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A B S T R A C T

Rapid urbanization is considered to be an important factor that contributes to flood risk. Therefore, flood pre-
diction in urban watersheds using appropriate runoff models is essential to avoid the harmful effects of floods.
There are various storage function (SF) models such as Kimura, Prasad, Hoshi, and urban storage function (USF)
models that have been widely used in different parts of the world as rainfall-runoff models in which the USF
model was recently developed in Japan for the specific application in urban watersheds. However, the identi-
fication of an appropriate model remains challenging in the field of hydrology. Therefore, this study aims to
identify an effective SF model for an urban watershed in terms of hydrograph reproducibility and from an Akaike
information criterion (AIC) perspective. The SCE-UA global optimization method was used for the parameter
optimization of each model with root mean square error (RMSE) as the objective function. The reproducibility of
the hydrograph was evaluated using the performance evaluation criteria of RMSE, Nash-Sutcliffe efficiency
(NSE), and other error functions of peak, volume, time to peak, lag time, and runoff coefficient. The results
revealed that the higher values of NSE coupled with the lower values of RMSE and other error functions in-
dicated that the hydrograph reproducibility of USF is the highest among the SF models. Furthermore, AIC and
Akaike weight (AW) were used to identify the most effective model among all those based on the information
criteria perspective. The USF model received the lowest AIC score and the highest AW during most of the events,
which indicates that it is the most parsimonious model compared to the other SF models. Moreover, uncertainty
characterization of the SF model parameters was also conducted to analyze the effect of each parameter on
model performance.

1 Introduction

Flooding is a crucial issue in both rural and urban areas, but the
severity level of floods is greater in urban areas because most of the
population is concentrated near floodplains (Mason et al., 2007). Urban
areas are characterized by high population, concentrated human ac-
tivities, presence of sewer systems, and impervious surfaces (Zoppou,
2001) in which the latter two features will accelerate the rainfall-runoff
transformation process, and flood flows are therefore higher and more
rapid than is the case in rural catchments (Hollis, 1975). These flash
floods cause damage to human life, properties, different crops, etc. and
have a negative impact (Padiyedath et al., 2017b; Sahoo and Saritha,
2015) in urban watersheds. Therefore, it is very important to detect
urban floods compared to those in rural areas because of the increased
risks and costs associated with them (Mason et al., 2012). The modeling

of the rainfall-runoff transformation process in an urban watershed is
essential not only for flash flood estimation but also for flood control by
the drainage optimization using the pumping systems. Flood mitigation
is one of the water management strategies that can control the excessive
damage caused by floods (Bubeck et al., 2012). Hence, the accurate
prediction of the hydrograph in advance, which includes the estimation
of flood peak, time to peak, volume, lag time, etc., is important in order
to avoid losses due to floodplain inundation.

With the increasing population and urbanization, prediction of the
urban flash flood is becoming an important problem to mitigate their
impacts. For this purpose, the rainfall-runoffmodels are important tools
and they play a central role, especially in urban watersheds. There is no
universally accepted rainfall-runoff model classification as of now and
there exist different ways of classifications depending on the criteria of
interest (Dawdy, 1969; Singh, 1995; Sivakumar, 2017; Snyder and Stall,
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1965). According to Sivakumar (2017), based on simplicity and con-
venience, the models can be grouped into two categories, namely;
physical models and abstract models. The physical models can re-
present the processes of a watershed in a physically realistic manner on
a reduced size such as open channel hydrologic model of the river, the
hydraulic model of dam spillway, etc. The abstract model is the re-
presentation of the system using mathematical equations which links
the input to the output and it is also called as a mathematical model
(Sivakumar, 2017). The abstract model can be further divided into
empirical models, theoretical models, and conceptual models (Dooge,
1977). The empirical models extract information only from the existing
data without considering the hydrological characteristics and highly
depends on the boundary conditions. Unit hydrograph, rational
method, least square method etc. are the examples of this method (Devi
et al., 2015; Sivakumar, 2017). The theoretical model is based on
physical laws governing the hydrological process and it includes MI-
KESHE, SWAT, etc. (Abbott et al., 1986). The conceptual model is an
intermediary between the empirical and theoretical models. Generally,
conceptual models consider physical laws but in highly simplified form.
The examples of conceptual models include tank model (Sugawara,
1974) and the models based on the spatially lumped form of continuity
equation and the storage-discharge relationship (Dooge, 1959; Nash,
1958; Sivakumar, 2017).

The rainfall-runoff models can also be divided as a function of their
process description (lumped and distributed), time variability (event-
based, continuous time, and large time-scale), and technique of solution
(numerical, analog, and analytical) (Amaguchi et al., 2012; Singh,
1995; Singh and Woolhiser, 2002). The selection of appropriate models
for the intended purpose is very important. Most of the conceptual
rainfall-runoff models have been concerned with lumping up the
dominant sub-watershed processes that contribute to the overall wa-
tershed response (Boyle et al., 2001). The lumped models are easy to
use as they generally do not account for the spatial distribution of the
input compared to the distributed models even though spatially-lumped
models also exist (Carpenter and Georgakakos, 2006). Among the dif-
ferent conceptual lumped rainfall-runoff models, storage function (SF)
models have been widely used in many parts of the world, especially in
Japan, not only because of their ease of use in computation and
handling but also the ease by which they express the nonlinear re-
lationship of the rainfall-runoff process using simple equations
(Kawamura et al., 2004).

