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Classification of groundwater chemistry in Shimabara,

using self-organizing maps

Kei Nakagawa, Hiroki Amano, Akira Kawamura and Ronny Berndtsson
ABSTRACT
Shimabara City in Nagasaki Prefecture, Japan, is located on a volcanic peninsula that has abundant

groundwater. Almost all public water supplies use groundwater in this region. For this reason,

understanding groundwater characteristics is a pre-requisite for proper water supply management.

Thus, we investigated the groundwater chemistry characteristics in Shimabara by use of self-

organizing maps (SOMs). The input to SOM was concentrations of eight major groundwater chemical

components, namely Cl�, NO3
�, SO4

2–, HCO3
�, Naþ, Kþ, Mg2þ, and Ca2þ collected at 36 sampling

locations. The locations constituted private and public water supply wells, springs, and a river

sampled from April 2012 to May 2015. Results showed that depending on the chemistry, surface

water and groundwater could be classified into five main clusters displaying unique patterns.

Further, the five clusters could be divided into two major water types, namely, nitrate- and non-

polluted water. According to Stiff and Piper trilinear diagrams, the nitrate-polluted water represented

Ca-(SO4þNO3) (calcium sulfate nitrate) type, while the non-polluted water was classified as Ca-HCO3

(calcium bicarbonate) type. This indicates that recharging rain water in the upstream areas is polluted

by agricultural activities in the mid-slope areas of Shimabara.
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INTRODUCTION
Groundwater is used for various purposes, such as water

supply, agriculture, and industry. During recent decades,

groundwater has been polluted by increasing fertilizer appli-

cations to meet the demand of food supply due to

population growth. Monitoring and protection of ground-

water are essential to meet the demand for safe

groundwater. To understand the effects of hydrogeological

processes and anthropogenic activities on regional ground-

water, it is important to study the chemical characteristics.

The hydrogeochemistry of groundwater is influenced by

many factors, such as climate, mineralogy of aquifers, chemi-

cal composition of rainfall and surface water, topography,

and anthropogenic activities. Thus, a hydrogeochemical

interpretation of groundwater quality from representative

water samples can provide useful information on the
geochemical processes, hydrodynamics, origin, and inter-

action of the groundwater with aquifer materials.

Shimabara City is known as a region that, to a great

extent, relies on groundwater for the public water supply

(Committee on Nitrate Reduction in Shimabara Peninsula

). However, Shimabara groundwater has been increas-

ingly polluted by nitrate since 1988. We analyzed the

present situation of groundwater pollution by nitrate in Shi-

mabara and showed that agricultural activities are the main

polluter of the groundwater (Nakagawa et al. ). To

better understand the characteristics of the water chem-

istry, multivariate analysis such as principal component

analysis (PCA), which can reduce data dimensionality

and extract synthetic indexes with minimum information

loss, is often used (e.g., Aiuppa et al. ; Cloutier et al.

mailto:kei-naka@nagasaki-u.ac.jp


Figure 1 | Study area and sampling locations in Shimabara, Nagasaki Prefecture, Japan

(RW: residential well, W: public water supply well, O: observation well,

S: spring, and R: river).
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; Banoeng-Yakubo et al. ; Sonkamble et al. ;

Nadiri et al. ; Omonona et al. ; Singaraja et al.

; Ghesquière et al. ; Marghade et al. ; Matiatos

). Using groundwater chemistry, we classified Shima-

bara water by use of principal component and cluster

analysis (Nakagawa et al. ). The results showed that

groundwater could be classified into four clusters, where

one cluster expressed nitrate pollution and the other clus-

ters showed ion dissolution from the aquifer matrix.

However, it is sometimes difficult to decipher PCA results

due to bias resulting from the complexity and nonlinearity

of large data (Choi et al. ). Recently, multivariate analy-

sis using self-organizing maps (SOMs) has been applied to

various research fields, such as ecology (Céréghino et al.

; Bedoya et al. ), geomorphology (Hentati et al.

