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Parameter uncertainty analysis of rainfall-runoff models is very important especially in urban 

watersheds due to the high flood risk in these areas. Among the different methods available for 

uncertainty analysis, bootstrap method gained popularity in view of its flexibility. Hence, this study 

aims to conduct the parameter uncertainty analysis of the urban storage function (USF) model, a 

storage function model specifically developed for the urban watersheds, using the model-based 

bootstrap method. We successfully evaluated the uncertainty of USF model parameters and the 

results exhibited that the 95% confidence interval of all parameters is wide compared with the 

search range during parameter estimation except for two parameters. Moreover, the parameters with 

the highest and least uncertainties were identified. Further, model simulation efficiency using the 

estimated parameters was found to be high with a Nash-Sutcliffe Efficiency value of 97%. Lastly, 

the effect of parameter uncertainty on model simulation uncertainty was analysed and found that 

the SCE-UA method along with the model-based bootstrap method can predict, on an average, 68% 

of observed data within the simulation uncertainty range of USF model. 

 

   Key Words: urban storage function model, model-based bootstrap resampling method, parameter 
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1. INTRODUCTION 
 

   Urban areas are characterized by the presence of 

sewer systems and impervious surfaces which will 

accelerate the rainfall-runoff (R-R) transformation 

process, and flood flows are therefore higher and 

more rapid when compared to that in rural areas. 

Therefore, it is very important to detect urban floods 

because of the increased risks and costs associated 

with them. For this purpose, the R-R models are 

important tools and they play a central role in urban 

watersheds1). These models contain various 

components in the form of different equations and 

parameters, which further describes the hydrological 

processes and the physical watershed characteristics. 

The ability of a model to truly reflect the hydrological 

processes mainly depends upon the precision of its 

parameter values. Generally, the model parameters 

are quantified from the watershed properties or 

theoretically analysed by comparing with similar 

models2). However, after the introduction of 

computer-intensive statistics, the parameters are 
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estimated by calibrating the models against the 

available observations even though it will increase 

the efforts and cost taken for the data measurements 

required for calibration. The so-obtained calibrated 

parameters are influenced by several factors such as 

quantity and quality of input data, model error, 

correlation between the parameters, etc.3) and cannot 

fully characterize the actual processes, thus leading 

to a great level of uncertainty of parameters. This 

parameter uncertainty will further contribute to 

model simulation uncertainties and hence its 

quantitative evaluation is critical in reducing the 

uncertainty of these simulations. 

   Appropriate uncertainty consideration of the model 

parameters is necessary although it has been much 

ignored until recently. Recent researches have paid 

much more attention to the parameter uncertainty and 

its associated effects on the model performance. 

Among the different methods proposed for the 

assessment of parameter uncertainty, most of the 

techniques rely on either parametric methods or 

Bayesian methods4). However, in the parametric 

method, the structure of the model is specified a 

priori and the number and nature of the parameters 

are generally fixed in advance, and there is a little 

flexibility. Also, the Bayesian techniques necessitate 

the assumption of the prior distribution of model 

parameters4). Hence, the nonparametric method has 

gained popularity over the above methods because 

they make no prior assumptions on the model 

structure and is more flexible.  

   The bootstrap method, a nonparametric technique, 

has been developed by Efron5) for random resampling 

of the original data set to develop replicate data sets 

from which the underlying distribution of the 

statistics of interest such as mean, variation, 

correlation, etc. can be estimated. This resampling 

technique has applications in diverse fields like 

hydrology, groundwater and air pollution modelling, 

ecological indices, etc.6) in which it has been 

successfully used in hydrological modelling to 

estimate the sampling variability of reconstructed 

runoff7), to develop artificial neural network (ANN) 

models8), etc. by utilising the non-time series data. 

However, the use of bootstrap for time series data 

was limited because the classical bootstrap assumes 

that the data set is independent and identically 

distributed (iid)5) which means each data of the data 

set will be mutually independent and selected from 

the same population as the others at each index of 

time and space. Therefore, the direct resampling is 

not feasible for a time series data which exhibits 

strong temporal correlation, and the dependence 

cannot be preserved2).  

   In order to overcome the problem of dependence of 

time series, the bootstrap method can be extended 

either as a model based bootstrap9), which involves 

the resampling of model residuals or as a block 

bootstrap10) in which sequences of observations are 

resampled rather than the individual data points. 

Thereafter, the use of bootstrap methods in time 

series analysis has received considerable attention 

especially for the parameter uncertainty analysis by 

the estimation of confidence intervals (CI). For 

instance, parameter uncertainty of conceptual salt 

load model, trend analysis of temperature time series, 

etc.4), 11) was conducted using the block bootstrap. 

