009). Generally, the effectiveness of a model in
providing a good prediction of the hydrological processes is mainly
determined by its parameter values (Jeremiah et al., 2012). Therefore,
the model parameter uncertainty has received a prime recognition over
other sources of uncertainties in the field of hydrological modeling and
recent studies on hydrological model uncertainties mostly refer to the
identification of parameter uncertainty (Uhlenbrook et al., 1999) or
parameter calibration (Ajami et al., 2004) and their impacts on the
model simulation results (Freer et al., 1996). Traditionally, model
parameters have been quantified from watershed properties or theo-
retically analyzed by comparing with similar models (Li et al., 2010).
However, since the introduction of computer-intensive statistics, the
parameters are being estimated by calibrating the models against ob-
served data even though it increases the efforts and costs taken for the
data measurements required for calibration and validation. However,
this calibrated parameters are influenced by factors such as quantity
and quality of input data, model error, correlation between the para-
meters, etc. (Duan et al., 1992) which will lead the parameter estimates
to deviate from their underlying true values (Ebtehaj et al., 2010) thus
leading to a great level of uncertainty of parameters, and cannot fully
characterize the actual processes.

Different quantity and quality of input data used for calibration may
provide quite different optimum parameter sets, and the resulting
parameter distributions would reflect the uncertainty in the parameter
estimates and the interaction between the individual parameters
(Beven, 1993). Generally, the hydrologists calibrate their models with
all the available data (e.g. Vaze and Teng, 2011) to get the more robust
parameter set. However, several studies analyzed the effect of input
data quantity on parameter uncertainty by calibrating the model for
different sub periods of all available data. KlemeŠ (1986) proposed a
framework to evaluate the model transposability over time by cali-
brating the model for a selected sub period and validating in another
period different from that used for parameter calibration. Later,
Jakeman et al. (1993) investigated the parameter fluctuations and as-
sociated uncertainties in model predictions for variable climatic con-
ditions by calibrating a lumped rainfall-runoff model for sub periods.
Recently, Vaze et al. (2010) analyzed the transposability of four rain-
fall-runoff models to a changing climatic scenario different from those
used for parameter calibration and they found that the model

performance was affected by the calibrated parameters. Subsequently,
Poulin et al. (2011) studied the effects of model structure and para-
meter equifinality on the model simulation uncertainty in a climate
change impact perspective. Soon after, Merz et al. (2011) examined the
parameter time stability of a conceptual model by calibrating the model
in different sub periods. Moreover, Coron et al. (2012) also analyzed the
parameter time variability of three hydrological models using the split
sample test and its effect on the model simulation. Thereafter, Brigode
et al. (2013) investigated the dependence of the optimal parameter set
on the climate characteristics of the calibration period and the results
revealed that the dependence can contribute variability in streamflow
projections.

However, the calibrated parameters often have no measurable re-
ference in nature (Bellprat, 2013). Therefore, the major concern which
arises is that what confidence bounds can be placed on the calibrated
parameters for a given period, where the different sources of un-
certainty is mainly arising from observational (with different input data
quality) and model parameterization errors and how do these un-
certainties affect the hydrologic simulations (Ebtehaj et al., 2010). This
parameter uncertainty further contributes to model simulation un-
certainties, but to what extent is unknown. Hence, its quantitative
evaluation is critical in reducing the uncertainty of these simulations.
Recent researchers have paid more attention to these uncertainties and
many uncertainty analysis techniques have been developed and applied
to different catchments in the past decades (Yang et al., 2008). Most of
these techniques rely on either parametric methods or Bayesian
methods (Selle and Hannah, 2010; Yang et al., 2008). The most tradi-
tional parametric methods used for the assessment of model parameter
uncertainty are the linear analysis (first-order approximation) by pro-
viding a rough confidence interval (CI) of parameters (Kuczera, 1988),
nonlinear constrained maximization or minimization, etc. (Gallagher
and Doherty, 2007). However, in the parametric method, the structure
of the model is specified a priori and the number and nature of the
parameters are generally fixed in advance, and there is a little flexibility
(Sivakumar, 2017). Since the advances in computer technology, the
Monte Carlo approaches with a Bayesian inference have become pop-
ular due to their ability to handle nonlinearity and interdependency of
parameters in complex hydrological models (Li et al., 2010). The other
methods based on Bayesian approaches are Generalized Likelihood
Uncertainty Estimation (GLUE) (Beven and Binley, 1992; Hornberger
and Spear, 1981), Sequential Uncertainty Fitting algorithm (SUFI)
(Abbaspour et al., 1997, Abbaspour et al., 1999), etc. Still, the Bayesian
technique requires the form specification of the error distribution for
response variables (Selle and Hannah, 2010). Hence, the nonparametric
methods have the advantage that they make less prior assumptions on
error structures and, thus, are potentially more flexible.

The bootstrap method, a nonparametric technique, has been de-
veloped by Efron (1979) for random resampling of the original data set
to develop replicate data sets from which the underlying distribution of
the statistics of interest such as mean, variation, correlation, etc. can be
estimated (Sivakumar, 2017). This resampling technique has applica-
tions in diverse fields like hydrology, groundwater hydrology, air pol-
lution modeling, toxicology, etc. (Dixon, 2006), where it has been
successfully used in hydrological modeling to design storms from ex-
ceedance series, to develop artificial neural network (ANN) model, to
estimate the sampling variability of reconstructed runoff, etc. (Jeong
and Kim, 2005; Sun et al., 2013; Zucchini and Adamson, 1989) by
utilizing non-time series data. However, the outcome from the rainfall-
runoff models is the time-series hydrograph, and hence the time series
application of the bootstrap method becomes necessary. Sophisticated
approaches have been developed for this purpose and has been ex-
tensively used for the trend analysis of temperature and streamflow
time series, generation of synthetic streamflow sequences that are used
in simulation studies, forecasting of low flow frequency, uncertainty
assessment of water quality trends, etc. (Hirsch et al., 2015; Lall and
Sharma, 1996; Önöz and Bayazit, 2012; Sonali and Nagesh Kumar,
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2013; Srinivas and Srinivasan, 2005; Tasker and Dunne, 1997). How-
ever, use of the bootstrap technique for model parameter uncertainty
analysis by employing the time series data appears to be quite narrow
until recently and very limited studies have been conducted to quantify
the calibrated parameter uncertainty of rainfall-runoff models using
this technique. Ebtehaj et al. (2010) introduced a nonparametric block
bootstrapping approach coupled with global optimization to estimate
the parameter uncertainty resulting from uncertainty in the forcing data
and evaluate its impacts on the resulting streamflow simulations. Later,
Selle and Hannah (2010) demonstrated a model based bootstrap and
compared the results with the block bootstrap approach for the para-
meter uncertainty of abc hydrological model and a conceptual salt load
model. The bootstrap approach also seems to have been used for the
analysis of parameter uncertainty of SWAT model (Li et al., 2010;
Zhang et al., 2014). Further, Brigode et al. (2014, Brigode et al., 2015)
analyzed the effect of different rainfall-runoff calibration periods and
information contained in the calibration period on extreme flood esti-
mations using the block bootstrap method. The uncertainty studies
conducted using the SWAT model for different catchments reported that
the parameter uncertainty and its effect on model simulation un-
certainty vary from catchment to catchment even for the same model
(Li et al., 2010; Zhang et al., 2014). Therefore, there is a need to carry
out such studies in different types of watersheds worldwide under
varying agro-climatic conditions with different rainfall-runoff models.

