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The rainfall spatial variability has not been considered in the Storage Function (SF) models so 

far even though there exist various SF models including the Urban SF (USF) model, a relatively 

new SF model mainly for urban watersheds. Therefore, in this study, we aim to propose a 

generalized USF (GUSF) model for the storm runoff analysis by considering the spatial rainfall 

distribution in the basin. This was achieved by the introduction of a new parameter named as rainfall 

distribution factor (𝛾) in the USF model. The GUSF and USF models were examined and the results 

revealed that the GUSF model with 𝛾 exhibited higher hydrograph reproducibility associated with 

the lowest error evaluation criteria which emphasize the effect of parameter 𝛾. Further, the Akaike 

information criterion (AIC) was used to establish the best model among two based on the number 

of optimized model parameters. The GUSF model received the lowest AIC score in calibration and 

validation which indicate that the inclusion of a single parameter, rainfall distribution factor, can 

substantially improve the performance of a model by representing the spatial rainfall distribution of 

basin in a better way.    

 

   Key Words: USF model, generalized urban storage function model, rainfall distribution factor, 

hydrograph reproducibility, AIC criteria 

 

 

1. INTRODUCTION 
 

   Flooding is a crucial issue in both rural and urban 

areas, but the severity level of floods is greater in 

urban areas because most of the population is 

concentrated near floodplains1). Therefore, flood 

modeling in urban watersheds is essential. For this 

purpose, the lumped Storage Function (SF) models, 

have been widely used in many parts of the world. 

The SF model was originally invented by Kimura2) 

with lag time which is still widely used in Japan. 

Subsequently, several improved SF models have 

been proposed in terms of how to express its 

nonlinearity, model structure, and the storage 

hysteresis loop3), 4). However, all these models require 

effective rainfall as their input for the direct runoff 

prediction. Hence, it involves the problems of 

baseflow and effective rainfall component separation 

that may further add uncertainties to the model 

simulations. They also incorporated the runoff 

coefficient in SF models to account for the loss 

components in the basin. To overcome the problems 

associated with separation processes, Baba et al. 

introduced an SF model with loss mechanism which 
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uses the observed rainfall and runoff5). Later, 

Takasaki et al. developed a new Urban SF (USF) 

model for the urban watersheds with the combined 

sewer system by considering urban runoff process6).     

   Generally, in the conventional SF models, the 

rainfall is spatially averaged over the basin and 

assumed a spatially uniform rainfall across the basin. 

This spatially averaged rainfall was considered as the 

observed basin rainfall in the conventional models. 

However, in actual condition, the rainfall is spatially 

distributed over the watershed and this spatial 

variability will be quite high even in small urban 

watersheds8). The use of basin average rainfall will 

further result in the underestimation or 

overestimation of storm runoff based on the 

meteorological factors as well as the location of 

rainfall occurrence9). For example, if a localized 

rainfall with high intensity is occurring near the 

watershed outlet, the outlet will receive an immediate 

high magnitude response without any significant 

losses compared with a delayed and diminished 

outlet response resulted from the upstream rainfall. 

This effect will be profound in small urban 

watersheds due to the relatively short time of 

concentration and the high percent of impervious 

surfaces. The existing spatial variability in rainfall 

will contribute uncertainties to the basin average 

rainfall and finally to the model predictions, but to 

what extent is unknown.  

   The performance of different existing SF models 

have already been evaluated for an urban watershed 

and it was found that the USF model performs better 

as compared with conventional SF models1), 7). The 

USF model well-simulated the discharge in small to 

medium-sized urban watersheds for single and multi-

peak flood events with different meteorological 

factor and peak discharge1), 7). The model also 

exhibited higher performance for different objective 

functions used during the model calibration6). 

However, the USF model assumed a spatially 

uniform rainfall over the basin likewise the 

conventional SF models. So far, the rainfall spatial 

variability has not been considered in the SF models 

and thereby an attempt has been made for the first 

time to address this issue by introducing a new 

parameter called rainfall distribution factor, hereafter 

termed as 𝛾, in the USF model. This parameter will 

either increase or reduce the basin average rainfall to 

adjust it with the true basin rainfall which will further 

reduce the uncertainties involved to some extent. 

Further modifications are also possible using radar 

and dense rain gauge network data to gain a better 

understanding of the rainfall spatial variability.   

