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The storage function (SF) models have been extensively used for the rainfall-runoff modeling in 
which the Kimura’s model with lag time is widely used as a fundamental flow model, especially in 
Japan, due to its simple model structure. In this study, therefore, we aim to analyze the effect of lag 
time in the conventional Kimura’s SF model on hydrograph reproducibility and compared with 
Prasad’s SF model for an urban watershed in terms of error functions, storage hysteresis loop, and 
Akaike information criterion (AIC) perspective. The analysis of the effect of lag time on hydrograph 
reproducibility revealed that the use of optimum lag time in Kimura’s model can greatly improve 
the performance. Further, the Kimura’s SF model with optimum lag time exhibited higher 
hydrograph reproducibility associated with lowest error evaluation criteria and lowest AIC values 
in the single-peak events which makes it the superior model for single-peak events. Concurrently, 
Prasad’s model depicted better performance in terms of reproducibility and AIC aspect during the 
multi-peak events, which indicates that it is the parsimonious model for multi-peak events.  

Key Words: Kimura’s model, Prasad’s model, lag time, storage hysteresis loop, Akaike 
information criterion 

1. INTRODUCTION

   The estimation of urban discharge is a thriving 
challenge in the field of hydrology due to the 
associated flood risk and cost. Therefore, the accurate 
prediction of urban discharge hydrograph, which 
includes the estimation of flood peak, time to peak, 
volume, etc., is important in order to avoid the losses 
due to flood risk. The storage function (SF) model 
was invented by Kimura1) with two parameters and 
lag time which has been widely used in many parts of 
the world, especially in Japan, due to its relatively 
simple model structure and numerical procedure2).

The model was originally developed for the 
calculation of flood flow resulted from the effective 
rainfall by dividing the basin into pervious and 
impervious areas1). The storage equation of Kimura 
is a monovalent function of discharge. However, the 
bivalency was achieved by the introduction of lag 
time in the continuity equation and attained the 
storage-discharge hysteresis loop. Additionally, the 
incorporated lag time skilfully addresses the 
hydrograph lagging by delaying the runoff as a 
function of effective rainfall. Subsequently, Prasad 
proposed a three parameter SF model by assuming 
the storage as a bivalent function of discharge by the 
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introduction of an additional parameter in the storage 
equation itself, rather than in the continuity equation, 
which handled the loop shape of the storage-
discharge relationship3). The model also presented an 
additional term for the representation of unsteady 
flow effects which is observed in natural channels.    
   Later, several improved SF models have been 
proposed in terms of how to express its nonlinearity, 
model structure, and the storage hysteresis loop2), 4). 
However, all these developed models requiring 
rainfall loss estimation to link the effective rainfall 
input with direct runoff. Hence it further involves the 
use of different subjective methods for the separation 
of baseflow and effective rainfall component from 
total discharge and total rainfall respectively, which 
may further add uncertainties to the model 
parameters and simulation. In order to eliminate the 
deficiencies included in the separation processes, 
Baba et al. introduced an SF model with loss 
mechanism by directly relating the observed rainfall 
to the observed discharge and implemented in the 
mountainous river basin of Hokkaido, Japan5). Soon 
after, Takasaki et al. developed a new urban SF 
(USF) model considering the urban runoff process 
which also uses the observed rainfall and runoff for 
the flood prediction6). The authors have already 
evaluated different SF models which include 
Kimura’s model without lag time7).  
    The SF models with the same number of 
parameters have not been evaluated not only in terms 
of the hydrograph reproducibility but also the storage 
hysteresis loop point of view for an urban watershed 
as far as the authors know. Specifically, there are no 
studies which compare the effectiveness of SF 
models in terms of the number of optimized 
parameters and the information criteria aspect. Hence, 
this study aims to compare the performance of two 3-
parameter SF models of Kimura and Prasad in terms 
of hydrograph reproducibility, storage hysteresis 
loop, and Akaike information criterion (AIC) 8) 
perspective and analyze the effect of lag time in the 
performance of Kimura’s model by directly coupling 
the observed rainfall to observed discharge for an 
urban watershed. The Kimura’s model with and 
without lag time was considered to analyze the effect 
of lag time, and compared with Prasad’s SF model 
for the selected flood events of the upper Kanda river 
basin, a typical small to medium-sized urban 
watershed in Tokyo. The Shuffled Complex 
Evolution-University of Arizona (SCE-UA) global 
optimization method9) was used to estimate the model 
parameters of each event with root mean squared 
error (RMSE) as the objective function. First, the 
effect of lag time in Kimura’s model on different 
performance evaluation criteria of RMSE, Nash 
Sutcliffe Efficiency (NSE) and other error functions 