In light of the aforementioned discussions, it is apparent that very
few studies have been conducted for model parameter uncertainty
analysis using the bootstrap method. Among these, none of the studies
have been carried out in urban watersheds, particularly using the urban
storage function (USF) model (Takasaki et al., 2009), a relatively new
storage function (SF) model specially developed for urban watersheds
where combined sewer systems are in use. Hence, an attempt has been
made to explore the use of bootstrap resampling to evaluate the un-
certainty of optimal parameter estimates that arise due to uncertainties
in the input data using a case study in the upper Kanda river basin, a
typical small to medium sized urban watershed in Tokyo, Japan. Pre-
vious studies on model parameter uncertainty analysis using bootstrap
approach were conducted using all the available data instead of in-
dividual flood events since the hydrologists were mainly interested in
the estimation of catchment hydrological variables such as peak flow,
flood volume, etc. with utmost accuracy and reliability. The flood-
runoff analysis in urban watersheds is generally event based due to the
relevance of flash flood peak estimation and short time of concentra-
tion. Therefore, the bootstrap approach was applied in this study to
both the individual flood events and the whole events in order to de-
monstrate the impact of different available data scenarios on the un-
certainty behavior of calibrated parameters. Additionally, two types of
new indices have been proposed for the detailed analysis of uncertainty
involved in the model parameters and model simulations.

2. Methodology

2.1. USF model

The USF model is an SF model (Hoshi and Yamaoka, 1982; Kimura,
1961; Prasad, 1967) developed for the urban watersheds by in-
corporating the outflow from the basin to the treatment plant through
the combined sewer system. The model is based on the relationship
between rainfall over the basin and runoff at the outlet point and is
governed by the following equation (Padiyedath et al., 2018a; Takasaki
et al., 2009):

= + + +s k Q q k d
dt

Q q( ) ( )R
p

R
p

1 21 2
(1)

where s is the watershed storage (mm); Q is the river discharge (mm/
min); qR is the storm drainage from the basin through the combined
sewer system (mm/min); t is the time (min); and k k p p, , ,1 2 1 2 are the

model parameters. Combining the above expression of storage with the
following continuity equation yields the nonlinear expression of the
USF model.

= + − − − + −ds
dt

R I E O Q q q( )R l (2)

where R is the rainfall (mm/min); I is the urban-specific and ground-
water inflows from other basins (mm/min); E is the evapotranspiration
(mm/min); O is the water intake from the basin for intended purposes
such as water supply, agricultural needs, etc. (mm/min); and ql is the
groundwater-related loss (mm/min). Groundwater-related loss (ql) was
defined by considering the infiltration hole height (z) and is given by
the following equation (Padiyedath et al., 2018a; Takasaki et al., 2009):

= ⎧
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where k3 and z are the parameters. The expression for storm drainage
qR from the combined sewer system discharged out of the basin was
developed by assuming a linear relationship between total discharge

+Q qR and the storm drainage qR immediately after the rainfall. The qR
is defined (Padiyedath et al., 2018a; Takasaki et al., 2009) as follows:

= ⎧
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where α is the slope of the linear relationship between total discharge
+Q qR and the drainage qR, and Q0 is the initial river discharge just

before the rain starts. The maximum volume of qR cannot exceed the
sewer maximum carrying capacity qRmax. Substituting Eqs. (1) and (3)
into (2) leads to a second-order ordinary differential equation (ODE)
and can be numerically solved after transforming into a first-order ODE.
The river discharge Q was obtained as the solution after subtracting qR,
which was calculated using Eq. (4), from the total discharge. Overall,
the USF model is a seven-parameter model with parameters
k k k p p z, , , , , ,1 2 3 1 2 and α used in the rainfall-runoff modeling. For a
detailed description of the USF model, see Takasaki et al. (2009) and
Padiyedath et al. (2018a).

2.2. Model calibration and validation

The Shuffled Complex Evolution-University of Arizona (SCE-UA)
method proposed by Duan et al. (1992) was used to calibrate the USF
model. It is a well-known global optimization strategy developed for the
effective and efficient calibration of the watershed models by opti-
mizing a single objective function for up to 16 parameters (Duan et al.,
1992; Green and Van Griensven, 2008). This method combines a sim-
plex method with the concept of controlled random search for the
competitive evolution of the population with complex shuffling. The
algorithmic parameters of SCE-UA method were selected as per the
recommendations of Duan et al. (1993). In the first step of the method,
it generates an initial population as the first generation by random
sampling from the feasible parameter space, which was defined by
setting the lower and upper search range for p number of parameters to
be optimized. From the second generation onwards, this population is
partitioned into several complexes, each of which is permitted to evolve
independently. Size of the population produced in each generation was
decided based on the number of parameters in the target model. The
number of complexes, C , was set equal to 20 and the number of po-
pulations in each complex, = +r p2 1. The objective function to be
minimized using the SCE-UA method was selected as the root mean
squared error (RMSE) between the observed and simulated discharge.
Common use in hydrological modeling and simplicity were the reasons
for the selection of RMSE as the objective function (Ebtehaj et al., 2010;
WMO, 1992). The calibrated parameters are functionally dependent on
the length and properties of the calibration data, objective function
used for calibration, etc. and these factors subsequently affect the
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model simulations. The seven parameters of USF model are shown in
Table 1 with their descriptions and search range used in the SCE-UA
parameter optimization method (Padiyedath et al., 2018a; Takasaki
et al., 2009). A narrow search range will constrain the parameters and
the calibrated parameters will not reflect the actual watershed char-
acteristics. Therefore, a wide search range was defined, instead of a
narrow one by considering the possible physical minimum and max-
imum parameter values. The model calibration was conducted using
three data scenarios: (i) whole data-based scenario where all the
available events were used for the model calibration, (ii) individual
event-based scenario where individual flood events were used, (iii)
leave-one-out scenario where leaving out each flood event at a time
from the all available events and calibrating on the remaining events.
The model performance during calibration was analyzed by simulating
the flood events using the whole data-based and individual event-based
parameters.

The performance of a model derived from the calibration data set is
insufficient evidence for its satisfactory performance since no simula-
tion model is intended merely to show how well it fits the data used for
its development. Thus the data used for model validation should be
different as those used for calibration but must represent a situation
similar to that for which the data are to be generated (KlemeŠ, 1986).
Therefore, to test the operational performance of the model, we have
used the calibrated parameters from the individual event-based sce-
nario and the leave-one-out scenario. The available flood events are
split into two segments in which the first segment consists of one flood
event at a time and the second segment is comprised of the remaining
flood events. The calibrated parameters of the individual event-based
and leave-one-out scenarios from the second segment are used to va-
lidate the model on the first segment. For example, event 1 forms the
first segment and the second segment is composed of the remaining
flood events (events 2–5). The calibrated parameters of individual
events 2–5 (four parameter sets) and the whole events except 1 (one
parameter set) are used to validate the event 1. This calibration was
repeated by leaving out the subsequent flood event (one at a time) from
the available events.