Extensive studies have been conducted using SF models in order to
analyze the rainfall-runoff transformation process. Kimura (1961)
proposed the first SF model in Japan with two parameters and delay
time. This nonlinear lumped model is still widely used in Japan for
flood prediction. Later, Laurenson (1964) developed a procedure to
reproduce the surface runoff hydrograph of a catchment from the ef-
fective rainfall using a different two-parameter SF model and tested the
method in South Creek, Australia. Subsequently, Prasad (1967) pre-
sented a three-parameter SF model that had an additional term for the
inclusion of the loop effect between storage and discharge as well as a
parameter for the representation of wedge storage compared to that of
Kimura’s model. He considered the relationship between the effective
rainfall and surface runoff in the model. Soon after, Kuribayashi and
Sadamichi (1969) evaluated the characteristics of the kinematic wave
and Kimura’s SF model parameters. They compared the characteristics
of both models and developed theoretical relationships under an as-
sumption of constant rainfall. Later, Hoshihata (1972) examined the
applicability of the SF model as a distributed model. He described a
practical method for the estimation of the SF model parameters using
the watershed slope but had insufficient data to conclude the results.
Mein et al. (1974) extended the work of Laurenson (1965) by devel-
oping a nonlinear method for estimating surface runoff hydrographs by
representing the basin as a series of conceptual reservoirs. Aoki et al.
(1976) compared hydrograph estimates for a channel using the SF
model and kinematic wave model and related their parameters.

Subsequently, Hoshi and Yamaoka (1982) added another parameter
and improved the robustness of SF model. Nagai et al. (1982) examined
the physical significance of the SF model parameters obtained by ap-
plying a mathematical optimization technique. Thereafter, Sugiyama
et al. (1997) theoretically analyzed the SF model parameters by com-
paring the SF and kinematic wave models and then evaluated SF model
characteristics (Sugiyama et al., 1999).

However, all the aforementioned models require effective rainfall as
their input for the prediction of direct runoff. Hence, they involve the
separation of baseflow and effective rainfall components from total
discharge and total rainfall, respectively. There was no adequate
method of objectively quantifying effective rainfall after deducing
losses until recently (Perumal and Sahoo, 2007). Also, numerous
baseflow separation techniques are currently in use and thereby the
baseflow separation will be a subjective process (Padiyedath et al.,
2017a). This, subsequently, may further affect the value of parameters
to be estimated and their relative stability. Later, in order to overcome
these problems, Baba et al. (1999) introduced an SF model with the loss
mechanism that uses the observed rainfall, and total runoff directly and
applied to a mountainous river basin in Hokkaido, Japan. The in-
corporated loss mechanisms (infiltration and all other outflow compo-
nents) avoided the need for effective rainfall estimation and baseflow
separation. The use of the SF model of Baba for the prediction of runoff
in urban areas may be difficult, because urban areas differ completely
from mountainous areas in terms of their imperviousness, absence of
vegetation, presence of sewer systems, etc. Therefore, Takasaki et al.
(2009) developed a new urban SF (USF) model considering the urban
runoff process. It uses the observed rainfall and runoff directly, without
effective rainfall estimation and baseflow separation for flood predic-
tion and compared with Baba’s SF model. The model considers all
possible inflow and outflow components, including groundwater inflow
as an outflow from the basin. However, all the studies in the literature
have mainly focused on the theoretical significance of the parameters
involved and the modification of existing models.

There was a need for the comparative studies of rainfall-runoff
models due to the existence of a variety of models which was identified
quite early by the WMO (1975) in order to evaluate the ability of
models to predict discharge and to provide information and guidelines
for end-users on the use of such models with regard to specific condi-
tions and accuracy requirements. Also, the comparative assessments of
models serve to highlight strengths and weaknesses of modeling ap-
proaches of various complexity (Perrin et al., 2001). The inferences of
comparative assessments may be different from study to study based on
the calibration methodology, model structure, study area, and the
model performance evaluation criteria. There are several studies which
compared the performance of different rainfall-runoff models. For in-
stance, Michaud and Sorooshian (1994) compared the discharge si-
mulation accuracy of three models such as a complex distributed model,
a simple distributed model, and a simple lumped model using root
mean square error (RMSE) and average bias as the evaluation criteria.
Subsequently, Refsgaard and Knudsen (1996) inter-compared the
lumped conceptual, distributed physically based, and intermediate
models using evaluation criteria of Nash-Sutcliffe efficiency (NSE) and
other index based on flow duration curve. Later, Perrin et al. (2001)
examined the role of complexity in hydrological models by relating the
number of optimized parameters with their model performance using
four different criteria in 19 models whose number of parameters ranges
from three to nine. He concluded that very simple models can achieve a
level of performance almost as high as models with more parameters,
and the complexity alone cannot guarantee good and reliable perfor-
mances. This is because, the over-parameterization will add complexity
and sometimes face the problem of equifinality (Beven, 1993) during
calibration. Therefore, it is essential to address this issue through as-
sessing the performance of different rainfall-runoff models with dif-
ferent complexity to identify an effective one for urban watersheds that
have a promising future scope.
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Despite the progress in the aforementioned direction, none of the
studies have evaluated the various SF models not only in terms of the
prediction accuracy but also the information criteria point of view, as
far as the authors know. Specifically, there are no studies that describe
the performance evaluation of different SF models for an urban area
including the USF model. Hence, this study aims to identify an effective
SF model, among those selected, for an urban watershed in terms of
hydrograph reproducibility and from an Akaike information criterion
(AIC) perspective. For this purpose, we have selected the relatively new
USF model and four conventional SF models of Hoshi, Prasad, Kimura,
and the linear model in order to conduct the performance evaluation.
The Kanda River basin, a typical small- to medium-sized urban wa-
tershed in Tokyo was selected as the target basin and the five SF models
were applied to five selected flood events. In order to assess the per-
formance in terms of the reproducibility of the hydrograph, we first
formulated the SF models with optimal parameters identified using the
Shuffled Complex Evolution – University of Arizona (SCE-UA) global
optimization method (Duan et al., 1992, 1993). The RMSE was chosen
as the objective function for optimization. These SF models with op-
timal parameters were further assessed for reproducibility of the hy-
drograph with minimum RMSE and maximum NSE and other error
functions of peak, volume, time to peak, lag time, and runoff coeffi-
cient. Also, for the first time in SF model research, the authors have
utilized AIC and Akaike weight (AW) to identify the most effective SF
model for an urban watershed based on the information criteria per-
spective (Akaike, 1998).