   Based on the above discussions, this study aims to 

propose a generalized USF (GUSF) model with all 

possible loss components for the storm-runoff 

analysis by considering the spatial rainfall 

distribution in the basin by the introduction of a new 

parameter, 𝛾 . The performance evaluation of the 

GUSF model along with the USF model was 

conducted to examine the effectiveness of parameter 

𝛾  in terms of hydrograph reproducibility and 

information criteria point of view. The Kanda river 

basin, a typical small to medium-sized urban 

watershed in Tokyo, was selected as the target basin.  

 

 

2. MATERIALS AND METHODS 

 

(1) Generalized USF (GUSF) model 
The storage equation of GUSF model is the 

empirical representation of Hoshi’s SF model4) in 

which the observed river discharge 𝑄 is replaced by 

𝑄 + 𝑞𝑅, which is the discharge including the drainage 

from the sewer system for the urban area, where, 𝑞𝑅 

is drainage from the basin through the combined 

sewer system (mm/min) and is given as: 

        𝑠 = 𝑘1(𝑄 + 𝑞𝑅)𝑝1 + 𝑘2
𝑑

𝑑𝑡
(𝑄 + 𝑞𝑅)𝑝2         (1) 

where 𝑠: storage (mm), 𝑄: observed river discharge 

(mm/min), 𝑡:  time (min), 𝑘1, 𝑘2, 𝑝1, 𝑝2:  model 

parameters. The GUSF model can also be applied in 

non-urban watersheds by omitting the 𝑞𝑅 component 

and the storage equation will be the same as that 

proposed by Hoshi. Combining the above expression 

of storage with the following continuity equation 

yields the nonlinear expression of GUSF model. 

       
𝑑𝑠

𝑑𝑡
= 𝛾𝑅 + 𝐼 − 𝐸 − 𝑂 − 𝑄 − 𝑞𝑅 − 𝑞𝑙           (2) 

where 𝛾: rainfall distribution factor, 𝑅: basin average 

rainfall (mm/min), 𝐼:  inflow from other basins 

(mm/min), 𝐸:  evapotranspiration (mm/min), 𝑂: 
water intake from the basin (mm/min), 𝑞𝑙: loss to the 

groundwater (mm/min). The basin average rainfall 

should consider as a fraction based on the spatial 

variability in rainfall and 𝛾  will represent this 

fraction. Even though 𝛾 looks similar to the runoff 

coefficient in its expression, the purpose of its 

incorporation is completely different from that of 

runoff coefficient. The main intention of inclusion of 

parameter 𝛾 was to consider the spatial distribution 

of basin rainfall. Further, the outflow 𝑞𝑙 was defined 

by considering the SMPT model10) and is given by6): 

            𝑞𝑙 = {
𝑘3(𝑠 − 𝑧)          (𝑠 ≥ 𝑧)

   0                         (𝑠 < 𝑧) 
}               (3) 

where 𝑘3  and 𝑧  are the parameters. The storm 

drainage 𝑞𝑅 is controlled by the carrying capacity of 

the sewer. Hence, the maximum volume of 𝑞𝑅 cannot 

exceed maximum carrying capacity 𝑞𝑅 𝑚𝑎𝑥. The 𝑞𝑅 

is calculated as6), 
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               𝑞𝑅 = {
𝛼(𝑄 + 𝑞𝑅 − 𝑄0)    𝛼(𝑄 + 𝑞𝑅 − 𝑄0) <  𝑞𝑅 𝑚𝑎𝑥

𝑞𝑅 𝑚𝑎𝑥                    𝛼(𝑄 + 𝑞𝑅 − 𝑄0) ≥  𝑞𝑅 𝑚𝑎𝑥
}        (4) 

where α is the slope of the linear relationship between 

total discharge 𝑄 + 𝑞𝑅 and the drainage 𝑞𝑅; and 𝑄0 

is the initial river discharge just before the rain starts 

6). Substituting Eqs. (1) and (3) into Eq. (2) will lead 

to a second-order Ordinary Differential Equation 

(ODE). This second-order ODE is transformed into 

the first-order ODE and can be numerically solved. 

The river discharge 𝑄 will obtain from the solution.  