2.3. Residual-based bootstrap method

The classical idea behind the bootstrap method is the resampling
and extraction of M samples from the original data with an unknown
distribution having a size of N. This method makes no assumptions
concerning the distribution of data or model being used. The M boot-
strap samples can provide the best knowledge regarding the underlying
true distribution of the sample. However, the use of bootstrap for time
series data was limited because the classical bootstrap technique as-
sumes that the data set is independent and identically distributed (iid)
(Efron, 1982), which means each data of the data set will be mutually
independent and selected from the same population. Generally, the
time series data sets are highly dependent in nature and it is quite
unreasonable to perform classical bootstrapping as it destroys the

original dependency structure of the time series. In order to overcome
the problem of dependence of time series, the bootstrap method can be
extended either as a block bootstrap (Davison and Hinkley, 1997;
Künsch, 1989), in which the time series is divided into different blocks
and these blocks are resampled instead of the individual data value or
as a model based bootstrap (Lahiri, 2003; Selle and Hannah, 2010),
which adopts a specific time-series form of dependence. In Selle and
Hannah (2010), they considered a first-order autoregressive model to
consider the dependence of model error rather than assuming it is in-
dependent. However, a modification of this approach, which can be
simpler to apply in practice, is to construct the bootstrap samples as
fitted values plus residuals, where the residuals are sampled with re-
placement from the observed distribution of residuals. This method is
known as the resampling of residuals (Shalizi, 2016; Shao and Tu,
1995) (hereafter residual-based bootstrap).

The residual-based bootstrap approach was used to generate sample
estimates of the hydrologic model parameters corresponding to the
calibrated data set and to quantify the associated uncertainties. In this
method, first we calibrate the model, and then simulate by resampling
residuals to that estimate and adding them back to the fitted values
(Shalizi, 2016). This surrogate data set is then re-analyzed like a new
data set. By repeating the procedure M times, bootstrapped time series
are generated and the hydrologic model is then calibrated using each
bootstrapped time series, to arrive at bootstrapped estimates of the
calibrated parameter sets. These estimates are further used for the
confidence interval analysis of the model parameter estimators. How-
ever, the residual-based bootstrap method is usually based on some
model assumptions although it requires no theoretical formula for the
quantity to be estimated and is less model-dependent than the tradi-
tional approach (Shao and Tu, 1995). The general assumptions for
performing the residual-based bootstrap are given as,

(1) The residuals are independent of each other.
(2) The residuals are identically distributed.
(3) The residuals are homoscedastic.
(4) The residuals are a good approximation of the observed data and

model structure error.
(5) The residuals are randomly selected from their population with

equal probability.

The procedure for the residual-based bootstrap, explained by Stine
(1985) and others (Shalizi, 2016; Shao and Tu, 1995), is described as
follows. Consider the original data set X N Q N{ ( ), ( )}; where X N( ) is the
input data, Q N( ) is the observed discharge data, and N is the data
length. The observed discharge can be written as a function,

= +X θQ N F ε N( ) ( , ) ( ) where = …X X X N(1), ., ( ), θ is the parameter
vector …θ θ, . p1 with p being the number of model parameters, and ε N( )
is the model residuals. Initially, the model was calibrated using the SCE-
UA method to obtain the calibrated parameter vector θ ̂ which was
further used along with the input data to compute the model calibrated
discharge data, ̂ = X θQ N F ̂( ) ( , ), which can be demonstrated as

̂= +X θQ N F ε N̂( ) ( , ) ( ). Thereafter, the model residuals can be ex-
pressed using the following equation.

̂ ̂= − = − X θε N Q N Q N Q N F ̂( ) ( ) ( ) ( ) ( , ) (5)

The model residuals, ̂ε N( ), were assumed to be iid for all N , which
is one of the assumptions made for the bootstrapping (Stine, 1985).
Julian and Gardner (2014) examined the effect of land cover on runoff
patterns and the results revealed that increases in urbanization caused a
decrease in long-term hydrologic memory. In urban watersheds, the
impervious surfaces decrease water storage, which is the predominant
factor that affecting long-term hydrologic memory, and the runoff be-
came flashier (Julian and Gardner, 2014). This flash flood decreases the
watershed hydrologic memory. Therefore, the resulting model residuals
of urban watersheds can be assumed to hold low memory due to the

Table 1
Description and search range of USF model parameters.

Parameter Definition Search range

k1 Physical watershed characteristics (Sugiyama et al.,
1997)

[10, 500]

k2 Loop relationship between the storage and discharge
(Prasad, 1967)

[100, 5000]

k3 Groundwater related loss [0.001, 0.05]
p1 Index of flow regime (Sugiyama et al., 1997) [0.1, 1]
p2 Non-linear unsteady flow effects (Hoshi and

Yamaoka, 1982)
[0.1, 1]

z Infiltration hole height [0, 50]
α Effect of storm drainage diverted to the treatment

plant
[0.1, 1]
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quick runoff response resulted from the increased percent of impervious
surfaces. The detailed residual-based bootstrapping procedure is out-
lined as follows:

(1) Bootstrap resampling of the residual time series ̂ε N( ) with re-
placement to form new bootstrapped residual series, ̂ε N( )j , where

= …j M1, , .
(2) Add the new bootstrapped residual series, ̂ε N( )j to the calibrated

discharge data ̂Q N( ) to form the bootstrapped discharge series as
̂ ̂= +Q N Q N ε N( ) ( ) ( )j j . This bootstrapped discharge series will

form the replication of the observed discharge series.
(3) Calibrate the bootstrapped discharge series, Q N( )j with input data

set, X and obtain the jth bootstrapped parameter vector θ ̂ j using
SCE-UA method and the associated simulated discharge series

̂ = X θQ N F ̂( ) ( , )j j . By this way, the model can be re-fitted to each
bootstrapped discharge series, Q N( )j yielding ‘bootstrap estimates’
of model parameters.

(4) Derive the ordered bootstrap estimates ̂ ̂= …θ θ θ p̂ (1), , ( )j j j
ob-

tained after the bootstrap resampling method. Then, the 95% CI for
θ ̂ j was estimated from the ordered bootstrap samples.

The essential idea of this bootstrap approach is that the pseudo
replicate samples (bootstrap samples) drawn at random with replace-
ment from the data can be used to furnish information about the un-
certainty of quantities estimated from the data (Selle and Hannah,
2010). The precision of a bootstrap estimate depends on the number of
times the original data set is randomly resampled (i.e., how many
bootstrap replicates). The bootstrap estimate converges to a consistent
range of values as the number of resamples become large by the law of
large numbers (Meyer et al., 1986). Efron and Tibshirani (1993) sug-
gested that the number of bootstrap samples should be at least 1000.
Therefore, all the computations performed in this study were based on
1000 bootstrap replicates (M=1000) from which the confidence in-
tervals for the original corresponding parameter estimates can be cal-
culated. This method has asymptotic convergence properties which
means that by increasing the number of simulated bootstrapped time
series, estimation error will be reduced (Ebtehaj et al., 2010). The
whole data-based and individual event-based scenarios described in
Section 2.2 were used to perform the residual-based bootstrapping in
order to identify the parameter fluctuation under the varying conditions
of available data scenarios.