In light of the aforementioned discussions, the main objectives of
this study were conducted in four steps as follows:

1) The selection of different existing SF models and modification of the
framework in order to consider the total rainfall and discharge di-
rectly and thereby reduce the associated errors of separation.

2) The estimation of parameters for the selected models in each se-
lected event using the SCE-UA global optimization method.

3) The evaluation of the performance of the different SF models in
terms of hydrograph reproducibility and from an AIC perspective.

4) The characterization of the uncertainty of parameter values for each
model due to their variability in values during each event.

2 Methodology

2.1 Conventional SF models

SF models are flood-event-based lumped models used as short-term
models for simulating a few or individual flood events. They are char-
acterized by the relationship between storage and discharge. They have
different degrees of simplification that affect the input-output trans-
formation (Takasao and Takara, 1988). The four conventional SF
models are linear, Kimura, Prasad, and Hoshi models, and are shown in
Table 1 with their associated continuity equations where s is the storage
(mm), Q is the observed river discharge (mm/min), t is the time (min),
and k k p p, , ,1 2 1 2 are model parameters.

Among the models, Hoshi’s model has been found to be superior in

terms of an additional parameter p2, which was quantified by numerical
experiments and can well define the flow characteristics based on ki-
nematic wave theory (Hoshi and Yamaoka, 1982). Some simplifications
of Hoshi’s storage model can lead to Prasad’s storage model. If =p 12 in
Hoshi’s model, we obtain Prasad’s storage model. In a similar fashion, if
we set =k 02 in Prasad’s model, the model can be transformed into
Kimura’s model. Furthermore, the most simplified linear model can be
obtained by maintaining =p 11 in Kimura’s model. In this study, the
authors used Kimura’s SF model with one storage tank, which is widely
used as a special case of Kimura’s original model with the delay time
(third parameter) equal to zero (Takasao and Takara, 1988). Because
delay time is a function of effective rainfall and basin characteristics, its
estimation becomes a difficult process especially for small watersheds
where small stream channels are not printed on a map (Sugiyama et al.,
1997). Also, the linear model considered herein is used to check how
efficiently a model can reproduce the hydrograph with a limited
number of parameters.

2.2 USF model

In order to develop an SF model for an urban watershed without the
separation of effective rainfall and baseflow components from total
rainfall and discharge respectively, it is essential to consider all inflow
and outflow components of the watershed. Fig. 1 shows the schematic
diagram of all the possible inflow and outflow components of an urban
watershed with the combined sewer system. We are considering the
combined sewer system because many older cities in different parts of
the world continue to operate combined sewers with a high installed
rate instead of the separate system due to the high cost involved
(Metcalf and Eddy, 1972; US EPA, 1999). The model is a lumped one
based on the relationship between the rainfall over the basin and the
runoff at the outlet point. The runoff at the outlet point is the river
discharge although both pluvial and fluvial floods occur within the
basin which have a delayed effect in the river discharge at the outlet
point. During light rain, only the pluvial flood occurs but finally dis-
charging to the river and contributing to the river discharge. During
heavy rain, both pluvial and fluvial floods occur and the fluvial flood
causes more damage than the pluvial flood by overflowing the river.
Therefore, the USF model measures the combined effect of both the
floods at the outlet point. The basin storage is mainly composed of river
storage, surface and sub-surface storage, and the sewer system storage.
The storage has been considered as just one independent cell for the
entire basin. There is no other inflows from other basins but an outflow
from the basin to the treatment plant through the combined sewer
system rather than discharging into the river as lateral inflow. The in-
flow components in Fig. 1 are represented by rainfall R(mm/min) and
urban-specific and groundwater inflows from other basins I(mm/min).
Urban-specific inflows include leakage from water distribution pipes,
irrigational flow, etc. The outflow components are constituted by the
river discharge Q(mm/min); evapotranspiration E(mm/min); storm
drainage from the basin through the combined sewer system qR(mm/
min); water intake from the basin for intended purposes such as water
supply, agricultural needs, etc. O(mm/min), and groundwater-related

Table 1
Storage function models with their associated continuity equations. (PAR represents parameter).

No. Models Storage equation Continuity equation

1 Linear (3-PAR) =s k Q1 = + − − − −R I E O Q qds
dt l

2 Kimura (4-PAR) =s k Q( )p1 1 = + − − − −R I E O Q qds
dt l

3 Prasad (5-PAR) = +s k Q k( )p dQ
dt1 1 2 = + − − − −R I E O Q qds

dt l

4 Hoshi (6-PAR) = +s k Q k Q( ) ( )p d
dt

p1 1 2 2 = + − − − −R I E O Q qds
dt l

5 USF (7-PAR) = + + +s k Q q k Q q( ) ( )R
p d

dt R
p1 1 2 2 = + − − − + −R I E O Q q q( )ds

dt R l
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loss ql (mm/min). In addition, domestic sewage qw has also been de-
picted in Fig. 1 even though it does not contribute to the watershed
storage s (mm).

The USF model is the empirical representation of Hoshi’s SF model
shown in Table 1 in which the river discharge Q is replaced by the
discharge including the storm drainage +Q qR. Combining the expres-
sion of storage for USF model with the associated continuity equation
given in Table 1 yields the nonlinear expression of the USF model
(Takasaki et al., 2009).