The GUSF is an eight parameter model with 

parameters 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2, 𝑧, 𝛼, 𝛾. Additionally, to 

analyze the effect of parameter 𝛾 in the model, the 

USF model was considered without parameter 𝛾 

(𝛾=1). The Shuffled Complex Evolution-University 

of Arizona (SCE-UA) global optimization method 

proposed by Duan11) was used to identify the 

calibrated parameters of the two models with 100 

generations and root mean square error (RMSE) as 

the objective function to be minimized. The search 

range of parameters for SCE-UA is set as, 𝑘1(0-500), 

𝑘2 (0-5000), 𝑘3 (0-1), 𝑝1 (0-1), 𝑝2 (0-1), 𝑧  (0-300), 𝛼 

(0-1), and 𝛾 (0-10). Due to high spatial variability in 

rainfall, sometimes, the basin average rainfall will be 

very low even though high magnitude rainfall occurs 

near the basin outlet. Therefore, the basin average 

rainfall should consider as doubled, tripled, etc. to 

represent a high magnitude rainfall near the 

watershed outlet. Consequently, the maximum 

possible value of 𝛾 was set as ten to incorporate the 

effect of a ten times higher magnitude rainfall 

resulting from the spatial distribution of rainfall in the 

basin. Moreover, the model calibration was 

conducted using two data scenarios: (i) individual 

event-based scenario where individual flood events 

were used and (ii) all event-based scenario where all 

the available events were used for the model 

calibration. Further, all event-based parameters were 

used to validate the model.  

 

(2) Performance evaluation 

   The river discharge computed by the two SF 

models was compared during calibration and 

validation to assess the reproducibility in terms of the 

additional parameter 𝛾 using four error functions12) 

of RMSE, Nash-Sutcliffe efficiency (NSE), 

Percentage Error in Peak (PEP), and Percentage Error 

in Volume (PEV). Further, the Akaike Information 

Criterion (AIC) 13) was also used to identify the best 

model by comparing them in both calibration and 

validation. The best model is then the model with the 

lowest AIC score and is given as: 

                𝐴𝐼𝐶 = 2𝐾 − 2ln (ℒ(𝜃|𝑦))                  (5) 

where 𝐾: number of parameters to be estimated and 

ln (ℒ(𝜃|𝑦): log-likelihood at its maximum point of 

the model estimated. Later, this concept was refined 

to correct for small data samples as14): 

                       𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝐾(𝐾+1)

𝑛−𝐾−1
                       (6) 

where 𝑛: sample size.  

 

(3) Study area and data used 

   The target basin area at Koyo Bridge is about 7.7 

km2 as shown in Fig.1. The rainfall and water level 

data collected from the Bureau of Construction, 

Tokyo Metropolitan Government (TMG) at one 

minute interval during 2003-2006 were used for the 

present study because the USF model was 

successfully established for the five selected flood 

events during this period compared with 

conventional SF models1). Therefore, the same five 

flood events, whose 60-minute maximum rainfall 

(R60) is greater than 30 mm, were used for the 

calibration of the selected models. In the same 

manner, three events that are not included in the 

model calibration were selected for model validation 

as given in Table 1. The basin average rainfall (R) 

was determined using the Thiessen polygon method 

from the eight rain gauges scattered over the basin. 

The inflow component I was fixed at 0.0012 mm/min 

based on the business annual report of the TMG. The 

outflow components O and E were set at zero. The 

maximum drainage, 𝑞𝑅 𝑚𝑎𝑥  was estimated at 0.033 

mm/min using the Manning’s equation6).  

 
Fig.1 Index map of study area. 

Table 1. Characteristics of target events. 

Event 

No.  
Event date 

R60 

(mm/h) 

Total R 

(mm) 

Climatic 

factors 

Calibration events (C) 

C1 13/10/2003 53.9 57.5 
Intensive 

localized storm 

C2 24~25/6/2003 42.8 46.2 Frontal event 

C3 8~9/10/2004 42.0 261.1 Typhoon 

C4 11/09/2006 32.7 37.9 Frontal event 
C5 15/07/2006 31.5 31.5 Frontal event 

Validation events (V) 

V1 25~26/8/2005 29.6 122.5 Typhoon 

V2 15~16/6/2006 29.1 94.5 Frontal event 

V3 29~30/9/2004 27.9 68.5 Typhoon 
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3. RESULTS AND DISCUSSIONS 
 

(1) Hydrograph reproducibility  

   The SCE-UA method was applied for the parameter 

estimation of two models under the two selected data 

scenarios in the target basin. The individual event-

based and the all event-based parameters of the 

models are shown in Table 2. It can be seen from the 

table that the parameter values are varying from event 

to event in both the models. The rainfall distribution 

factor, 𝛾  in the GUSF model is showing values 

greater than one during events 1, 2, and 3, whereas 

the values are less than one in the remaining events. 