2.4. Model parameter uncertainty quantification

The performance of hydrological models is significantly affected by
the calibrated parameter uncertainty. The parameter uncertainty is
generally expressed by estimating the CI of the parameters. However,
the CI gives the uncertainty range of each parameter from which it is
difficult to identify the parameter with the highest and least uncertainty
due to the different ranges of parameter values. Therefore, it is neces-
sary to propose certain indices which can interpret the CI of parameters
with different ranges and clearly differentiate them based on their
contribution to the uncertainty. Therefore, in addition to the statistical
estimators of the mean (θ̄), median (θ5̂0), and the coefficient of variation
(CV) of the M parameter sets from bootstrapping method, two indices
were proposed for assessing the uncertainty of model parameters
(model parameter uncertainty indices), which can elucidate the CI in a
better way. Here, the indices are considering the individual parameters
rather than the parameter vector in order to derive the parameters from
the highest to the lowest uncertainty (Selle and Hannah, 2010). The
first parameter uncertainty index (PUI1) utilizes the width of the CI and
hence the parameter with a small index value will be less uncertain as
compared with other parameters. The second parameter uncertainty
index (PUI2) compares the median value from the confidence region
with the calibrated parameter vector θ ̂ and it should be minimum for

the stability of the parameters. The model parameter uncertainty in-
dices are given as,

̂ ̂
̂⎜ ⎟= ⎛

⎝

− ⎞

⎠
×PUI i θ i θ i

θ i
( ) ( ) ( )

( )
1001

97.5 2.5

(6)

̂ ̂
̂= − ×PUI i θ i θ i

θ i
( ) ( ) ( )

( )
1002

50

(7)

where ̂θ97.5 is the 97.5th percentile; ̂θ2.5 is the 2.5th percentile; and ̂θ50 is
the 50th percentile (median) for the ith parameter obtained from
bootstrapping. ̂θ is the calibrated parameter.

2.5. Model simulation uncertainty

The model simulation uncertainty is referred to as the uncertainty of
simulated discharge, ̂Q j, which occurs due to the calibrated parameter
uncertainty, and is illustrated as the 95% CI of simulated discharge
series by the model. This 95% CI should envelope most of the ob-
servations and at the same time, it is desirable to have a narrow en-
velope (Swain and Patra, 2017). P-factor is a statistical term used for
the assessment of model simulation uncertainty and is calculated as the
percentage of original discharge data at each time step that lies within
the 95% CI (Yang et al., 2008). The value of the P-factor ranges between
0 and 100% and the goodness of model simulation uncertainty is judged
based on the closeness of P-factor to 100% (i.e., all observations
bracketed within the 95% CI). The P-factor is computed as follows:

− = ×P n Nfactor ( / ) 100 (8)

where n is the number of original observed discharge values at each
time step that are bracketed within the 95% CI. In addition to the P-
factor, two other indices have been proposed for assessing the un-
certainty of model simulated discharge (model simulation uncertainty
indices) by utilizing the 95% CI similar to the model parameter un-
certainty indices. The model simulation uncertainty indices (SUI) are
given below.

̂ ̂
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×
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Q t Q t
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where ̂Q t( )97.5 , ̂Q t( )2.5 , and ̂Q t( )50 are the 97.5%, 2.5%, and 50% levels
of the cumulative distribution of the model simulated discharge series
respectively. Q t( ) is the observed discharge data.

2.6. Rainfall spatial variability

Usually, the characteristics of rainfall events are spatially dis-
tributed and different from others even for the same watershed due to
the effect of several meteorological factors which will result in the
different parameter values. Moreover, there will be an interaction be-
tween the spatial variability in rainfall and the spatial storage dis-
tribution which controls the discharge. The discharge response at the
outlet point to an averaged input will differ significantly from that to a
distributed input (Shah et al., 1996). High spatial variability of rainfall
in the basin can affect the runoff prediction capability of USF model
since it uses the average basin rainfall. Therefore, further analysis was
carried out to have a clear understanding about the extent of spatial
variability of rainfall in the watershed by computing the percentage
variation of total rainfall obtained from each rain gauge with respect to
the mean rainfall from all the gauges. The percentage variation can be
computed using the following formula.

= −variation i TR TR
TR

% ( )
¯

¯
i

(11)
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where TRi is the total rainfall from gauge i (mm), and TR̄ is the mean
rainfall from all the gauges (mm).

3. Study area and data used

The urban watershed of the upper Kanda River basin, having an
area of 7.7 km2 at Koyo Bridge as shown in Fig. 1, was selected for the
study. The basin lies between latitudes 35.70° N and 35.64° N and
longitudes 139.56° E and 139.64° E in Tokyo, Japan, with an urbani-
zation rate of 97% since 2003 (TMG, 2016). The river originates from
the Inokashira pond and joins the Zenpukuji River and flows east (Ando
and Takahasi, 1997). The drainage pattern follows the combined sewer
system and 100% of the population is connected to the sewer. The
urban landscape GIS delineation was used to precisely estimate the
impervious area percentage as 68% (Koga et al., 2016), that sig-
nificantly reduced the water retention capacity of the basin. The com-
puted time of concentration of surface runoff from the upstream reaches
to the watershed outlet was about 30min. The reduced time of con-
centration indicated that the river discharge will occur immediately
after the rainfall within a short period and it is desirable to use the
hydrological data at very short time intervals for the rainfall-runoff
analysis. Therefore, rainfall and water level data at one-minute inter-
vals were collected from the Bureau of Construction, Tokyo Me-
tropolitan Government (TMG) during 2003–2006 for the present study.

The average rainfall of the basin was determined using the Thiessen
polygon method from the eight rain gauges scattered over the basin, as
shown in Fig. 1. Five target events, whose 60-minute maximum rainfall
(R60) was greater than 30mm and were capable of producing flash
floods, were selected from the data. Table 2 shows the characteristics of
the five selected rainfall events. The inflow component I in the con-
tinuity equation was fixed at 0.0012mm/min, based on the annual
report of the Bureau of Construction, TMG. The water intake O from the
basin and evapotranspiration E were set at 0 as there was no intake
from the target basin and the evapotranspiration during heavy rainfall

Fig. 1. Index map of (a) Japan, (b) Kanda river basin in Tokyo and (c) target watershed – upper Kanda river basin at Koyo Bridge.

Table 2
Characteristics of the five selected events.

Event No. Event date R60
†

(mm)
Total R‡

(mm)
Meteorological factors

1 13-10-2003 53.9 57.5 Intensive localized storm
2 25-06-2003 42.6 46.2 Frontal rainfall
3 8~10/10/

2004
42.0 261.1 Typhoon

4 11-09-2006 32.7 37.9 Frontal rainfall
5 15-07-2006 31.5 31.5 Frontal rainfall

† R60 is the 60-minute maximum rainfall.
‡ R is the rainfall.
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is insignificant (Padiyedath et al., 2018b). The maximum storm drai-
nage, qR max was estimated as 0.033mm/min using Manning’s equation.

4. Results and discussion

4.1. Model calibration and performance

The SCE-UA optimization method was applied for calibrating the
USF model in the target watershed with RMSE as the objective function

for the considered data scenarios discussed in Section 2.2. In the whole
data-based scenario, all the selected events were considered for model
calibration and a single set of parameters was derived from all the
events. On the other hand, in the individual event-based scenario, each
event was considered for model calibration. The leave-one-out scenario
leaves out one flood event at a time and calibrating on the remaining
events. The convergence of parameters was checked and the parameters
were found to converge before the 50th generation in each SCE-UA
application run. Thereafter, the best parameter set, θ ̂, among the po-
pulation at the 50th generation with a minimum RMSE value was used
for the further simulations.