Groundwater-related loss (ql) was defined by considering the in-
filtration hole height (z) and is given by the following equation
(Takasaki et al., 2009):

= ⎧
⎨⎩

− ⩾
<

⎫
⎬⎭

q
k s z s z

s z
( )( )

0 ( )l
3

(1)

where k3 and z are the parameters. The expression for storm drainage qR
from the combined sewer system discharged out of the basin is devel-
oped by assuming a linear relationship between total discharge +Q qR
and the storm drainage qR immediately after the rainfall. The qR is de-
fined (Takasaki et al., 2009) as follows:

= ⎧
⎨⎩

+ − + − <
+ − ⩾

⎫
⎬⎭

q
α Q q Q α Q q Q q
q α Q q Q q

( ) ( )
( )R

R R R max

R max R R max

0 0

0 (2)

where α is the slope of the linear relationship between total discharge
+Q qR and the drainage qR; and Q0 is the initial river discharge just

before the rain starts (Takasaki et al., 2009). The maximum volume of
qR cannot exceed the sewer maximum carrying capacity qRmax . Sub-
stituting the storage equation into the continuity equation will lead to a
second-order ordinary differential equation (ODE) as follows:

+ = − + + + − − − + −k d
dt

Q q k d
dt

Q q R I E O Q q q( ) ( ) ( )R
p

R
p

R l2
2

2 12 1
(3)

In order to solve the second-order ODE, the change of variables is
performed as follows:

= +x Q q( )R
p

1 2 (4)

= = +x dx
dt

d
dt

Q q{( ) }R
p

2
1 2

(5)

Substituting Eq. (1) into Eq. (3) and performing the change of
variables will lead to the emergence of two first-order ODEs concerning
two conditions as shown in Eq. (1). When ⩾s z, the first-order ODE is
as follows:

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= −⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

−⎛
⎝

⎞
⎠

−⎛
⎝

⎞
⎠

−

+ + − − +

−dx
dt

k
k

p
p

x x
k

x k k
k

x k x

k
R I E O k z

1

( 1 )( )

p p p p p2 1

2

1

2
1

( / 1)
2

2
1

(1/ ) 1 3

2
1

( / )
3 2

2
3

1 2 2 1 2

(6a)

In the case of <s z, the first-order ODE concerning the same pro-
cesses are given by the following:

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= −⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

−⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

+ − −−dx
dt

k
k

p
p

x x
k

x
k

R I E O1 1 ( )p p p2 1

2

1

2
1

( / 1)
2

2
1

(1/ )

2
1 2 2

(6b)

By solving the two, simultaneous, non-linear ODEs of dx
dt

1 (Eq. (5))

and dx
dt

2 (Eqs. (6a,6b)) numerically, we obtain the total discharge
+Q qR. In order to solve the two first-order simultaneous ODEs, we

used the Runge-Kuta-Gill method. The river discharge Q is obtained as
the solution after subtracting the qR, which is calculated using Eq. (2),
from the total discharge.

The USF model is a seven-parameter model with parameters
k k k p p z α, , , , , ,1 2 3 1 2 used in the rainfall-runoff modeling. Generally, the
conventional Hoshi SF is a four-parameter model with parameters
k k p p, , ,1 2 1 2 used for the transformation of effective rainfall into direct
runoff. However, the separation techniques involved result in un-
certainties and erroneous estimation of runoff. Hence, in order to in-
corporate the loss related to groundwater ql and to consider the ob-
served discharge as a whole in urban watersheds, we added the term ql
(Eq. (1)) with the addition of two more parameters k3 and z and
modified the framework. Therefore, now Hoshi’s SF model can be de-
signated as a 6-parameter model. In a similar way, the Prasad, Kimura
and linear models were transformed into 5, 4, and 3-parameter models,
respectively. For this present study, the USF, Hoshi, Prasad, Kimura,
and the linear models will be the 7, 6, 5, 4, and 3 parameter models,
respectively.

z: Infiltration 
hole height

I: Urban specific and
ground water inflows
from other basins

O: Water intake 
from basin

Q: River discharge

E: Evapotranspiration R: Rainfall

ql: Ground water 
related loss

qR: Storm drainage 
from the basin 
through combined 
sewer system

qw: Domestic sewage

qs: Total discharge     
from combined 
sewer systems:

 S
to

ra
ge

Fig. 1. Schematic diagram of all inflow and outflow components of an urban watershed with combined sewer system.

S. Padiyedath Gopalan et al. Journal of Hydrology 563 (2018) 657–668

660



2.3 Parameter estimation

The SCE-UA method proposed by Duan et al. (1992) was used to
estimate the optimum parameter values of all the aforementioned
models. It is a well-known, global optimization strategy developed for
effective and efficient optimization for calibrating the watershed
models. The SCE-UA method has been found to be a useful technique
for complex parameter identification problems in hydrologic modeling
(Canfield and Lopes, 2004; Canfield et al., 2002; Eckhardt and Arnold,
2001; Kawamura et al., 2004). This method is based on the synthesis of
four concepts: competitive evolution, controlled random search, sim-
plex method, and complex shuffling. The algorithmic parameters of
SCE-UA were selected as per the recommendations of Duan et al.
(1993). The population is partitioned into several complexes, each of
which is permitted to evolve independently. The number of complexes,
C, was set equal to 20 and the number of populations in each complex,

= +r K2 1, where K is the number of parameters to be estimated. The
objective function to be minimized using the SCE-UA method was se-
lected as the RMSE between the observed and computed using the es-
timated parameters. The search range of parameters for SCE-UA was set
as, k1(10–500), k2(100–5000), k3(0.001–0.05), p1(0.1–1), p2(0.1–1), z
(1–50), and α(0.1–1) (Takasaki et al., 2009).

2.4 Performance evaluation

The river discharge computed for each event using the different SF
models was compared in order to assess the reproducibility of the ob-
served hydrographs using seven performance evaluation criteria.