was analyzed. Further, the optimized SF models were 
assessed for reproducibility of hydrograph using the 
same performance evaluation criteria and error 
functions. Also, the storage hysteresis loop effect was 
examined by fitting the storage loop estimated by the 
models. Additionally, the authors have utilized AIC 
to identify the effective SF model by considering the 
lag time for an urban watershed based on the 
information theory perspective8).  

 
 

2. MATERIALS AND METHODS 
 
   Urban watersheds are characterized by the presence 
of sewer systems and a high percentage of 
impervious surfaces, which will accelerate the 
rainfall-runoff transformation process10). 
Consequently, the runoff response at the outlet will 
occur immediately after the rainfall within a short lag 
time and will lead to the generation of flash floods. 
Therefore, it is important to use the rainfall-runoff 
models that incorporate lag time for the accurate 
prediction of urban floods. The Kimura’s SF model 
uses lag time parameter and Sugiyama represented 
this parameter as a function of basin area, mainstream 
length, mean slope length, etc2). Therefore, the use of 
Kimura’s model with lag time can closely predict the 
observed hydrograph. Since the lag time estimation 
is a tedious process, we analyzed the effect of lag 
time on Kimura’s model and made an attempt to 
understand whether the Kimura’s model without lag 
time can exhibit a comparable performance with 
Kimura’s model with lag time. Also, in order to check 
how effective the Kimura’s model with lag time, we 
selected another 3-parameter SF model of Prasad.   
         
(1) Kimura’s SF model with lag time 
   In this paper, the authors used the Kimura's SF 
model with one storage tank for the pervious area 
which is widely used as a special case of Kimura’s 
original model and is given as1): 

                                                (1) 

where  storage at time  (mm),  direct 
runoff at time  (mm/min), and  model 
parameters. Kimura introduced the bivalence of 
storage by the inclusion of lag time in the continuity 
equation and is as follows: 

                                     (2)           

where  lag time,  effective rainfall at time t-Tl. 
The above continuity equation requires the 
estimation of effective rainfall and baseflow 
separation for the evaluation of direct runoff, which 
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is a subjective process. Therefore, in order to avoid 
the separation process, we used a different continuity 
equation which can include all the possible inflows 
and outflows with lag time instead of Eq. (2). Fig.1 
shows the schematic diagram of all the possible 
inflow and outflow components of an urban 
watershed. The continuity equation associated with 
the components of Fig.1 is given as6):  

                             (3) 

where  observed rainfall at time  
(mm/min),  evapotranspiration at time  
(mm/min),  urban specific and groundwater inflows 
from other basins at time  (mm/min),  water 
intake from the basin at time  (mm/min),  
groundwater related loss at time  (mm/min),  
observed river discharge at time  (mm/min). The 
loss to groundwater ( ) was defined by considering 
the infiltration hole height ( ) and is given by6):              

               (4) 

where  and  are the parameters. Substituting Eq. 
(1) into Eq. (3) will lead to a first-order ordinary 
differential equation (ODE) as follows: 

                     (5) 

   In order to solve this first-order ODE, the change of 
variable is performed as follows: 

                                                                (6)                                                     

   Substituting Eq. (4) into Eq. (5) and performing the 
change of variables will lead to the emergence of two 
first-order ODEs concerning two conditions as 
shown in Eq. (4). When , the first-order ODE is 
as follows: 

         (7a) 

   In the case of , the first-order ODE 
concerning the same processes are given as, 

                           (7b) 

   By solving the non-linear ODE of (7a) and (7b) 
numerically, we obtain the total discharge . In order 
to solve the first-order ODE, we used the Runge-
Kuta-Gill (RKG) method which is one of the 
numerical solution methods. 
 