However, very limited studies have been conducted 

to quantify the parameter uncertainty of R-R models 

using the model-based bootstrap approach even 

though it is the topic of current research. Specifically, 

to the best of our knowledge, no studies have been 

reported in the urban watersheds for the parameter 

uncertainty analysis of R-R models. Hence, this study 

aims to analyse the parameter uncertainty of urban 

storage function (USF) model12), a relatively new 

storage function (SF) model specially developed for 

the urban watersheds where combined sewer systems 

are in use, using the model-based bootstrap method. 

The authors have already evaluated the performance 

of different SF models and found that the USF model 

has higher performance compared with conventional 

SF models for the Kanda river basin, a typical small- 

to medium-sized urban watershed in Tokyo13) and 

having a future role in urban hydrology.   

 

 

2. MATERIALS AND METHODS 

 

(1) Model-based bootstrap method  
   The classical idea behind the bootstrap method is 

the resampling and extraction of N samples from the 

original sample with an unknown distribution having 

a size of n. The time series data sets are highly 

dependent in nature and it is quite unreasonable to 

perform the classical bootstrapping which destroy the 

original dependency structure of the time series. 

Therefore, the model-based bootstrap method is 

utilised for this study and is described as follows9).   

   Consider the original data set {𝑋(𝑡), 𝑌(𝑡)}; where 

𝑡 = 1, … , 𝑛 , 𝑋(𝑡) : input data set, 𝑌(𝑡) : observed 

discharge data set, 𝑛: length of the sample data. The 

model discharge can be written as 𝑌(𝑡) =
𝐹(𝑋(𝑡), 𝜃) ; where 𝜃  is the parameter vector 

𝜃1, … . 𝜃𝑝 with 𝑝  being the number of model 

parameters2). Initially, we calibrate the model to 

obtain the estimated parameter vector 𝜃 and this was 

further used along with input data set to compute the 

simulated discharge data set, 𝑌̂(𝑡)  and it can be 

demonstrated as 𝑌̂(𝑡) = 𝐹(𝑋(𝑡), 𝜃). Then the model 

residuals were estimated using the following Eq. (1). 
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      𝜀(𝑡) = 𝑌(𝑡) − 𝑌̂(𝑡) = 𝑌(𝑡) − 𝐹(𝑋(𝑡), 𝜃)       (1) 

   The model residuals, 𝜀(𝑡) were assumed to be iid 

for 𝑡 = 1, … , 𝑛 which is the only assumption made 

for the bootstrapping. The assumption was checked 

by constructing the distribution plot of the residuals 

and it demonstrated a very small bias with a mean 

value close to zero. The detailed model-based 

bootstrapping procedure is outlined as follows: 

(1) Bootstrap resampling of the residual time series 

𝜀(𝑡) with replacement to form the new bootstrap 

residual sample series, 𝜀∗(𝑡). 

(2) Add the new series 𝜀∗(𝑡)  to the simulated 

discharge data set 𝑌̂(𝑡) to form the bootstrapped 

discharge data set as 𝑌∗(𝑡) = 𝑌̂(𝑡) + 𝜀∗(𝑡).  

(3) Calibrate the bootstrapped discharge data set 

with input data set as {𝑋(𝑡), 𝑌∗(𝑡)} to obtain the 

bootstrapped parameter vector 𝜃∗ and associated 

computed discharge data 𝑌̂∗(𝑡) = 𝐹(𝑋(𝑡), 𝜃∗). 

(4) Repeat the steps 1-3 N times to obtain bootstrap 

samples. In the present study, N is set as 1000.   

(5) Derive the ordered bootstrap estimates 
{𝜃𝑖1

∗ , … . , 𝜃𝑖𝑁
∗ } ; (𝑖 = 1, … , 𝑝) , for each 𝜃𝑖

∗  and 

obtain the 95% CI for 𝜃𝑖
∗  from the ordered 

bootstrap samples. 

 

(2) USF model  

   The USF model is characterized by the relationship 

between the storage and discharge and is given as12): 

        𝑠 = 𝑘1(𝑄 + 𝑞𝑅)𝑝1 + 𝑘2
𝑑

𝑑𝑡
(𝑄 + 𝑞𝑅)𝑝2      (2) 

where 𝑠: storage (mm), 𝑄: observed river discharge 

(mm/min), 𝑞𝑅: storm drainage from the basin through 

the combined sewer system (mm/min), 𝑡: time (min), 

𝑘1, 𝑘2, 𝑝1, 𝑝2:  model parameters. Combining the 

above Eq. (2) with the following continuity equation 

yields the nonlinear expression of USF model. 