Fig. 2 shows the calibrated model parameters using the considered
data scenarios in which the whole data-based parameters are re-
presented by a black line, and the individual event-based and leave-
one-out parameters are depicted by the blue circles and red triangles
respectively. It is clear from Fig. 2(a) and (g) that the individual event-
based parameters k1 and α are identical in all the events and are similar
to the whole data-based parameter values. Also, the parameters k2 and
p1, as shown in Fig. 2(b) and (d), respectively, have similar values in the
data scenarios even though they exhibit slight variations between
events. However, the remaining individual event-based parameters
k p, ,3 2 and z are varying significantly between events and are similar to
the whole data-based parameters only during certain events. The
parameters k3 and z represent the loss to the groundwater (Takasaki
et al., 2009). The z values close to zero indicate a high rate of recession
and higher z values represent a higher river flow at the outlet point
instead of contributing to the groundwater. The higher value of z in
event 1 can be attributed to its meteorological factor which is an in-
tensive localized storm, as shown in Table 1. Parameter p2 portrays the
change in storage during the rising and recession limbs of a hydrograph
based on the type of rainfall event (Hoshi and Yamaoka, 1982). The
higher p2 values exhibited during events 1 and 3, as shown in Fig. 2(e),
may be possibly due to differences in meteorological factors from other
events. The leave-one-out parameters at each event number represent
the calibrated parameters from the flood events except that particular
event. For example, the parameters at event number 1 in Fig. 2 show
the calibrated parameters from all the flood events except event 1. The
leave-one-out parameters exhibit close resemblance with the whole
data-based parameters except for leaving out event 1.

The results confirm that the parameters k p, ,3 2 and z will have a
prominent effect on the estimation of discharge due to their high
variability. Also, the meteorological factors can significantly affect
parameter values during the model calibration. However, the con-
sidered data sets are not sufficient to generalize the above discussions
despite providing a brief description of parameter uncertainty.
Therefore, to have an elaborative idea of calibrated parameter un-
certainty, the bootstrap approach was employed for generating samples
which could be further utilized for conducting the uncertainty analysis.

Thereafter, the model performance on estimating discharge using
the whole data-based and individual event-based parameters was ana-
lyzed. Table 3 presents the detailed performance evaluation using the
statistical indicators of RMSE, Nash-Sutcliffe efficiency (NSE) (Nash and
Sutcliffe, 1970), percentage error in peak (PEP), and percentage error in
volume (PEV) (Padiyedath et al., 2018a). Additionally, Fig. 3 provides a
visual representation of the hydrograph reproduced by the model for
both the data scenarios. It is apparent from Table 3 that the model with
individual event-based parameters has lower values of RMSE and
higher values of NSE in all the events as compared to the whole data-
based parameters. It is evident from the table that the PEP values es-
timated by the model using the individual event-based parameters were
very low (close to zero) compared to that from the whole data-based
parameters, even though the model exhibited a higher PEP value during
event 1, and was not greater than 10% during any of the events. Fig. 3
also shows that the model was able to reproduce the peak discharge
with utmost accuracy using the individual event-based parameters. On

1 2 3 4 5

100
200
300
400
500

0

1 2 3 4 5

1000
2000
3000
4000
5000

100

1 2 3 4 5

0.010
0.020
0.030
0.040
0.050

0.001

1 2 3 4 5
0.1
0.3
0.5
0.7
0.9

1 2 3 4 5

0.2
0.4
0.6
0.8
1.0

0

1 2 3 4 5
0

10
20
30
40
50

1 2 3 4 5
0.1
0.3
0.5
0.7
0.9(g)

(f)

(e)

(d)

(c)

(b)

  Whole data-based parameter
  Individual event-based parameter 
  Leave-one-out parameter

k 1
(a)

k 2
k 3

p 1
p 2

z

Event Number

Fig. 2. The calibrated parameters of USF model from the selected data sce-
narios. The leave-one-out parameters at each event number represent the ca-
librated parameters from the flood events except that particular event.
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the other hand, the model with whole data-based parameters exhibited
remarkable anomaly in the reproduction of peak values, especially in
events 4 and 5. Likewise the PEP, USF model shows the best perfor-
mance in PEV values using the individual event-based parameters as
shown in Table 3 which is close to zero as compared to that of the
whole data-based parameters. The results further confirmed that the
difference between the values of statistical indicators shown in Table 3
for the considered data scenarios is quite large and significantly greater
for events 4 and 5. It can also be envisaged from Fig. 3 that the cali-
brated discharge using the individual event-based parameters by USF
model nearly overlaps with the observed river discharge and re-
produces the shape of the observed hydrograph with only slight var-
iations. On the contrary, the model with whole data-based parameters
deviated significantly while reproducing the shape of the hydrograph.
Therefore, the results indicate that the individual event-based para-
meters can exactly reproduce the shape of the observed hydrograph as
well as the peak discharge by significantly reducing the RMSE by 50%
compared to that of the whole data-based parameters during the cali-
bration. Hence, it is necessary to consider the calibration based on in-
dividual flood events for the parameter uncertainty analysis rather than
considering the whole data-based calibration alone.

4.2. Model validation

The model validation on independent sub events was carried out to
assess the operational performance of the USF model. Fig. 4(a1–a5)
shows the reproduced hydrographs during the validation using the
leave-one-out parameters as well as the individual event-based para-
meters. It is clear from Fig. 4(a1–a5) that the simulated discharge using
the calibrated parameters of individual event-based scenario has highly
deviated from the observed discharge, except event 3. On the other
hand, simulated discharge using the parameters of leave-one-out sce-
nario and event 3 was close to the observed discharge during valida-
tion. However, it is not easy to clearly portray the difference between
the simulated discharge hydrographs of these cases from Fig. 4(a1–a5).
Hence, we evaluated the performance further using the same perfor-
mance evaluation criteria of RMSE, NSE, PEP, and PEV that used during
the calibration and is shown in Fig. 4(b1–b5). The left y-axis of Fig. 4(b)
represents RMSE and NSE, while the right y-axis depicts the PEP and
PEV values. It can be envisaged from the figure that the parameters
from event 3 and the leave-one-out scenario consistently generated the
lowest RMSE and highest NSE for reproducing the hydrographs in va-
lidation. The remaining individual event-based parameters exhibited
low performance in terms of RMSE and NSE during validation on the
selected sub events. In the same way, the PEP and PEV values were also
close to zero in the case of event 3 and the leave-one-out scenario
parameters, and the rest of the cases exhibited varying values of PEV
and PEV. The validation based on event 3 and leave-one-out scenario
performed equally in terms of RMSE and other performance evaluation
criteria, similar to that exhibited in calibration (Table 3).

The calibration of USF model over specific flood events and vali-
dation on independent flood events revealed that the model with leave-
one-out parameters has consistent performance compared with the

individual event-based parameters. This leave-one-out parameters re-
present the robust parameter set of the model and can be implemented
for operational use in the context of flood simulation. However, there
arises a question that which calibration approach is the most perfor-
mant, subject to validation. Based on the above discussions, it is re-
commended that the model should be calibrated with all the available
flood event data to get a more robust parameter set for the flood si-
mulation. Vaze et al. (2010) studied the effect of calibration periods on
model simulation and their study revealed that the model calibration on
a portion of the record with conditions similar to those of the future
period to simulate can provide a more reasonable set of parameters.
This result was supported by de Vos et al. (2010), who suggested
clustering time series according to climate similarities during calibra-
tion. Therefore, the USF model could be calibrated using the available
flood events since USF is a flood event-based model for the flood si-
mulation in urban watersheds with combined sewer system. These ca-
libration techniques will provide a minimum standard for operational
validation of the model. However, it needs more such calibrations at
different sub-periods including more flood events to arrive at a con-
clusion. Moreover, Moore et al. (2007) suggest that in many situations
it is hard for the lumped conceptual models to outperform in opera-
tional use for flood simulation. Therefore, it is recommended that fur-
ther work is undertaken on alternative formulations which will describe
the operational adequacy of the model.