(2) Prasad’s SF model 
   The SF model equation proposed by Prasad in order 
to describe the looped storage-discharge relationship 
is given as3):  

                                         (8) 

where  is the model parameter. The authors have 
utilized the same continuity Eq. (3) without lag time 
in order to avoid the separation process. Solving Eqs. 
(8), and (3) without lag time in the same way as 
described in the aforementioned section using the 
RKG method will lead to the total river discharge 
estimated by the Prasad’s SF model.      
   The conventional Kimura’s and Prasad’s SF 
models are three parameter models with parameters 

 and  respectively. However, in 
order to consider the observed discharge as a whole 
and to reduce the efforts taken for the separation, we 
considered all possible inflows and outflows in Eq. 
(3) which further added two more parameters  and 

 to each model and transformed the 3-parameter 
models into 5-parameter models. In order to analyze 
the effect of lag time, the same Kimura’s model was 
considered with the lag time equal to zero which is 
referred to as Kimura’s model without lag time 
hereafter in the study. The Kimura’s model with 
optimized lag time was mentioned as Kimura’s 
model throughout the study.  
   The performance of a model highly depends on 
how well the model is calibrated. There are chances 
for the existence of multiple optima (more than one 
solution) due to the non-linear structural 
characteristics of SF models. In order to overcome 
this problem, the SCE-UA method proposed by 
Duan9), which will identify the global optimum 
parameters associated with a given calibration dataset, 
was used to identify the optimal parameters of all the 
three models. The SCE-UA method has been 
successfully utilized for the parameter estimation of 
different rainfall-runoff models including the SF 
models11). The search range of parameters for SCE-

 
Fig.1 Schematic diagram of all possible inflow and

outflow components of an urban watershed. 
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UA was set as, (10-500), (100-5000), (0.001-
0.05), (0.1-1),  (1-50), and  (0-25).  

 
(3) Hydrograph Reproducibility 
   The hydrograph reproducibility of models with the 
observed one was assessed using the RMSE, NSE, 
and other error functions of percentage error in peak 
(PEP), percentage error in volume (PEV) 12) and error 
in time to peak (ETP). The ETP is defined as, 

                                                    (9) 

where  observed time to peak discharge (min), 
 computed time to peak discharge (min).  

   The lag time in Kimura’s model is the lag between 
the peak rainfall and discharge and have a significant 
influence on the hydrograph reproducibility by 
delaying the runoff. Hence, it is important to assess 
the effect of lag time on the hydrograph 
reproducibility by Kimura’s model. To this purpose, 
lag times ranging from 0 to 25 min was considered 
and analyzed the associated changes in different 
hydrograph reproducibility characteristics such as 
RMSE, NSE, PEP, PEV, and ETP for each event. 
Then, the hydrograph reproducibility by the 
Kimura’s model was compared with the Prasad’s 
model for further performance evaluation. 
Additionally, AIC was also used in order to identify 
the best model for each event8). The best model is the 
one with the lowest AIC score and is given by, 

                                       (10) 

where  number of parameters to be estimated and 
 the maximized log-likelihood function of the 

model estimated. Later, this concept was refined to 
correct for small data samples as13): 

                                              (11) 

where  sample size.  
 
(4) Study area and data used 
    The target basin is the upper Kanda river basin 
with an area of about 7.7 km2 at Koyo Bridge as 

shown in Fig.2.  The rainfall and water level data at 
one-minute interval was collected from the Tokyo 
Metropolitan Government (TMG) during 2003-2006 
for the study. Five target events were selected from 
the data, whose 60-minute maximum rainfall (R60) is 
greater than 30 mm, for the application of SF models 
and are shown in Table 1. The rainfall data from the 
eight rain gauges were used to compute the 
catchment average rainfall by using the Thiessen 
polygon method. The inflow component I was fixed 
at 0.0012 mm/min based on the business annual 
report of the TMG. The other outflow components O 
and E were set at zero6).  
 
 
3. RESULTS AND DISCUSSIONS 
 
(1) Parameter estimation 
     The event-based optimal parameters of all the 
models were estimated using the SCE-UA 
optimization method and are shown in Fig.3. The 
convergence of parameters was also checked and it 
was found that the parameters converged before the 
50th generation in each SCE-UA application run 
which further indicated that the SCE-UA method has 
the ability to identify the parameters that can provide 
a good correspondence between the simulated and 
observed discharge. Figs.3 a), b), c), and d) show the 
parameters  and  respectively, and these 
are associated with all the considered models. Fig.3 
a) shows that the Kimura’s model has the lowest and 

 
Fig.2 Index map of the study area. 