1. RMSE
2. NSE (Nash and Sutcliffe, 1970; ASCE, 1993)
3. Percentage error in peak discharge (PEP): PEP= [1− (computed

peak discharge/observed peak discharge)]× 100
4. Percentage error in volume (PEV): PEV= [1− (computed volume

of discharge/observed volume of discharge)]× 100
5. Percentage error in time to peak discharge (PETP):

PETP= [1− (computed time to peak/observed time to
peak)]× 100

6. Percentage error in lag time (PELT): PELT= [1− (computed lag
time/observed lag time)]× 100; and

7. Percentage error in runoff coefficient (PERC):
PERC= [1− (computed runoff coefficient/observed runoff coeffi-
cient)]× 100

Further, AIC was also used in order to identify the most effective
model by comparing the different models for each event. The most ef-
fective model is then the model with the lowest AIC score and is given
by the following expression (Akaike, 1981, 1998),

̂= −AIC K θ y2 2log( ( | ))L (7)

where K is the number of parameters to be estimated and ̂θ ylog( ( | )L is
the log likelihood at its maximum likelihood estimator ̂θ based on y
observations. Later, this concept was refined to correct for small data
samples (Hurvich and Tsai, 1989) as follows:

= + +
− −

AIC AIC K K
n K

2 ( 1)
1C (8)

where n is the sample size. A better way of interpreting the AICC score
is to normalize the relative likelihood values as AW. The weight of all
models summed together equals one and the model with the highest
AW is considered to be the most effective. The AW is considered as the
weight of evidence that the model i is the best-approximating model for
the given data and candidate models. The AW for the ith model (AWi) is
as follows:

=
−

∑ −=

AW
AIC

AIC
exp( 0.5Δ )

exp( 0.5Δ )
i

c i

m
M

c m

,

1 , (9)

where the AICΔ C i, is calculated as follows:

= +AIC AIC AICΔ C i C i C min, , , (10)

where AICC i, is the individual AICC score for the ith model, AICC min, is
the minimum AICC i, score among M models, and M is the number of
models.

2.5 Uncertainty characterization

For the target watershed, optimal parameter sets were obtained for
each event using all the models. However, the obtained parameter va-
lues were different for each event corresponding to each model. The
variability in the model parameters induced due to the spatial aver-
aging of rainfall received at different gauging points is termed as the
parameter uncertainty (Chaubey et al., 1999) and is quantitatively as-
sessed using Relative Error (RE), and Coefficient of Variation (CV). The
different errors for the ith model and pth parameter are as follows:

=
∑ −=RE

P P

P

| ¯ |

| ¯ |i p
N j

N
i j i

i
,

1
1 ,

(11)

= ×CV
σ
P̄

100i p
i p

i
,

,

(12)

where N is the number of target events, Pi j, is the estimated parameter
value for the ith model and jth event, P̄i is the average parameter value
from all the events, and σi p, is the standard deviation for the ith model
and the pth parameter value.

3 Study area and data used

The selected urban watershed for the particular study was the upper
Kanda River basin and is shown in Fig. 2. The different SF models were
applied in the target basin, having an area of 7.7 km2 at Koyo Bridge, in
order to determine the effective model. The Kanda River basin lies
between latitudes 35.70° N and 35.64° N and longitudes 139.56° E and
139.64° E in Tokyo, Japan, with an urbanization rate of more than 95%.
The source of the river is the Inokashira pond and it joins the Zenpukuji
River and flows east (Ando and Takahasi, 1997). The drainage pattern
follows the combined sewer system and the sewer installed population
rate is 100%. The main flow path length of the river, sewer density of
pipes having a diameter greater than 25 cm, and the average slope of
the watershed are 6.017 km, 22.76 km−1, and 0.025 radians respec-
tively. The computed time of concentration of surface runoff from the
upstream reaches to the watershed outlet was about 30min. The im-
pervious area percentage was precisely estimated as 68% using the
urban landscape GIS delineation (Koga et al., 2016) that further re-
duced the water retention capacity of the basin significantly. There is a
wide variety of land cover features with different impermeable prop-
erties within all land use classifications (Koga et al., 2016).

The smaller time of concentration indicated that the river discharge
will occur immediately after the rainfall within a short period and it is
desirable to use hydrological data at very short time intervals for the
rainfall-runoff analysis. Therefore, the rainfall and water level data
were collected at one-minute intervals from the Bureau of Construction,
Tokyo Metropolitan Government (TMG), from 2003 to 2006 for the
present study. The average rainfall of the basin was determined using
the Thiessen polygon method from the eight rain gauges scattered over
the basin as shown in Fig. 2. Five target events were selected from the
data, whose 60-minute maximum rainfall (R60) is greater than 30mm
and is capable of producing flash floods. Table 2 shows the character-
istics of the five selected rainfall events. The inflow component I in the
continuity equation was fixed at 0.0012mm/min based on the annual
report of the Bureau of Construction, TMG. The water intake O from the
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basin and evapotranspiration E were set at 0 as there is no intake from
the target basin and the evapotranspiration during heavy rainfall is
insignificant. The maximum storm drainage, qRmax was estimated as
0.033mm/min using Manning’s equation.

4 Results and discussion

4.1 Parameter estimation

The SCE-UA method was applied for parameter estimation of the
five SF models for the five selected flood events in the target watershed

with RMSE as the objective function. The model parameters are esti-
mated by calibration using the average watershed rainfall and the ob-
served river discharge. The convergence of parameters was also
checked and it was found that the parameters converged before the
50th generation in each SCE-UA application run. The total population
generated was different from model-to-model based on the number of
parameters in each model. The best parameter set among the total
population at the 50th generation with the minimum RMSE was used
for further hydrograph reproduction. Table 3 shows the elapsed time
for calibration of models using SCE-UA and the computational time of
each model for each event using the estimated parameters. All the
model simulations carried out in this study were run on Windows 10
with Intel Core i7-6700 CPU as the processor and 16 GB RAM. The
parameter calibration and evaluation were conducted on MATLAB. It is
clear from the table that the USF has taken the longest time for com-
putation because it has the most number of parameters. On the other
hand, the 3-parameter model has received the least time for simula-
tions.

Fig. 3 shows the estimated model parameters for each selected event
and SF model. Fig. 3(a)–(c) show the k k z, ,1 3 parameters, respectively,
and these are associated with all of the five models. The k1 values are
quite close for all the models except for the 3-parameter model during
events 4 and 5. Parameter k3 was found to be similar for the USF (7-
parameter) and 6-parameter models during all the events even though
it varies among events. The k3 value for the other models was also found
to be similar and they were close to zero. The z parameter for the USF,

Fig. 2. Index map of (a) Japan, (b) Kanda river basin in Tokyo and (c) target area – upper Kanda basin at Koyo Bridge.