Further, to check the significance of the optimized 

value of 𝛾, the spatial variability of total rainfall was 

plotted by interpolating the rainfall received at eight 

gauging stations as shown in Fig.2 using the Kriging 

interpolation technique in the Surfer mapping 

software. Only two events were plotted out of five 

due to the page constraints. Fig.2 (a) shows that high 

rainfall is occurring near the watershed outlet during 

calibrated event 3 which will produce an immediate 

and intensive response at the outlet. At this point, the 

basin average rainfall should consider at a higher 

magnitude which resulted in a 𝛾  value of 3.63 as 

shown in Table 2. On the contrary, the spatial rainfall 

distribution of event 4 illustrated in Fig.2 (b) 

revealed that the high rainfall is occurring at a 

specific location farther from the outlet point which 

will generate a delayed and diminished response. 

This further reduced the value of 𝛾 to 0.37 (Table 2). 

Therefore, it can be envisaged that the value of 𝛾 can 

be either less or greater than one, unlike in the USF 

model which is always one.              
   Further, these optimally estimated parameters of 

both the models were used to reproduce the 

hydrographs during calibration and validation as 

shown in Fig.3. Only three calibration and two 

validations events have been depicted in Fig. 3 due to 

page limitation. It can be envisaged from Fig.3 (a-c) 

that the 8-parameter GUSF model almost overlaps 

with the observed river discharge and accurately 

reproducing the peak in the calibration events except 

for event 3. On the contrary, the USF model shows a 

great deviation in the reproduced hydrograph at the 

recession limb and exhibits considerable deflection 

from the observed peak discharge. It is clear from 

Fig.3 (d-e) that the GUSF model was able to 

reproduce the shape of the hydrograph, especially the 

rising and recession limbs during validation. 

However, the model slightly overestimated the 

highest peak discharge in all the events. In contrast, 

hydrograph reproduced by the USF model highly 

deviated from the observed hydrograph and lower 

predicted the highest peak although the remaining 

peaks were overestimated. The calibration and 

validation results exhibited that the GUSF model can 

more precisely reproduce the shape of the observed 

hydrograph as well as the peak discharge compared 

with the USF model. On the other hand, the USF 

model is not preserving the shape of the hydrograph 

as well as the peak discharge. The significant 

deviation demonstrated by the USF model at the 

recession limb can be attributed to the omission of 

spatial distribution factor 𝛾 . This indicates the 

necessity of parameter 𝛾  in the USF model to 

describe the rainfall spatial variability in the basin. 

 

Fig.2 Spatial distribution of total rainfall during (a) event 3 and (b) event 4 (black circle and white square represent 

rain gauge and water level stations respectively). 

 

Table 2. Estimated model parameters for each model. 

Para. Model Event 1 Event 2 Event 3 Event 4 Event 5 All event 

𝑘1 
USF 94.9 279.1 46.3 305.1 307.8 58.5 

GUSF 40.6 103.6 166.7 19.9 18.3 31.1 

𝑘2 
USF 241.5 464.3 539.7 2670.2 2954.0 973.0 

GUSF 774.7 4992.9 4292.7 4987.0 4995.5 482.8 

𝑘3 
USF 0.91 0.67 0.01 0.10 0.02 0.02 

GUSF 0.01 0.02 0.02 0.58 0 0.51 

𝑝1 
USF 0.12 0.03 0.39 0.02 0.02 0.34 

GUSF 0.49 0.34 0.34 0.70 0.50 0.31 

𝑝2 
USF 0.97 0.32 0.45 0.03 0.02 0.71 

GUSF 0.34 0.07 0.13 0.01 0.01 0.36 

𝑧 
USF 202.5 275.6 4.4 299.3 299.8 28.3 

GUSF 8.24 18.7 35.0 231.7 5.9 157.0 

𝛼 
USF 0.87 0.88 0.43 0.93 0.90 0.57 

GUSF 0.48 0.4 0.24 0.46 0.41 0.65 

𝛾 
USF 1 1 1 1 1 1 

GUSF 1.03 2.59 3.63 0.37 0.37 0.61 

 

I_226



 

5 

 

   Further, the hydrograph reproducibility by the two 

models during calibration and validation was 

analyzed using error functions of RMSE, NSE, PEP, 

and PEV as shown in Fig.4. From Fig.4 (a) and (b), 

we can see that the GUSF model generates low 

RMSE close to zero and high NSE close to 100% 

during calibration as well as validation, except for 

calibration event 3. The RMSE and NSE values were 

close for both the models during event 3 even though 

the USF model exhibited slightly better performance. 