Table 1. Characteristics of target events. 

Event 
No.  Event date R60 

(mm) 
Total R 
(mm) 

Climatic 
factors 

1 13/10/2003 50.4 56.2 Intensive 
localized storm 

2 25/6/2003 42.3 42.7 Frontal event 
3 8~10/10/2004 34.2 247.4 Typhoon 
4 11/09/2006 32.6 37.8 Frontal event 
5 15/07/2006 31.5 31.5 Frontal event 
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quite similar  values compared with other models 
among all the events except event 5. The other two 
models, Kimura without lag time and Prasad, have 
quite near values of  and they come closer to the 
values of Kimura’s model during events 3 and 5. 
Fig.3 b) shows that the  values of Kimura’s model 
are highly fluctuating among the events and are far 
higher than other model parameter values. However, 
the  value of all the three models meets at event 3, 
which is a multi-peak event. The other two models 
have alike  values and are consistent with the 
events. The parameter  exhibits the similar pattern 
of  and all the model parameters coincide at event 
3 as shown in Fig.3 c). Kimura’s model has higher 
values of  compared with other models which are 
relatively stable. It can be clearly seen from Fig.3 d) 
that there is a gradual increase in the values of 
parameter  in Prasad’s model from event 2 onwards, 
in contrast to the consistent values of  in Kimura’s 
model. The Kimura’s model without lag time was 
also able to generate  values analogous to Kimura’s 
model except for event 1. The parameter  depicted 
in Fig.3 e) is present only in Prasad’s model and it 
ranges between 300 and 1000. The parameter,  
depends on the hyetograph and is varying from event 
to event as shown in Fig.3 f). The observed maximum 
and minimum  are 20 and 10 min respectively and 
conclusively we can say that the watershed response 
to a rainfall event is 16 min on an average. This 
shorter lag time depicts that the watershed can 
generate floods immediately after the rainfall.  

(2) Hydrograph reproducibility  
    First and foremost, the effect of lag time ( ) in 
Kimura’s model was analyzed using the performance 
evaluation criteria of RMSE, NSE, PEP, PEV, and 
ETP for each event and are shown in Fig.4. The 
values corresponding to =0 represent the Kimura’s 
model without lag time and the values at optimized 
lag time represent Kimura’s model and are tabulated 
in Table 2. It can be envisaged from Fig.4 a) that the 

 
Fig.4 Effect of lag time on a) RMSE, b) NSE, c) PEP, d) 

PEV, and e) ETP by Kimura’s model (Ev 
represents event). 
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Fig.3 Event-based optimal parameters for the Kimura with 

and without lag time, and Prasad’s models. 
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RMSE have high value at =0. It starts decreasing 
with increase in  until it reaches the minimum 
RMSE values at optimum . Once it reaches the 
minimum RMSE, it begins to increase with further 
increase in . The NSE also followed the same 
pattern of RMSE as shown in Fig.4 b), but obviously 
in the opposite direction. Apart from RMSE and NSE, 
the PEP exhibited a different trend with changes in  
as shown in Fig.4 c). It starts to decrease with 
increase in  and the PEP values close to zero was 
obtained before reaching the optimum  in all the 
events. The changes in PEV values with changes in 

 of the model are shown in Fig.4 d) and are similar 
to the trend in PEP values. The minimum PEV value 
adjacent to zero was observed at a different  rather 
than the optimized value except for event 5. 
Generally, with the increase in , the underestimated 
peak discharge progressively moved to 
overestimation and the overestimated volume 
gradually changed to underestimation. Fig.4 e) shows 
that the ETP gradually advances from early to late 
prediction with the increase in  and approaches 
zero at a particular lag time rather than the optimum 
one. The results revealed that the lag time has a 
higher impact on the hydrograph reproducibility 
characteristics. Hence, the estimation of optimum lag 
time which gives the best combination of evaluation 
criteria is essential to achieve a better performance. 
   Further, the hydrograph reproducibility in terms of 
the error functions by the three models (Kimura 
without lag time, Kimura with optimized lag time, 
and Prasad) for each event are shown in Table 2 
which include RMSE, NSE, PEP, PEV, and ETP. 
Additionally, Fig.5 shows the visual representation 
of hydrograph reproducibility of the five selected 

events by the models. From Table 2, we can see that 
Kimura’s model without lag time received highest 
RMSE and least NSE in all the events which further 

Table 2 Comparison of RMSE, NSE, PEP, PEV, and ETP 
by the SF models (K represents Kimura’s 
model). 