Table 2
Characteristics of target events.

Event No. Event
date

R60 (mm) Total R
(mm)

Climatic factors Number of
peaks

1 13-10-
2003

53.9 57.5 Intensive
localized storm

Single-peak

2 25-06-
2003

42.6 46.2 Frontal rainfall Single-peak

3 8–10/10/
2004

42.0 261.1 Typhoon Multi-peak

4 11-09-
2006

32.7 37.9 Frontal rainfall Single-peak

5 15-07-
2006

31.5 31.5 Frontal rainfall Single-peak
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6, and 5-parameter models varies among events, while the 4 and 3-
parameter models have quite similar values close to zero during all the
events. Fig. 3(d) exhibits parameter p1 which is common for all the
models except the 3-parameter model. The p1 values are sufficiently
close for the 6, 5, and 4-parameter models during all the events.
However, the USF model has the highest p1 value among all the models

even though the value is closer to the other models during events 1 and
3. Fig. 3(e) demonstrates parameter k2 which is present in the USF, 6,
and 5-parameter models, while Fig. 3(f) shows the parameter p2 which
forms a part of the USF and 6-parameter models only. We observed a
high level of agreement between the USF and 6-parameter models in
the k2 value from Fig. 3(e). On the other hand, the 5-parameter model

Table 3
Elapsed time taken for the calibration and evaluation of storage function models in each event.

Model USF (sec) Hoshi (sec) Prasad (sec) Kimura (sec) Linear (sec)

Event Calibration Evaluation Calibration Evaluation Calibration Evaluation Calibration Evaluation Calibration Evaluation

1 665.12 0.57 592.46 0.40 452.54 0.36 103.51 0.28 29.75 0.26
2 653.99 0.56 547.38 0.39 412.80 0.33 95.93 0.26 27.86 0.23
3 2923.85 1.44 2570.06 1.24 1916.46 1.08 422.18 0.88 124.65 0.66
4 869.76 0.73 703.16 0.46 627.52 0.42 121.47 0.31 36.92 0.26
5 540.99 0.42 422.18 0.32 343.36 0.29 74.21 0.25 23.60 0.21

1 2 3 4 5
0

100

200

300

1 2 3 4 5
0

0.02

0.04

0.06

1 2 3 4 5
0

10

20

30

1 2 3 4 5
0

0.2

0.4

0.6

1 2 3 4 5
0

500

1000

1500

1 2 3 4 5
0

0.2

0.4

0.6

1 2 3 4 5
0

0.2

0.4

0.6

(f)

(g)

(e)

(d)(c)

(b)

k 1

(a)

k 3

z p 1

k 2

 USF
 6-Parameter
 5-Parameter
 4-Parameter
 3-Parameter

p 2

Event Number

al
ph

a

Event Number
Fig. 3. The estimated model parameter values for various storage function models in each event.

S. Padiyedath Gopalan et al. Journal of Hydrology 563 (2018) 657–668

663



shows small disparities in the values as compared to those of the USF
and 6-parameter models. However, the parameter fluctuates sub-
stantially during all the events for all the models. The parameter values
of p2 in Fig. 3(f) for the USF and 6-parameter models are identical
during all the events although it varies among the events. Fig. 3(g)
depicts parameter α which is associated with the USF model only. The α
values were found to be consistent during all the events for the USF
model.

It is evident from the above discussion that the USF and 6-parameter
model parameters values are identical in all the events except for the
parameters z and p1 in events 2, 4, and 5. During these events, the zand
p1 parameters of both the models lie farther from each other, and the 6-
parameter model lies close to the values of 5-parameter model.
Generally, during the parameter estimation, each model attempts to
either reduce or increase each parameter in association with the other
parameters based on their model structure in order to get the best
combination which will lead to the better performance. Therefore, this
could be a reason for the differences in values of parameters z and p1 in
association with other parameters in USF and other models during
events 2, 4, and 5, whose climatic factor is frontal rainfall as shown in
Table 2. The effect of parameter uncertainty and variability based on
the model structure are discussed in more detail in Section 4.4.

4.2 Hydrograph reproducibility

The SF models with these identified parameters were used to esti-
mate river discharge in order to evaluate hydrograph reproducibility
from the observed rainfall as input. Fig. 4 shows the reproduced hy-
drograph using the different SF models with the parameters shown in
Fig. 3. In Fig. 4, the x-axis and y-axis increments are different from
event to event. It can be seen from Fig. 4 that the 7-parameter USF
model nearly overlaps with the observed river discharge and precisely
reproduces the shape of the observed hydrograph. It is also capable of
accurate reproduction of the peak during all the events even though it
shows slight deviations during events 4 and 5. During events 4 and 5, it
was most close to the observed peak compared with the peaks estimated
by other SF models. Therefore, the USF model can most exactly re-
produce the shape of the observed hydrograph as well as the peak
discharge compared to that of the other SF models irrespective of the
number of peaks. Even though the 6-parameter model shows a slight
deviation in the reproduced hydrograph on the rising and recession
limbs during all the events, the model accurately reproduces the peak
discharge which is slightly less than that estimated by the USF model.
The model does not preserve the shape of the hydrograph particularly
well in the multi-peak event 3 although it estimates the peak accurately.
The 5-parameter model underestimated the peak discharge during all
the events except for event 1. The model failed to reproduce not only
the shape of the hydrograph but also the peak, particularly in the multi-
peak event. Both the 4 and 3-parameter models, especially the 3-
parameter model, were unable to reproduce the observed hydrograph.
They underestimated and early estimated the peak discharge during all
the events. The models failed to conserve the shape as well as the peak
discharge regardless of the number of peaks.