          
𝑑𝑠

𝑑𝑡
= 𝑅 + 𝐼 − 𝐸 − 𝑂 − 𝑄 − 𝑞𝑅 − 𝑞𝑙           (3) 

where 𝑅: observed rainfall (mm/min), 𝐼: inflow from 

other basins (mm/min), 𝐸:  evapotranspiration 

(mm/min), 𝑂: water intake from the basin (mm/min), 

𝑞𝑙: loss to the groundwater (mm/min). Further, the 

loss to groundwater (𝑞𝑙) was defined by considering 

the infiltration hole height (z) and is given by12): 

            𝑞𝑙 = {
𝑘3(𝑠 − 𝑧)          (𝑠 ≥ 𝑧)

   0                         (𝑠 < 𝑧) 
}               (4) 

where 𝑘3  and 𝑧  are the parameters. The storm 

drainage 𝑞𝑅 is defined as12), 

   𝑞𝑅 = {
𝛼(𝑄 + 𝑞𝑅 − 𝑄0)    𝛼(𝑄 + 𝑞𝑅 − 𝑄0) <  𝑞𝑅 𝑚𝑎𝑥

𝑞𝑅 𝑚𝑎𝑥                    𝛼(𝑄 + 𝑞𝑅 − 𝑄0) ≥  𝑞𝑅 𝑚𝑎𝑥
}        (5) 

where α is the slope of the linear relationship between 

total discharge (𝑄 + 𝑞𝑅) and the storm drainage (𝑞𝑅), 

and 𝑄0  is the initial river discharge just before the 

rain starts12). Substituting Eqs. (2) and (4) into (3) will 

lead to a second-order Ordinary Differential Equation 

(ODE) and can be numerically solved after 

transforming into a first-order ODE. The river 

discharge 𝑄 will obtain from the solution.  

The USF is a seven-parameter model with 

parameters 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2, 𝑧, 𝛼  used in the R-R 

modelling. The model parameters are estimated using 

the SCE-UA method proposed by Duan3) with root 

mean square error (RMSE) as the objective function 

and it was minimised to identify the optimal 

parameters of the USF model. Further, the coefficient 

of determination, R2 and Nash-Sutcliffe Efficiency 

(NSE) were used to assess the USF model simulation 

efficiency with the identified parameters. The RMSE 

was used as an indicator for calibration and R2 and 

NSE for validation because these are the most basic 

and widely used evaluation criteria which can reflect 

the performance in a better way. The authors have 

already identified the optimal parameters of the USF 

model and evaluated its efficiency in hydrograph 

reproducibility with optimal parameters1).   

 

(3) Study area and data description 

   The study was conducted in the upper Kanda river 

basin having an area of 7.7 km2 at Koyo Bridge and 

is shown in Fig.1. The rainfall and water level data 

during 2003-2006 at one-minute interval were 

collected from the Bureau of Construction, Tokyo 

Metropolitan Government for the present study. The 

basin average rainfall was determined using the 

Thiessen polygon method from the eight rain gauges 

scattered over the basin. Five target events were 

selected from the data, whose 60-minute maximum 

rainfall (R60) is greater than 30 mm, for the present 

study and are shown in Table 1.  

 

Fig.1 Location map of study area. 

Table 1. Characteristics of target events. 

Event 

No.  
Event date 

R60 

(mm) 

Total R 

(mm) 

Climatic 

factors 

1 13/10/2003 53.9 57.5 
Intensive 

localized storm 

2 24~25/6/2003 42.8 55.5 Frontal event 

3 8~9/10/2004 42.0 261.1 Typhoon 

4 11/09/2006 32.7 37.9 Frontal event 
5 15/07/2006 31.5 31.5 Frontal event 
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3. RESULTS AND DISCUSSIONS  

 

   The seven parameters of USF model are shown in 

Table 2 with their descriptions and search range12) 

used in the SCE-UA parameter estimation method.  