Event 
No.  Model RMSE 

(mm/min) 
NSE 
(%) 

PEP 
(%) 

PEV 
(%) 

ETP 
(min) 

1 
K(Tl=0) 0.051 89.6 6.4 -9.4 7 
K(Tl=16) 0.012 99.4 3.2 0.3 8 
Prasad 0.016 98.9 -0.5 -1.2 -1 

2 
K(Tl=0) 0.048 74.5 19.9 -12.8 13 
K(Tl=16) 0.012 98.5 -11.6 0.4 -2 
Prasad 0.014 97.8 7.9 1.6 -4 

3 
K(Tl=0) 0.025 92.9 9.1 -1.7 10 
K(Tl=10) 0.015 97.4 -8.0 1.0 3 
Prasad 0.013 98.1 3.2 0.4 -5 

4 
K(Tl=0) 0.032 53.1 42.8 -7.3 15 
K(Tl=20) 0.004 99.1 -7.2 2.1 -1 
Prasad 0.017 86.0 26.0 4.1 -2 

5 
K(Tl=0) 0.031 56.8 40.6 -11.6 14 
K(Tl=20) 0.002 99.8 -1.4 0.01 -1 
Prasad 0.017 86.9 28.0 0.9 -3 

 
Fig.5 Reproduced hydrographs by each model for a) 

event 1, b) event 2, c) event 3, d) event 4, and 
e) event 5. 
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reveals its low hydrograph reproducibility. It is 
evident from the table that the model always 
underestimated peak discharge (positive PEP) and 
overestimated the volume (negative PEV) with an 
early peak prediction (positive ETP) in all the events. 
It is also clear from Fig.5 that the Kimura’s model 
without lag time considerably underestimated the 
peak discharge with a highly deviated recession limb 
and lags behind the observed hydrograph with an 
early estimated peak. However, the introduction of 
lag time in Kimura’s model drastically changed the 
RMSE to the least and NSE to the highest values 
except for event 3, a multi-peak event, as shown in 
Table 2. Also, the model started to slightly 
overestimate the peak discharge with a late peak 
prediction which was very close to the observed time 
to peak except for event 1. The model was able to 
reproduce the volume which was close to the 
observed volume even though it was consistently 
underestimated very slightly. It can also be envisaged 
from Fig.5 that the Kimura’s model slightly 
overestimated the peak discharge in all the events 
except for event 1 even though it fits well with the 
rising and recession limbs. Therefore, the results 
exhibited that the introduction of lag time in 
Kimura’s model greatly improved its reproducibility.  
   On the contrary, the Prasad’s model has the lowest 
RMSE and highest NSE for event 3 and having 
comparable RMSE and NSE values with Kimura’s 
model during the rest of the events. The Prasad’s 
model gives best PEP values in events 1, 2, and 3 
among all the models as shown in Table 2 even 
though it considerably underestimated the peak 
discharge during events 4 and 5 which is evident from 
Fig.5. Therefore, the Prasad’s model can be 
considered as the good model in estimating the peak 
discharge for the single as well as multi-peak events 
compared with Kimura’s model. The model was also 
able to reproduce the shape of the hydrograph in 
events 1, 2, and 3 although it depicted a deviated 
rising limb in the events 4 and 5 as shown in Fig.5. It 
is noticeable from the table that the Prasad’s model 
received low PEV values close to zero throughout all 
the events. However, the model has got the least PEV 
value only during event 3, which further revealed that 
the model is good for the volume estimation of multi-
peak events over the Kimura’s model. On the other 
hand, Kimura’s model was superior to Prasad’s 
model in the volume estimation of single-peak events. 
The ETP values exhibited in Table 2 revealed that 
the Kimura’s model is good in estimating the time to 
peak discharge compared with Prasad’s model during 
all the events, especially in multi-peak events. This is 
because of the presence of lag time in Kimura’s 
model which can delay the time to peak discharge 
based on the rainfall.  