Fig. 5 shows the values of various error functions, i.e. RMSE, NSE,
PEP, PEV, PETP, PELT, and PERC, as described in Section 2.4, for the
five events using the five models. From Fig. 5(a) and (b), we can see
that the USF model generates the lowest RMSE, close to zero, and
highest NSE, close to 100%, among the five SF models, followed by the
6, 5, 4, and 3-parameter models during all the events. It is evident that
the model with a large number of parameters will have the lowest
RMSE and highest NSE which further reveals that the SCE-UA method
has successfully identified the optimal parameters for each model
during each event. The low RMSE and high NSE can be interpreted as
high hydrograph reproducibility. However, the 4 and 3-parameter
models have high RMSE and low NSE values as compared to those of
the other models. This is because of the absence of parameters that
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Fig. 4. Reproduced hydrograph by each model for (a) Event 1; (b) Event 2; (c)
Event 3; (d) Event 4; and (e) Event 5.
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describe the loop effect between storage and discharge during the rising
and recession limbs. Fig. 5(c) depicts that the PEP estimated using the
USF and 6-parameter models are very low and not greater than 10%
during any of the events, even though the 6-parameter model shows
PEP > 10% during event 5. Both the models estimated a PEP close to
zero during the first three events, while they slightly underestimated
(positive PEP) the peak during events 4 and 5. In contrast, the 5, 4 and
3-parameter models largely vary in their PEP values and always un-
derestimate the peak discharge. Like the PEP, the USF and 6-parameter
models show the best performance in PEV and PETP values as shown in
Fig. 5(d) and (e) respectively, which is close to zero as compared to that
of the other models. Simultaneously, the 5, 4 and 3-parameter models
generate higher values of PEV and PETP. They overestimated the vo-
lume (negative PEV) and early estimated the peak discharge.

Fig. 5(f) demonstrates the PELT generated by different models for
the selected events. The USF model has values of either zero or close to
zero which was immediately followed by the 6 and 5-parameter models
respectively. The 4 and 3-parameter models have similar PELT values
among themselves and are far from those of the other SF model values.
Fig. 5(g) additionally shows the PERC and we can see that the PERC

value of the USF, 6, and 5-parameter models are very close to zero
except for the 5-parameter model during event 2 and 6-parameter
model during event 5. The high PERC value of the 5-parameter model
during event 2 indicates a low volume of runoff estimated by the model
as well as high PEV as shown in Fig. 5(d). In the same way, the negative
PERC values generated by the 6-parameter model during event 5 can be
interpreted as a high volume of runoff estimated by the model. The 4
and 3-parameter models exhibit greater discrepancies compared to
those of the other models during all events.

The higher values of NSE coupled with the lower values of RMSE,
PEP, PEV, PETP, PELP, and PERC for the USF model indicate that the
hydrograph reproducibility of the USF model is the highest among the
SF models. The 6-parameter model was also found to be good for urban
discharge estimation just after the USF model. The 5-parameter model
can be used as a substitute for the USF and 6-parameter models in urban
rainfall-runoff transformation process with little deviation to some ex-
tent. However, the 4, and 3-parameter models were found to be in-
appropriate for hydrograph reproducibility.
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4.3 AIC aspect

In addition to hydrograph reproducibility, AIC aspect was also used
in order to determine the effectiveness of the models for each selected
event. Fig. 6(a) shows the AICC values (Eq. (8)) for each model during
each event. It can be seen from the figure that the 6-parameter model
has the lowest AICC during event 1 and event 2. However, the USF had
the lowest AICC during events 3, 4 and 5. Even though the USF model
did not receive the lowest AICC during the first two events, it was very
close to the lowest value of the 6-parameter model. There is nearly no
support for 4 and 3-parameter models from Fig. 6(a) because they
generate a far higher AICC score, which indicates the necessity of more
parameters in order to describe the storage characteristics of the urban
watershed more accurately. The exclusion of the delay time parameter
in Kimura’s 4-parameter model could also be a reason for this high AICC
score. From Fig. 6(a), it is not easy to clearly distinguish the difference
between the AICC values of the USF, 6, and 5-parameter models. Hence,
we analyzed the AICC values using an associated statistic known as AW
(Eq. (9)) to depict the differences distinctly. As a general rule of thumb,
the AW of the candidate models during each event should be higher
than 10% of the highest AW of that event (Royall, 1997) so that we can
easily exclude models with a weight lower than 10% of the highest AW
model. Based on this rule, we can exclude the 4 and 3-parameter
models.

Fig. 6(b) shows the AW for each event using the different SF models.
The weight exhibits an opposite trend to that of the AICC values and the
model with the highest weight is the best (Hurvich and Tsai, 1989).
Like the AICC score, the 6-parameter model received the highest
weights during events 1 and 2. During the remaining events, the USF
model has the highest weight followed by the 6-parameter model. Even
though the 6-parameter is followed by the USF model, the difference
between the AW values of these models is quite large, significantly
greater for events 3 and 5. Therefore, the USF model is much more
effective than the 6-parameter model during such multi-peak event 3
and single-peak event 5 based on the AW values. During event 1, the 6-
parameter model was followed by the USF model and during event 2, it
was followed by the 5-parameter model. The difference in AW values
between the 6-parameter and USF models are not as great as compared
to that during events 3 and 5. Consequently, the USF model can be more
suitable for multi-peak events as compared to the other models as per
the AIC aspect.