 

(1) Parameter Uncertainty analysis 

   The estimated parameter vector, 𝜃  was used to 

perform the model-based bootstrap method and 

generated 1000 bootstrapped parameter vector of the 

USF model. Fig.2 shows the scatter plots of 1000 

bootstrapped parameter samples in log scale with 

their 95% CI. Since we use the SCE-UA global 

optimisation method for parameter estimation, we 

represented the search range of SCE-UA method as 

the lower and upper scales of the y-axis in Fig.2 and 

the position of 95% CI within the search range by 

grey shading with their percentage contribution to the 

search range. It is apparent from Fig. 2(a) that the 

parameter values of 𝑘1 lies close to the lower search 

range and converged to a reduced range between 20 

and 50. The 95% CI of 𝑘1 was very narrow compared 

to the search range and it constitutes only 4% of the 

search range. The scatter plot of parameter 𝑘2  was 

narrow as shown in Fig. 2(b) and the values were 

clustered around 500 to 1000 which was close to the 

lower search range. Likewise parameter 𝑘1, the 95% 

CI of 𝑘2 was around 4% of the search range.  The 

parameter 𝑘3  has a widespread pattern compared 

with parameters 𝑘1  and 𝑘2 , and most of the points 

were concentrated between 0.005 and 0.02 as 

depicted in Fig. 2(c). The 95% CI of 𝑘3 was quite 

wide and it represents 23% of the search range. There 

is a well spread pattern for parameter 𝑝1 from 0.2 to 

1 within the search range whereas most of the 𝑝2 

values are accumulated near the lower search range 

in between 0.2 and 0.4 as shown in Figs. 2(d) and (e) 

respectively. The 95% CI of these parameters are 

wide compared with 𝑘1  and 𝑘2 , and they comprise 

29% and 45% of search ranges respectively. It is 

evident from Fig. 2(f) that most of the 𝑧 values are 

gathered near one, which is the lower limit of the 

search range, with a wide range of variation in values 

from 1 to 20. Similar to 𝑘3 and 𝑝1, the 95% CI of 𝑧 

was 25% of the search range. Parameter 𝛼 

demonstrated a very widespread pattern beginning 

from the lower limit of the search range and ends at 

the upper limit as depicted in Fig. 2(g). It exhibited a 

very wide 95% CI and it was 51% of the search range.      
   After obtaining the 95% CI of each parameter, we 

computed the mean ( 𝜃̅ ), standard deviation (𝜎𝜃 ), 

Table 2. Description and search range of USF model 

parameters.  

Para- 

meter 
Definition 

Search 

range12) 

𝑘1 
Physical watershed 

characteristics14) 
[10, 500] 

𝑘2 
Loop relationship between the 

storage and discharge15) 
[100, 5000] 

𝑘3 Groundwater related loss [0.001, 0.05] 

𝑝1 Flow regime14) [0.1, 1] 

𝑝2 
Non-linear unsteady flow 

effects15) 
[0.1, 1] 

𝑧 Infiltration hole height [1, 50] 

𝛼 
Effect of storm drainage 

diverted to the treatment plant 
[0.1, 1] 

 

 
Fig.2 Scatter plots 1000 bootstrapped parameter 

samples of USF model with their 95% CI. 
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coefficient of variation (CV), and order of CV (OCV) 

of 1000 bootstrapped parameter vector and is shown 

in Table 3. It is clear from Table 3 that the bootstrap 

estimate of mean ( 𝜃̅ ) was close to the estimated 

parameter values (𝜃 ) except for parameter 𝑧 . The 

highest CV value was observed for parameter 𝑧 

which was around 135%. It was followed by the 

parameters 𝑘3  and 𝛼  whose CV values were about 

43% and 22% respectively. The remaining 

parameters exhibited CV values of less than 20% and 

the least CV value was noted for parameter 𝑘1 . 

Further, the parameters were ordered based on their 

CV values and the order of parameters is as follows: 

𝑧 > 𝑘3 > 𝛼 > 𝑝2 > 𝑝1 > 𝑘2 > 𝑘1. The highest and 

least uncertainty was demonstrated by the parameters 

𝑧 and 𝑘1 respectively based on their CV values.   
   The parameter 𝑧  represents the infiltration hole 

height in USF model12) which highly depends upon 

the height of river storage, rainfall intensity, etc. and 

will be highly varying from event to event. Also, 

most of the time, the optimum value of 𝑧 estimated 

from the 1000 bootstrapped discharge data sets by 

SCE-UA method is the lower limit of the search 

range which is one as shown in Fig. 2(f). This further 

indicates that the search range recommended by 

Takasaki et al.12), which was set based on the physical 

minimum and maximum values of parameters, is not 

sufficient and reconsideration of the search range is 

necessary. Parameter 𝑘3  is associated with 𝑧  to 

depict the groundwater related loss as shown in Eq. 

(4) and there is a chance of high correlation between 

these two parameters which will lead to high 

uncertainty in 𝑘3  values after z. Additionally, 

parameter 𝛼  in Eq. (5) has a direct impact on the 

outflow from the basin through the combined sewer 

system and is vulnerable to changes from time to time 

and got a higher uncertainty after 𝑧  and 𝑘3 . The 

parameters 𝑝2, 𝑝1,  and 𝑘2  are influenced by the 

changes in flow conditions14), 15) and are prone to 

variations in different degrees. The parameter 𝑘1 

describes the watershed features14) and the chance to 

change this watershed features within a short span is 

low. Hence, this could be a reason for the least 

uncertainty exhibited by parameter 𝑘1.  