), hydrology (Kalteh & Berndtsson ), meteorology

(Nishiyama et al. ), and wastewater treatment (García

& González ). SOM has also been used to classify the

water chemistry of rivers and groundwater (Hong & Rosen

; Jin et al. ; Choi et al. ; Nguyen et al. ).

Thus, SOM is a powerful and effective tool for detection

and interpretation of spatially varying phenomena.

Especially, SOM has a better ability to handle the nonlinea-

rities, noisy or irregular data, and multivariate data without

mechanistic understanding of the system. SOM is also

easily and quickly updated when adding new data (Hong

& Rosen ; Kalteh et al. ). The similarity of

extracted pattern classification can be visually compared

using color gradients ( Jin et al. ).

In the previous study (Nakagawa et al. ), we used

field observed data from August 2011 to November 2013.

We continued to collect data, and available data were

extended to May 2015. Therefore, in this study, we con-

firmed our previous results by using a more informative

method, SOM, together with an extended database. Using

SOM, visual representation of groundwater characteristics

is easy, and more detailed clustering with better analyses

results is possible as compared to conventional PCA. To

improve the understanding of groundwater characteristics

in Shimabara we applied SOM combined with hierarchical

cluster analysis using water chemistry as input. According

to the results obtained by SOM analysis, we discuss the

spatial trends of groundwater characteristics in Shimabara

and the practical application of SOM for future water use.
STUDY AREA AND DATA USED

Figure 1 shows the study area and the sampling locations in

Shimabara, Nagasaki Prefecture, Japan. Shimabara has an

area of 82.8 km2 and is located in the northeastern part of

Shimabara Peninsula. In the center of the peninsula, the

active volcano Unzen (Mt Fugendake) is located. The

geology of the Shimabara area is thus formed by volcanic

deposits composed of dacite, andecite, volcanic ash, and

lapilli. Average annual precipitation is about 2,100 mm

(1967–2013). The mean annual temperature is 16.9 WC, and

the average monthly temperature ranges from 4.2 (January)

to 29.0 WC (in August) (Japan Meteorological Agency ).

Figure 2 shows altitude and land use in Shimabara.

According to the figure, the land use can generally be

divided into forest, agriculture, and urban areas. Areas

above an altitude of 200 m are generally occupied by

forest. According to the estimated regional groundwater

flow, the forest areas, which comprise 36.5% of Shimabara,

may be recognized as groundwater recharge zones. Upland

and paddy fields are concentrated into the northern parts

of the area, occupying 23.6% and 7.5% of Shimabara,

respectively. Buildings are usually located at altitudes

below 100 m along the coast and represent 14.9% of Shima-

bara. Other land use is 17.5%.



Figure 2 | Altitude and land use map of Shimabara; (a) altitude and (b) land use.
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In total, 353 water samples were collected from April

2012 toMay 2015. Sampling was performed at seven resident

wells (RW), 21 public water supply wells (W), two obser-

vation wells (O), five springs (S), and one river (R)

(Figure 1). To ensure spatially representative groundwater

conditions, sampling sites covering the whole area of Shima-

bara except for forest and other land use (Figures 1 and 2)

were used. Sampling was done four times annually with 2–

4 month intervals to ensure temporally varying groundwater

conditions. Sampling at specific locations (RW-14, b, W-21,

O-2, S-2, 3, 5, and R-2) was done with less frequency. The

hydrogeochemical data used in this study consist of major

dissolved ion concentrations for Cl�, NO3
�, SO4

2–, HCO3
�,

Naþ, Kþ, Mg2þ, and Ca2þ. Mean and standard deviation of

36 sampling sites using averaged temporal ion concen-

trations for each of the sampling sites are summarized in

Table 1. It is necessary to normalize the data prior to appli-

cation of SOM to ensure that all parameters are given the

same importance. SOM results are highly sensitive to data
Table 1 | Mean and standard deviations of 36 sampling sites using averaged temporal ion

concentrations for each sampling site used in the SOM

Major ion (mg L�1) Mean SD

Cl� 12.4 1.4

NO3
� 38.4 5.0

SO4
2– 21.9 3.2

HCO3
� 55.7 6.6

Naþ 12.1 2.4

Kþ 6.4 1.2

Mg2þ 8.7 1.1

Ca2þ 22.4 2.9
pre-processing method due to the fact that the Euclidean dis-

tance between input data is used (e.g., Jin et al. ). To solve

this problem, the range betweenminimum andmaximum ion

concentrations was standardized into [0, 1] (Nishiyama et al.