4.3. Model parameter uncertainty analysis

The calibration parameter uncertainty analysis was conducted using
the five available flood events under the whole data-based and in-
dividual event-based scenarios. The computed model residual series
(Eq. (5)) was used to perform the resampling process for 1000 times by
employing the residual-based bootstrap approach. Then, associated
bootstrapped discharge series were generated by adding 1000 boot-
strapped residual series to the calibrated discharge series as described
in Section 2.3. These bootstrapped discharge series, ̂Q t( )j

, were used to
obtain the jth bootstrapped parameter vector, θ ̂ j of the USF model for
both the whole data-based and individual event-based scenarios. Fig. 5
shows the scatter plots of the bootstrapped parameter vectors with their
95% CI in grey shading. The search range shown in Table 1 is illustrated
as the left y-axis and the percentage contribution of 95% CI to the
search range is depicted on the right y-axis of Fig. 5.

It is apparent from Fig. 5(a1)–(f1) that the k1 values lie close to the
lower limit of the search range and converged to a reduced range be-
tween 20 and 70 in all the cases. The 95% CI of parameter k1 have a
comparable width in all the cases and constitute about 1–5% of the
search range, which is quite narrow. The scatter plot of parameter k2
was narrow as well as close to the lower search range with values
clustered around 500–2000, as shown in Fig. 5(a2)–(f2). Similarly, the
95% CI of k2 was also narrow for the whole data-based parameter and
was quite similar to the values of events 1 and 3. As compared to this
pattern, the CI was relatively wide during the rest of the events. The
parameter k3 has a widespread pattern as compared to parameters k1
and k2, as shown in Fig. 5(a3)–(f3). The 95% CI of k3 was wide and its

Table 3
Performance evaluation of USF model using different statistical indicators of Root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), percentage error in
peak (PEP), and percentage error in volume (PEV).

Statistical index RMSE (mm/min) NSE (%) PEP (%) PEV (%)

Whole data Individual event Whole data Individual event Whole data Individual event Whole data Individual event

Event 1 0.013 0.006 99.16 99.86 0.13 0.86 11.68 −0.8
Event 2 0.010 0.004 98.76 99.83 −6.18 −2.13 1.67 0.76
Event 3 0.010 0.009 98.41 98.62 −3.95 0.33 4.39 0.61
Event 4 0.012 0.006 92.91 98.25 17.63 6.18 −9.90 3.60
Event 5 0.014 0.005 91.14 98.88 16.72 8.09 −18.02 −0.20
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contribution to the search range was high, except for event 3 and the
whole data-based scenario. There is a well-spread pattern for parameter
p1 from 0.1 to 1 within the search range whereas most of the p2 values
accumulated near the lower search range between 0.1 and 0.7, as
shown in Fig. 5(a4)–(f4) and (a5)–(f5), respectively. The 95% CI of
these parameters are wide as compared to k1 and k2 with a high per-
centage contribution to the search range. It is evident from
Fig. 5(a6)–(f6) that most of the z values are gathered near the lower
limit of the search range and the 95% CI is relatively wide. Parameter α
demonstrated a very widespread pattern with values close to the upper
search range, as depicted in Fig. 5(a7)–(f7). The 95% CI of α was wide
in all the scenarios and constituted about 25–50% of the search range. It
can be envisaged from Fig. 5 that the scatter plot of whole data-based
parameters is similar to the parameter pattern exhibited in event 3,
which further indicate that the events with a large number of ob-
servations have domination on the whole data-based model calibration.
Even though a wide search range was considered, certain parameters
converged to a very narrow range. On the other hand, some parameters
showed a widespread pattern from the lower to the upper limit of the
search range. This could be a reflection of the equifinality concept
(Beven and Freer, 2001) and reconsideration of this search range could
enhance the performance of the model in cases where parameter values
accumulate on the search range boundaries. Additionally, a larger
number of bootstrap resamples can lead to a narrow 95% CI due to the
convergence of parameters as observed in the study of Selle and
Hannah (2010).

Fig. 6 shows the statistical representation of Fig. 5 in terms of the
box-whisker plot of 1000 bootstrapped parameter vectors for both the
data scenarios in which the bottom and the top lines of the boxes show
the 25th and 75th percentiles, respectively and the line passing through
the box represents the median (θ5̂0). The whiskers extend to the 2.5th
and the 97.5th percentiles and the highest and lowest observations are
plotted as asterisks. Additionally, Fig. 6 represents the mean (θ̄ as the
blue square) and CV (values at the top) of the bootstrapped parameter
vectors along with the calibrated parameter values (θ ̂ as the red circle).
Detailed descriptions of the plot are given in the figure caption. It is
clear from Fig. 6(a) and (b) that the bootstrap estimates of θ5̂0 and θ̄ of
parameters k1 and k2 have similar values and are very close to the ca-
librated θ ̂ values in all the events. However, the parameter k3 exhibited
differences in the θ̄ values during event 1, as depicted in Fig. 6(c). It is
apparent from Fig. 6(d) that the θ5̂0 and θ ̂ values of p1 are similar except
for event 4 whereas the θ̄ and θ ̂ values are identical except for events 4
and 5. On the other hand, the θ5̂0, θ̄, and θ ̂ values of parameter p2 were
close enough except for event 5, as shown in Fig. 6(e). Similar to the
parameter p2, the θ5̂0, θ̄, and θ ̂ values of parameter z in Fig. 6(f) were
identical, except in event 1. Subsequently, the θ̄ values of α exhibited
minor discrepancy only in event 5 as compared to the θ5̂0 and θ ̂ values,
as illustrated in Fig. 6(g). Overall, the θ ̂ values were in accordance with
the θ5̂0 and θ̄ values in most of the cases even though the θ̄ values show
minor deviations. The CV values also varied between scenarios, as
shown in Fig. 6. During the whole data-based analysis, the highest CV
value of around 133% was observed for parameter z and the least CV
value was noted for parameter k2. Further, the parameters were ordered
based on their CV values as follows: > > > > > >z α k p p k k3 1 2 1 2.
However, for the individual event-based analysis, during event 1, the
highest CV value was exhibited by the parameter k3 which was followed
by parameter z. The order of parameters based on CV values are

> > > > > >k z p α p k k3 1 2 2 1. The same order for event 2 was
> > > > > >p k z p k α k2 3 1 2 1. During events 3 and 4, based on the CV
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Fig. 3. The reproduced hydrographs by USF model for (a) Event 1; (b) Event 2;
(c) Event 3; (d) Event 4; and (e) Event 5 using the whole data-based and in-
dividual event-based parameters. (QW and QI represent the calibrated discharge
using the whole data-based and individual event-based parameters respec-
tively).
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values, the parameter z had the highest uncertainty. On the contrary,
parameters p2 and z had very high CV values as compared to other
parameters during event 5. Therefore, the results reveal that the para-
meter with the highest and lowest uncertainty varies from case to case.
However, z and k1 were the parameters with the highest and lowest

uncertainty respectively based on their CV values in most of the cases.
Selle and Hannah (2010) identified the parameter with the highest

uncertainty of a conceptual salt load model using the CV value as the
only index. However, in this study, two proposed indices were com-
puted, in addition to the CV, for objectively assessing the parameter
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uncertainty in order to have a clear understanding of the 95% CI as well
as the median values of the parameters, as shown in Fig. 7. In this
figure, the PUI1 and PUI2 index values of parameter z for the whole
data-based scenario is represented at the figure boundaries with their
values. Since the θ ̂ value of parameter z was very close to zero in the
whole data-based scenario, as shown in Fig. 2(f), the calculated PUI1
and PUI2 values of z were very high and represented at the boundaries.