Calibration event 3 is a multi-peak event with the 

largest number of observations and the use of 100 

generations may not be sufficient for its optimal 

parameter search using the SCE-UA method in the 

GUSF model. The PEP and PEV become positive for 

underestimation and Fig.4 (c) depicts that the PEP 

estimated by GUSF model is very low and not greater 

than 10% during both calibration and validation. 

Conversely, the USF model largely varies in its PEP 

values and lower predicted the peak flow in 

validation as well as in calibration events 4 and 5. 

Likewise the PEP, the GUSF model shows the best 

ranges of PEV values in Fig.4 (d) which is close to 

zero during calibration and reaches a maximum of 

60% during validation. Simultaneously, the USF 

model generates higher values of PEV, especially 

during validation. The higher values of NSE coupled 

with the lower values of RMSE, PEP, and PEV for 

GUSF model in calibration and validation indicated 

that the hydrograph reproducibility by GUSF is the 

highest compared with the USF model.  

 

(2) AIC aspect 

   Further, the AIC aspect was also used to determine 

the best model for calibration and validation. Fig.5 

shows the 𝐴𝐼𝐶𝐶 values for the two models and it can 

be seen that the GUSF model received the lowest 

𝐴𝐼𝐶𝐶 except for calibration event 3. This higher 𝐴𝐼𝐶𝐶 

value of GUSF model for event 3 can be attributed to 

its higher RMSE during the event as shown in Fig.4 

(a). The lower AIC values of GUSF model in most of 

the events can be explained as the effect of 

incorporated rainfall distribution factor, 𝛾. Therefore, 

the GUSF is much more effective than the USF 

model with an additional optimized parameter. The 

 
Fig.3 Reproduced hydrographs by both models during 

calibration and validation. 
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Fig.4 Comparison of RMSE (mm/min), NSE, PEP, and 

PEV by the USF and GUSF models. 
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inclusion of parameter 𝛾 in the GUSF model aids to 

have a steep recession in the considered urban 

watershed and consequently found to be more 

suitable over the USF model for the use in urban 

watersheds. The rainfall distribution is temporally as 

well as spatially varying and the value of 𝛾  will 

depend on meteorological factors, basin geology and 

geomorphology, etc. Not only parameter 𝛾 is subject 

to change, but the remaining parameters of GUSF 

model will also vary in each event based on the 

meteorological factor and hence the real-time 

application of the model using the calibrated 

parameters is a challenging task. However, one 

solution to tackle this issue is the real-time prediction 

of the model parameters using data assimilation 

techniques which will improve the model 

effectiveness in an operational context even though 

the GUSF model performed well in validation. 

 

4. CONCLUSIONS 
 

   A generalized USF (GUSF) model was proposed to 

account for the basin rainfall spatial variability by 

introducing a new parameter 𝛾 in the existing USF 

model. The GUSF model was applied in the Kanda 

basin, Tokyo along with USF model to evaluate the 

effectiveness of 𝛾 in the GUSF model. The results 

revealed that GUSF model has the least RMSE (high 

NSE) compared with the USF model during 

calibration and validation which further shows that 

the SCE-UA method has successfully identified the 

optimal parameters. The lower values of PEP and 

PEV received by GUSF model further indicate that 

the incorporation of spatial distribution factor can 

drastically improve the performance of the model. In 

addition, the summary of AIC results shows that the 

GUSF received the lowest AIC values in calibration 

and validation compared with the USF model which 

make it the parsimonious model. As a conclusion, the 

GUSF model can be considered as the best not only 

for the hydrograph reproducibility but also the most 

parsimonious based on the AIC perspective during 

calibration and validation in an urban watershed 

when compared with the USF model. 
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Fig.5 The corrected AIC (𝐴𝐼𝐶𝐶 ) values during calibration 

and validation.  
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