; Jin et al. ) as preprocessing in this study.
METHODOLOGY

The SOM is a modified artificial neural network character-

ized by unsupervised training that can project high-

dimensional information onto a low-dimensional array

(e.g., Vesanto et al. ). Many researchers have chosen

a two-dimensional array (e.g., Jiang et al. ). The result

is a readily understandable and visual pattern classification.

The objective here of the SOM application was to obtain

physically explainable reference vectors using input vec-

tors. Thus, the input vectors were composed of, in total,

353 hydrogeochemical data points (approximately quarterly

sampling at the 36 sampling locations) with eight variables

(major dissolved ion concentrations: Cl�, NO3
�, SO4

2–,

HCO3
�, Naþ, Kþ, Mg2þ, and Ca2þ). Reference vectors

were obtained after iterative updates through a training

phase that comprised three main procedures: competition

between nodes, selection of a winner node, and updating

of the reference vectors (e.g., Vesanto et al. ). Selection

of proper initialization and data transformation methods

are important factors when designing a relevant SOM

methodology. In SOM applications, in general, a larger

map size gives a higher resolution for pattern recognition.

The optimum number of SOM nodes is determined by

applying the heuristic rule m ¼ 5
ffiffiffi

n
p

, where m denotes

the number of SOM nodes and n represents the number

of input data (García & González ; Hentati et al.

; Jin et al. ). Herein, this heuristic rule was used

to determine the total number of nodes in the SOM. The

ratio of the number of rows and columns is determined

by the square root of the ratio between the two largest

eigenvalues of the correlation matrix of input data. The

eigenvalues are obtained from PCA. In a previous study

using the sampled data from August 2011 to November

2013, two principal components (Factor 1 and Factor 2)

explained 86.5% of the total variance (Nakagawa et al.

).
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After organizing the SOM structure with the above rule,

a linear initialization technique made each node set with a

reference vector. A linear initialization technique increases

the speed of the training phase and proper abstracting pat-

tern for limited data (Jeong et al. ). Further, when only

limited data are available, the linear initialization is more

suitable for the pattern classification as compared to

random initialization, because of small data sets and bound-

ary effects (Nguyen et al. ). The linear initialization used

eigenvalues and eigenvectors of input data to set initial refer-

ence vectors on the structured SOM. This means that the

initial reference vectors already include prior information

about the input data, resulting in a quicker and more effi-

cient training phase (Vesanto et al. ). In this study,

each reference vector was updated through the SOM train-

ing process using a batch mode with neighborhood

function taking a Gaussian form. Although some issues on

the implementation of the batch SOM are discussed in

some detail in Jiang et al. (), the results of the SOM

analysis supported previous clustering results (Nakagawa

et al. ; shown below). The reference vectors obtained

at the end of the training process were fine-tuned using clus-

ter analysis.

There are various clustering algorithms available in the

literature (e.g., García & González ; Jin et al. ). In

this study, partitioned algorithms and hierarchical algorithms,

which are k-means and Ward’s algorithms, respectively, were

applied for appropriate clustering of reference vectors. For

partitioned clustering methods, the k-means algorithm is

most frequently used for SOM (e.g., Jin et al. ). The

Davies–Bouldin Index (DBI) applying k-means algorithm

determines the optimal number of clusters (García & Gonzá-

lez ; Jin et al. ). The DBI values, based on similarity

within a cluster and dissimilarity between clusters, were cal-

culated from a minimum of two clusters to the total

number of nodes. Therefore, the smaller DBI value appears

as the dissimilarity to each cluster becomes larger. In other

words, a minimum DBI represents the optimal number of

clusters for the trained SOM. The Ward’s linkage method,

which is one of the hierarchical techniques, is the most com-

monly used clustering method (Faggiano et al. ; Hentai

et al. ; Jin et al. ). In this study, the final fine-tuning

cluster analysis was carried out using Ward’s method. The

above calculation processes were carried out using a
modified version of SOM Toolbox 2.0 (Vesanto et al. ).