It is evident from Fig. 7(a) that the parameter z has the highest value of
PUI1 during events 3 and 4 and also in the whole data-based case,
which further indicates that z had the highest uncertainty in most of the
considered scenarios based on PUI1. This higher PUI1 value of z can be
interpreted as to its wide 95% CI and calibrated parameter values close
to zero during these scenarios. However, the parameter p2 demon-
strated a higher value of PUI1 during events 2 and 5, which could also
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be attributed to its very wide 95% CI as compared to other parameters,
as shown in Fig. 5(c5) and (f5) while parameter p1 has got the highest
PUI1 value during event 1. The parameters k2 and k1 demonstrated the
lowest uncertainty from the cases whose 95% CI was very narrow as
compared to the rest of the parameters. The remaining parameters
showed a different order of PUI1 values in the considered scenarios,
based on their 95% CI width and the calibrated parameter values. The
high uncertainty, in terms of PUI2, was exhibited by the parameter z in
all the cases except for event 3, as illustrated in Fig. 7(b). During event

3, all the parameters exhibited a small magnitude of uncertainty and
were comparable to each other, even though the PUI1 portrayed z as the
most uncertain parameter in event 3, which can be further interpreted
as the very similar median and calibrated values of parameters. Also,
for a narrow CI, the median and calibrated parameter values will come
closer and further the PUI2 values will approach zero. The parameter z
exhibited negative PUI2 values with a high magnitude in the whole
data-based scenario and event 4, which was significantly high in the
whole data-based scenario. These high magnitude negative PUI2 values
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indicate that the bootstrap median values are much higher than the
calibrated parameters. The results revealed that the difference in both
the calculated indices, PUI1 and PUI2, is because both represent dif-
ferent aspects of uncertainty analysis.

The parameter z represents the infiltration hole height in the USF
model (Takasaki et al., 2009), which depends upon parameters like
basin storage and rainfall intensity, and will vary greatly from event to
event with the highest uncertainty. Additionally, the optimum value of
z estimated from the model calibration is close to zero with a very wide
range of bootstrapped parameter values, as shown in Fig. 5(a6)–(f6)
which also makes it the most uncertain parameter. The parameter with
higher uncertainty after z varied from case to case. However, based on
the PUI1 and PUI2 values, p p α k, , , ,1 2 3 and k2 had higher uncertainty
values after parameter z for most of the cases. The 95% CI of these
parameters are relatively wide which can be transformed into higher
index values. The parameter k1 exhibited the least uncertainty. One of
the reasons for this could be the fact that parameter k1 describes fea-
tures of the watershed (Sugiyama et al., 1997) and there is a very low
chance of a change in watershed features within a short span. This
further indicated that parameter k1 remains reasonably stable under
varying input data scenarios. Besides, the equifinality concept can also
derive parameter uncertainty by generating non-unique parameter sets
during the calibration process and there will be a lot of different
parameter combinations that lead to multiple optimal solutions (Beven
and Freer, 2001; Yang et al., 2008). However, this parameter un-
certainty can be overcome to some extent by using global searching
techniques during calibration.

4.4. Model simulation uncertainty

The uncertainty in model simulation due to the calibrated para-
meter uncertainty was estimated by computing the 95% CI of the 1000
simulated discharge series generated by the bootstrapped parameters
from the whole data-based and the individual event-based scenarios.
Fig. 8 shows the 95% CI of simulated discharge (uncertainty range) for
each event from both the whole data-based and the individual event-
based scenarios during calibration. It is desirable to have a narrow
range and Fig. 8(a1–b1) shows that the uncertainty range from the
whole data-based parameters at the peak flows of event 1 is wider than
the range simulated from the individual event-based parameters.
However, the width of the uncertainty range at low flows was almost
identical for event 1 from both the scenarios. Fig. 8(a2–b2) shows that
the uncertainty range was unable to capture the observed values during
the flood peak of the whole data-based scenario, whereas the un-
certainty range of individual event-based scenario was able to bracket a
large amount of the observed values, including the flood peaks. The
uncertainty range of the whole data-based scenario illustrated in
Fig. 8(a3–b3) included the highest flood peak value with a wide un-
certainty range. On the other hand, the uncertainty range of the
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individual event-based scenario was very narrow and was close to the
observed peak flows and hence was not able to capture the flood peaks.
During events 4 and 5 from the whole data-based parameters, most of
the flood peak values were falling inside the uncertainty range even
though the low flows were not well captured as shown in Fig. 8(a4) and
(a5). Concurrently, the uncertainty range of the individual event based
scenario was able to capture almost all the flows, except the peak value
during events 4 and 5 as shown in Fig. 8(b4) and (b5). Overall, the
whole data-based scenario captured the observed discharge with a very
wide uncertainty range whereas the individual event-based scenario
bracketed observations within a very narrow uncertainty range during
calibration. Also, as can be seen from Fig. 8, that the uncertainty range
is very narrow at the low flows for both the scenarios. Hence, it can be
concluded that the model simulates peak discharge with higher un-
certainty as compared to low flows. High uncertainty in the model

simulation during flood peaks can be attributed to the influence of low
flows as they may have dominated the parameter estimation process
due to their greater numbers as compared to the peak flow (Gallagher
and Doherty, 2007). However, it is essential to estimate flood peaks
with lesser uncertainty as compared to the low flows due to the high-
risk factor associated with them. It is possible to do so by calibrating the
model parameters using a specific objective function which can initiate
the type of simulation that the model is required to make.