4.4 Parameter uncertainty

Fig. 7 shows the parameter variability of five SF models represented
by two statistical indices (Eqs. (11) and (12)). The seven symbols in the
figure represent the different parameters of each SF model. Fig. 7(a)

demonstrates the RE values of each parameter and are entirely different
for each model. The RE of parameter k1, which is used to represent the
physical watershed characteristics such as watershed area, land use,
etc., is small compared to that of the other parameters for all the SF
models, except for the 3-parameter model in which it is the parameter
with the highest RE. The parameters k3 and z are used to depict the
groundwater-related loss. From Fig. 7(a), we can see that the RE of
parameter k3 is quite high in all models and the parameter z received
the highest RE for the USF and 5-parameter models. The high RE of
these two parameters plays an important role in hydrograph reprodu-
cibility of the SF models. The RE of z in the 4, and 3-parameter models
is very low and the models are least affected by this parameter. The p1
parameter is controlled by the flow regime (Sugiyama et al., 1997). It
has higher RE values in the 6, 5, and 4-parameter models. It was found
to be one among other parameters with a low RE in the USF model. The
parameter k2 is a complicated function of several variables that can
affect the wedge storage as well as the storage-discharge relationship
(Prasad, 1967). This parameter was included only in the USF, 6, and 5-
parameter models and had a medium level of RE values. The parameter
p2 is incorporated in the USF and 6-parameter models and had quite
high RE values in both models. The parameter α is associated only with
the USF model to represent the effect of storm drainage and is that with
the least variability in the USF model.

Fig. 7(b) shows the CV values for the estimated parameters. CV is
the numerical representation of variability in data. The parameter
pattern in CV values is quite similar to that in RE values, even though it
shows slight deviations. The observed deviations are (i) the parameter
order changed for some models and (ii) the CV values of parameters
were more closely located or sometimes overlapped. The parameter z
had higher variability in its values for the USF and 5-parameter models.
On the other hand, p2 was more uncertain in nature for the 6-parameter
model. k3 and k1 are the parameters with the highest CV value for the 4
and 3-parameter models, respectively.

In general, a higher variability in rainfall resulted a higher varia-
bility in the parameters. A larger variation in rainfall values within a
single event will result in a higher variation in all estimated parameters.
The parameter estimates for each event may be quite inconsistent and
this uncertainty in the model parameters can be attributed to the spatial
variability in rainfall, change in watershed characteristics, etc.

It cannot be argued that the better performance of USF model over
the other four models is essentially due to the additional parameter α. It
is not because of just one additional parameter, but a combination of all
the parameters. If the number of parameters was the criteria for model
performance, the 3-parameter model should have comparable perfor-
mance at least with the 4-parameter model. However, the 4-parameter
model exhibits substantial improvement in performance compared with
the 3-parameter model as shown in Fig. 5. The addition of parameter p1
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transformed the linear storage model into a non-linear SF model and
improved its structure. However, the 4 and 3-parameter models de-
picted a non-linear and linear monovalent storage-discharge relation-
ship respectively. On the other hand, the USF, 6, and 5-parameter
models considered the looped storage-discharge relationship and hence
asserted that the inclusion of loop effect can considerably enhance the
performance. The 6-parameter model revealed an improved perfor-
mance than the 5-parameter model even though both the model take
care of the loop effect. This can be attributed to the representation of
non-linear unsteady flow in 6-parameter model while the 5-parameter
model constituted only the linear unsteady flow effects. Therefore, it
can be deduced that the introduction of non-linear wedge storage can
additionally increase the model performance. The difference in per-
formance between the USF and 6-parameter models can be ascribed to
the effect of storm drainage diverting to the treatment plant through the
combined sewer system instead of going to the river in the USF model.
According to the above discussion, it was noted that the models with a
different number of optimized parameters produced quite different re-
sults, especially for 4 and 3-parameter models with a difference of one
parameter each. This strengthens the argument raised by Gan et al.
(1997), in which the structure of the model is of critical importance for
the model performance rather than the number of optimized para-
meters. Also, the effectiveness of a model cannot be defined in terms of
the individual additional parameters alone but should be considered as
a combination of parameters which describe different watershed and
flow attributes.

Steefel and Van Cappellen (1998) commented that an effective
model is determined based on its simplicity relative to its performance
for a given number of observations. But the simple 4 and 3-parameter
models were not capable of reproducing the observed hydrographs and
could not demonstrate an equivalent performance of that produced by
the other SF models. Therefore, simplicity alone cannot be used as a
valid criterion for how effective a model is. Perrin et al. (2001) sug-
gested that the number of free parameters might be restricted between
three and five in lumped rainfall-runoff models. However, even the 5-
parameter model failed to exactly reproduce the hydrograph and peak.
Therefore, the number of free parameters from three to five is not
sufficient to clearly represent urban discharge at least in this particular
study.

5 Conclusions

The five SF models with optimal parameters identified using the
SCE-UA method were applied to five flood events in an urban watershed
in Tokyo to evaluate performance with minimum RMSE. First, the
models were assessed for their hydrograph reproducibility using the
seven error functions of RMSE, NSE, PEP, PEV, PETP, PELT, and PERC.
The results revealed that the USF model had the lowest RMSE (high
NSE) among all the models for all the events, which implies that the
SCE-UA method successfully identified the optimal parameters. The
lower values of PEP, PEV, PETP, PELT, and PERC of the USF model
further indicate that the hydrograph reproducibility of USF model is the
highest among the studied SF models. In addition, the summary of AIC
results shows that the USF received the highest AW during most of the
events compared to that of the other SF models, which makes it the
most effective model. The other SF models have lower AW scores, in-
dicating the necessity of the addition of more parameters that describe
the storage characteristics of an urban watershed. In conclusion, the
USF model can be considered as the best model not only for hydrograph
reproducibility but also the most parsimonious based on the AIC per-
spective during most of the flood events in an urban watershed, when
compared to the conventional models, if the optimal parameters are
successfully identified for the events.

The uncertainty characteristics reveal that it is necessary to in-
vestigate the aspect of uncertainty of the parameters in more detail to
identify the key parameters of runoff response in an urban basin. The
validation process of the models is very crucial with an ultimate goal of
producing an accurate and credible model and it involves parameter
uncertainty. However, in this study, we are mainly concerned with the
calibration of the selected SF models and their associated performance.
Therefore, our future work will mainly cover the detailed uncertainty
analysis of parameters and their relative stability.
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