   The above results demonstrated that Kimura’s 
model has high hydrograph reproducibility during the 
single-peak events. This can be attributed to the effect 
of incorporated lag time on the runoff response of the 
basin. The consideration of single lag time for the 
multiple peaks in a multi-peak event may be 
insufficient to achieve a higher reproducibility. 
Therefore, the Prasad’s model can be contemplated 
as the good model for reproducibility of multi-peak 
events. Additionally, hydrograph characteristics of 
Kimura’s model without lag time revealed that the 
model is not appropriate for both single and multi-
peak events which additionally showed the relevance 
of lag time in Kimura’s SF model.  
 
(3) Storage hysteresis loop effect 
   Furthermore, the storage hysteresis loop effect was 
analyzed by computing the storage estimated by the 
models. Fig.6 shows the storage hysteresis loops 
reproduced by the models for all the events. The 
continuity Eq. (3) was used to compute the storage 
which requires the estimation of the outflow 
component , that represents the groundwater 
related loss. However, the quantification of  further 
needs two parameters  and  as shown in Eq. (4) 
which is not known for the actual watershed. 
Consequently, we have computed the storage 
estimated by the models and compared the storage 
loops among the models. It can be envisaged from 
Fig.6 that Kimura’s model without lag time 
generated a bivalent storage loop and the storage is 
increasing with an increase in discharge. After the 
inflection point, the loop changed the direction and 
the storage started to decrease. We can see from 
Figs.6 a), b), d), and e) that the model generated 
single loops during the single-peak events, while the 
produced loop had a complicated shape with multiple 
loops in multi-peak event 3 as shown in Fig.6 c). 
However, it is clear from Fig.6 that the storage loop 
produced by Kimura’s model was very narrow and 
become close to a monovalent storage-discharge 
relationship in all the events even though the model 
has multiple loops during event 3. The narrow loop 
was arisen due to the incorporation of the lag time 
which was 16, 16, 10, 20, and 20 min during events 
1, 2, 3, 4, and 5 respectively as shown in Fig.3 f). The 
storage estimated by the model was very low 
compared with the Kimura’s model without lag time. 
On the other hand, Prasad’s model exhibited a clear 
bivalent storage-discharge relationship as shown in 
Fig.6. The storage by Prasad’s model during the 
rising limb portion was close to that of Kimura’s 
model without lag time while the storage during 
recession limb portion was lower than the Kimura’s 
model without lag time in all events except for event 
5. This difference in the storage loop behavior 
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between the models during event 5 can be possibly 
ascribed to the higher z value of the model as shown 
in Fig.3 d). The estimated storage by Prasad’s model 
was far higher with a relatively wide loop when 
compared with the storage loop of Kimura’s model. 

(4) AIC aspect 
   The best model for each selected event was 
determined by using the AIC aspect and are shown in 
Table 3. The best model is the one with the lowest 
AIC score. The results show that the Kimura’s model 
without lag time could not succeed to achieve lower 
AIC values in any of the events and was far higher 
compared with other model values. The addition of 
lag time parameter in the Kimura’s model 
substantially reduced the AIC values and made it 
comparable with the Prasad’s model values during all 
the events. The Kimura’s model with optimized lag 
time has the lowest AIC values in events 1, 4, and 5 
which are single-peak events. Concurrently, Prasad’s 
model received lowest AIC values in events 2 and 3 
in which event 3 is a multi-peak event. The corrected 
AIC (AICc) values computed for each event was 
almost equal to the AIC values which indicate that 
the dataset used is long enough to consider for the 
AIC analysis13). The AIC values highly depend on the 
number of parameters to be optimized and it is 
evident that the models with the same number of 
parameters may have almost the same AIC values. 
However, the Kimura and Prasad’s models have the 
same number of optimized parameters and yet the 
Kimura’s model received lowest AIC values during 
most of the single-peak events which make it the best 
model for the single-peak events compared with 
Prasad’s model. This higher performance exhibited 
by Kimura’s model can be attributed to the presence 
of lag time parameter which can effectively 
constitute the hydrograph lagging. On the other hand, 
Prasad’s model received the lowest AIC value during 
the multi-peak event which makes it suitable for 
multi-peak events. The higher AIC score generated 
by Kimura’s model without lag time specifies that the 
incorporation of lag time is indispensable in order to 
achieve better performance in urban watersheds. 
        