In order to portray the differences in the model simulation un-
certainty during calibration, a detailed uncertainty analysis was further
conducted using the P-factor and the two proposed model simulation
uncertainty indices, SUI1 and SUI2. Fig. 9 shows the model simulation
uncertainty for the whole data-based and the individual event-based
scenarios using the P-factor, SUI1, and SUI2. The P-factor value, as de-
fined by Eq. (8), close to 100% represents the capability of the model to
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reasonably capture almost all the observed discharge values within the
uncertainty range. Similarly, the values of SUI1 and SUI2 close to zero
indicate low uncertainty of the model in simulating the discharge. It is
clear from Fig. 9(a) that the obtained value of P-factor is higher for
events 1, 2, and 5 in the individual event-based scenario and the whole
data-based scenario showed higher values of P-factor during events 3
and 4. Even though the P-factor of individual event-based analysis is
lower than the whole data-based analysis in events 3 and 4, the dif-
ference between the values is quite small. The individual event-based
scenario captured an almost equal number of observations with a very
narrow uncertainty range, especially at the peak flows, in event 3
compared with the whole data-based scenario that resulted in an almost
equal P-factor. The high uncertainty of parameter z during event 4 in
terms of parameter uncertainty indices, as shown in Fig. 7, could be a
reason for the low P-factor exhibited by the individual event-based
scenario in event 4. Subsequently, values of the proposed index SUI1,
derived from the individual event-based analysis were less than the
values derived from whole data-based analysis in all the events except
for event 1, as shown in Fig. 9(b). During event 1, the SUI1 value of both
the scenarios was similar and the whole data-based scenario received
the least value. The results revealed that the width of the uncertainty
range is narrow relative to the observed discharge values in the in-
dividual event-based analysis as compared to the whole data-based
analysis. The individual event-based values of SUI2 were also close to
zero in all the events except for event 4, as illustrated in Fig. 9(c). The
SUI2 values were negative for events 4 and 5 in the whole data-based
scenario, which indicates that the observed discharge values were lesser
than the median values and lied in the lower confidence region. In the
same way, values from the individual event-based analysis were mostly
positive, except for events 1 and 3, and were found in the upper

confidence region. Overall, considering all the indices, the simulation
uncertainty was lower during the individual event-based analysis as
compared to the whole data-based analysis.

4.5. Rainfall spatial variability

The results revealed that the model simulation uncertainty varies
from event to event as well as from the considered data scenarios. This
can be ascribed to the difference in parameter values in each event and
the whole data-based scenario resulted from the spatial variability in
rainfall. Therefore, further analysis was carried out to have a clear
understanding of the extent of spatial variability of rainfall in the wa-
tershed. Fig. 10 shows the percentage variation of total rainfall ob-
tained from each rain gauge with respect to the mean rainfall from all
the gauges. It is clear from Fig. 10 that during event 1, the variation of
two gauges are around −30%, whereas the same in event 2 for one
gauge is about −40%. These high percentage variation values of
rainfall exhibited by several rain gauges indicate that there is a rela-
tively high spatial variability in rainfall during events 1 and 2. How-
ever, all the gauges showed relatively low variability except one gauge
during event 3 which resulted in an overall low spatial variability in
this event. Moving to events 4 and 5, almost all the gauges portrayed
high percentage variation values ranging from −60% to 60% and ex-
hibited the highest spatial variability. This high spatial variability ex-
hibited by the rain gauges in each event can be attributed to their
completely different rainfall pattern and this could be a cause of the
high uncertainty in simulations.

During the whole data-based scenario, the model parameters were
averaged spatially as well as temporally over the watershed without
considering the spatial variability of rainfall as well as the meteor-
ological factors that caused the rainfall events, and the estimated model
parameters will be different from the true watershed parameters
(Chaubey et al., 1999). This could be a possible reason for the high
simulation uncertainty exhibited by the model in the whole data-based
scenario. However, during the individual event-based scenario, the
catchment properties are only spatially averaged, not temporally. This
will lead to a reduced simulation uncertainty in the event-based sce-
nario compared with the whole data-based scenario. At the same time,
lumping up of the complex, spatially varying catchment properties such
as rainfall, inflow, etc. in a model will induce considerable errors as-
sociated with the spatially averaged input data (Cooley, 2004) and
further affect the model simulation uncertainty in both the data sce-
narios. Notwithstanding the problems associated with the spatial
averaging of the watershed processes, the USF model was able to
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simulate the discharge with reasonable accuracy in the individual
event-based and the whole data-based scenarios using the bootstrap
approach associated with the SCE-UA method. Therefore, the bootstrap
approach will contribute to the development of parsimonious hydro-
logic models (Selle and Hannah, 2010) with reliable estimates of
parameter uncertainty. In this study, we found that the range of si-
mulation uncertainty due to the parameters is relatively small. Apart
from parameter uncertainty, input data measurement errors from all
sources and model structure errors also cause model simulation un-
certainty (Sivakumar and Berndtsson, 2010). However, it is not prac-
ticable to define the extent to which the other sources of uncertainties
will affect the model simulation uncertainty based on our present study.

5. Conclusions

The residual-based bootstrap technique was utilized to analyze the
calibration parameter uncertainty of the USF model to assess its impact
on the model simulation in the upper Kanda River basin, an urban
watershed in Tokyo. The bootstrap approach was applied to the in-
dividual flood events for the first time due to the relevance of flood-
runoff analysis in urban watersheds along with the available whole data
in order to demonstrate the impact of different available data scenarios
on the calibration uncertainty behavior of the parameters. The 95% CI
of certain parameters converged to a very narrow range as compared to
the search range while some parameters showed a wider confidence
range from the lower to the upper limit of the search range in both the
scenarios. Further, the parameter uncertainty was scrupulously ana-
lyzed and the parameters with the highest and the lowest uncertainty
were identified by utilizing two newly proposed indices that are based
on the width of the confidence interval and the median value. Although
the order of the model parameters assigned during the uncertainty
analysis based on the proposed indices differs, the significant para-
meters yielded was the same. Hence, the proposed indices could be
useful in future studies to derive the parameters from the highest to the
lowest uncertainty. Additionally, the effect of parameter uncertainty on
the model simulation was investigated by computing the 95% CI of
1000 simulated discharge series generated from the bootstrapped
parameters, and by utilizing the P-factor and two other proposed in-
dices for assessing the model simulation uncertainty. The results re-
vealed that the simulation uncertainty is low in the individual event-
based analysis compared with the whole data-based analysis based on
all the considered indices. Also, the uncertainty range was wider at the
peak flows and hence the model simulated peak discharge values had
higher uncertainty than low flows. As a conclusion, the parameter un-
certainty and its effect on model simulation uncertainty were success-
fully evaluated and the characteristics of an urban specific rainfall-
runoff model (USF model) were explained in detail using the bootstrap
approach.

The residual-based bootstrap approach used in this study assumed
an independent and identically distributed model residual series.
However, this assumption does not seem to be appropriate after looking
at the autocorrelation plot of residuals. The residuals demonstrated a
short-term persistence although the residual autocorrelation function
decayed exponentially and was statistically insignificant beyond a lag
of 6min. One solution to tackle this issue is the use of block bootstrap
resampling of the residual with sufficiently long blocks to preserve the
time dependence of the residuals. Another possibility is the use of the
autoregressive component to reconstruct auto correlated bootstrap re-
siduals. Selle and Hannah (2010) have already carried out such an
improvement and obtained comparable results from both bootstrap
approaches. It is also important to conduct comparative studies be-
tween the bootstrap and other techniques for parameter uncertainty
analysis which will reveal the strength and weaknesses of the bootstrap
approach. The violation of the assumptions made during uncertainty
analysis by the bootstrap method may lead to the inadequate char-
acterization of simulation uncertainty. Therefore, it is desirable to

validate the simulation uncertainty using observations which will fur-
ther provide some empirical evidence that the bootstrap method pro-
vides a good estimation of parameter and simulation uncertainties.
Further, the parameter variance obtained from this uncertainty analysis
can be used in the data assimilation approaches for the real-time pre-
diction of flood and will give confidence to the hydrologist who uses the
model in an operational context. However, this study primarily focused
on the residual-based bootstrap approach for the calibration parameter
uncertainty analysis and its subsequent effect on model simulation
uncertainty. We will carry out further research on the aforementioned
areas by considering the residual correlation and heteroscedasticity.
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