(2) Model simulation uncertainty 

   The R2 and NSE were used to assess the USF model 

simulation efficiency and Fig.3 shows the linear 

regression of the observed and simulated data. For 

easy understanding, the 𝑥 = 𝑦 line is also plotted as 

a reference in blue colour. From Fig.3, it can be 

observed that there is a lower prediction of discharge 

values greater than 0.3 mm/min, whereas the low 

flows exhibit almost close fit except for very few data 

points in a loop shape. The R2 and NSE values were 

found to be 0.97 and 97.6% respectively which 

indicate that the SCE-UA method has successfully 

identified the optimal parameters for the model. The 

reproduced hydrographs for events 1 and 3 are shown 

in Fig.4 (in red colour as simulated) and the model 

was capable to reproduce the shape as well as the 

peak discharge which makes the model parsimonious.     

   Furthermore, the model simulation uncertainty 

range due to the parameter uncertainty was computed 

by estimating the 95% CI of the 1000 bootstrapped 

discharge series samples. Fig.4 shows the simulated 

uncertainty range due to the parameter uncertainty of 

the model for two selected events (events 1 and 3) out 

of five due to page limitation. It is desirable to have 

a narrow range and can be seen from Fig.4 that the 

range is wide at the peak flows compared to the range 

at the low flows, and hence it can be envisaged that 

the model simulates peak discharge with high 

uncertainty compared with low flows. This can be 

attributed to the uncertainties involved in the rainfall 

during high flows. The greater the number of 

observations fall within the uncertainty interval, the 

greater the capability of the model to reasonably 

capture the observed discharge. The percentage of 

observed discharge falling inside the ranges are 35% 

and 63.2% for events 1 and 3 respectively. Likewise, 

the observations falling inside the range during 

remaining events 2, 4, and 5 are 76.7%, 87.5%, and 

78.1% respectively. Therefore, the model is good in 

predicting the observations within this range except 

for event 1. During event 1, the model uncertainty 

range cannot cover most of the observed values and 

this can be ascribed to the highly fluctuating rainfall 

Table 3. Different statistics computed for the 

bootstrapped parameter sets along with their 

initial estimated parameter vector 𝜃̂. 

Parameter 𝜃 𝜃̅ 𝜎𝜃 CV (%) OCV 

𝑘1 43.78 43.57 3.46 7.96 7 

𝑘2 627.19 647.22 62.28 9.62 6 

𝑘3 0.005 0.006 0.002 43.20 2 

𝑝1 0.398 0.390 0.061 15.71 5 

𝑝2 0.328 0.336 0.065 19.44 4 

𝑧 1 2.591 3.49 134.88 1 

𝛼 0.424 0.454 0.099 21.92 3 

 

 
Fig.3 Linear regressions of observed and simulated 

discharge for USF model.  
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pattern which is an intensive localised storm. On 

average, 68% of the observations lay within this 

prediction interval of the model. This indicates that 

the SCE-UA method along with the model-based 

bootstrap reasonably well predicted the uncertainty 

range of USF model, and captured most of the 

observed discharge within this range.  

 

4. CONCLUSIONS 
   The model-based bootstrap technique was utilised 

to analyse the parameter uncertainty of USF model in 

order to assess their impact on the model simulation 

in the upper Kanda River basin, an urban watershed 

in Tokyo. The 95% CI obtained from 1000 

bootstrapped parameter samples showed a wider 

confidence band for most of the parameters.  Further, 

parameter 𝑧  was identified with the highest 

uncertainty by comparing the bootstrap estimate of 

CV, and the uncertainty of other parameters was 

relatively low. Additionally, the effect of parameter 

uncertainty on the model simulation uncertainty was 

investigated by computing the 95% CI of 1000 

bootstrapped discharge series. The number of 

observations falling inside the 95% CI was found to 

be 68% which further disclosed that the model-based 

bootstrap can reasonably predict the observed 

discharge within the uncertainty range of USF model.  

   This study primarily focuses on the model-based 

bootstrap approach for the parameter uncertainty 

analysis. However, it is also necessary to compare 

this technique with other resampling techniques, with 

redefined SCE-UA search ranges, to check the 

reliability of the assumptions made. 
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Fig.4 Simulation uncertainty range due to parameter uncertainty for (a) event 1, and (b) event 3.   
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