4. CONCLUSIONS 
   The Kimura’s model with and without lag time and 
Prasad’s model with optimal parameters were applied 

Table 3 The summary of AIC results for the five events. 

Event  
No. Model Kimura  

without  Kimura Prasad 

1 AIC 552.0 389.4 395.2 
AICc 552.1 389.6 395.3 

2 AIC 1103.0 859.3 854.7 
AICc 1103.2 859.4 854.8 

3 AIC 4128.1 3877.6 3842.4 
AICc 4128.2 3877.6 3842.4 

4 AIC 2802.2 2240.3 2299.5 
AICc 2802.3 2240.4 2299.6 

5 AIC 1729.9 1398.2 1444.6 
AICc 1730.0 1398.3 1444.7 

 

Fig.6 Storage hysteresis loop reproduced by each model 
for a) event 1, b) event 2, c) event 3, d) event 4, 
and e) event 5.  

0.1 0.2 0.3 0.4 0.5 0.60
0

10

20

30

40

0.1 0.2 0.3 0.40
0

10

20

30

40

0.1 0.2 0.3 0.4 0.50
0

10

20

30

40

50

0.05 0.10 0.15 0.20 0.250
0

10

20

30

0.05 0.10 0.15 0.20 0.250
0

10

20

30
(e)

(d)

(c)

(b)

 
St

or
ag

e 
(m

m
)

Kimura without Tl  Kimura  Prasad

(a)

 

St
or

ag
e 

(m
m

)

 

St
or

ag
e 

(m
m

)

 

St
or

ag
e 

(m
m

)

 

St
or

ag
e 

(m
m

)

Discharge (mm/min)

- 76 -I_76



 

9 
 

to five selected flood events in an urban watershed in 
Japan in order to evaluate the hydrograph 
reproducibility. The major findings of this study can 
be summarised as follows: 
1. The differences in performance between the 

Kimura’s model with and without lag time can be 
attributed to the differences in the values of 
parameters k1, p1, k3, and Tl. This further indicated 
that the SCE-UA method succeeded in locating 
the global optimum with an additional parameter. 

2. The effect of lag time in Kimura’s model has not 
yet reported and the results of our current study 
revealed that the inclusion of optimized lag time 
can considerably enhance the performance of 
Kimura’s model and its incorporation is inevitable.  

3. The notable difference between the storage-
hysteresis loops estimated by Kimura with and 
without lag time models revealed the effect of lag 
time on the storage characteristics of an urban 
watershed. The inclusion of lag time converted the 
bivalent storage-discharge relationship into a 
nearly monovalent relationship.   

4. The inability of Kimura’s model to truly 
reproduce the observed hydrograph of multi-peak 
events can be ascribed to the consideration of 
single lag time for the multiple peaks in the model 
which makes the model parsimonious only for the 
single-peak events.       

5. The flexibility of the SCE-UA method to 
incorporate the structural modification of models 
enhanced the performance of Prasad’s model by 
the competitive evolution of model parameters in 
multi-peak events. It also confirmed that the 
modification of the model framework in order to 
accommodate all the possible inflows and 
outflows of an urban watershed can portray the 
model structure in a more successful way. 

6. It was noted that the models with the same number 
of optimized parameters produced quite different 
AIC values. This strengthens the argument raised 
by Gan et al.14) that the structure of the model is 
of critical importance for the model performance 
rather than the number of optimized parameters.  

   This study successfully demonstrated the effect of 
lag time in Kimura’s SF model and compared it with 
Prasad’s model for an urban watershed. The results 
obtained from this study can be further used to 
formulate a basic idea on how different the 
performance of SF models. This accumulated 
knowledge is applicable not only in the Kanda river 
basin but also in any other urban watersheds around 
the world because the Kanda river basin has all the 
typical urban watershed characteristics. Therefore, 
this study put forwards an important need for the 
planning of future studies in order to check the 

applicability of the proposed model frameworks for 
the better flood prediction in other urban watersheds.      
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