The output SOM clusters were plotted on Piper trilinear

and Stiff diagrams to explain the main features of each clus-

ter. Furthermore, the SOM clusters were mapped spatially

to clarify influence from land use.
RESULTS AND DISCUSSION

Based on the methodology described above, the number of

SOM nodes was determined to be equal to 91. The

number of rows and columns was 7 and 13, respectively.

Thus, this SOM design was used for the cluster analysis of

standardized water chemistry data from the 36 locations in

Shimabara.

Figure 3 shows the obtained component planes for the

91 reference vectors (nodes) of the eight ion component

concentrations (standardized to a range between 0 and 1).

Each component plane shows the standardized value of

each parameter (concentration) of the 91 reference vectors

(nodes) using a color gradient. Comparison between the

component planes shows relationships (or correlation)

among the parameters. For example, a similar color gradient

can be observed for Cl� (Figure 3(a)) and NO3
� (Figure 3(b)).

The same trend can be seen for Naþ (Figure 3(e)) and Mg2þ

(Figure 3(g)) in their respective component planes. This

means that there is high positive correlation between these

variables. A great advantage of SOM is that relationships

between nodes on the component plane are clearly visual-

ized. For example, the node located at the uppermost left

end shows lower normalized concentrations for all ions

(Cl�:0.00, NO3
�:0.00, SO4

2–:0.00, HCO3
�:0.11, Naþ:0.00,

Kþ:0.00, Mg2þ:0.00, and Ca2þ:0.00). The node, located at

the uppermost right end, shows moderately higher normal-

ized concentrations for HCO3
�, Mg2þ, and Ca2þ (Cl�:0.13,

NO3
�:0.09, SO4

2–:0.15, HCO3
�:0.46, Naþ:0.09, Kþ:0.18,

Mg2þ:0.33, Ca2þ:0.40). The node located at the lowermost

left shows relatively higher normalized ion concentra-

tions except for HCO3
� (Cl�:0.85, NO3

�:0.83, SO4
2–:0.78,

HCO3
�:0.04, Naþ:0.30, Kþ:1.00, Mg2þ:0.43, Ca2þ:0.90). On

the other hand, the node located at the lowermost right

shows higher normalized ion concentrations except for

Cl� and NO3
� (Cl�:0.29, NO3

�:0.17, SO4
2–:0.95, HCO3

�:0.95,

Naþ:1.00, Kþ:0.65, Mg2þ:0.98, Ca2þ:1.00).



Figure 3 | Component plane for (a) Cl�, (b) NO3
�, (c) SO4

2–, (d) HCO3
�, (e) Naþ, (f) Kþ, (g) Mg2þ, and (h) Ca2þ.

844 K. Nakagawa et al. | Classification of groundwater chemistry in Shimabara, using SOMs Hydrology Research | 48.3 | 2017
To confirm quantitative relationships, as mentioned

above, correlation coefficients between reference vectors

for each parameter were calculated (Table 2). There is a

high correlation (r¼ 0.99) between Cl� and NO3
�. There is

also a high correlation between Naþ and Mg2þ (r¼ 0.92).

Similarly, the color gradient for the relationship between

SO4
2– and Ca2þ indicates a high correlation coefficient (r¼

0.94). The relation between each ion indicates factors affect-

ing groundwater chemistry. For example, a high co-variation

(R2¼ 0.72) between higher concentrations of NO3
� and Cl�
Table 2 | Correlation between reference vectors for each parameter

NO3
� SO4

2– HCO3
�

Cl� 0.99* 0.82* �0.51*

NO3
� 0.75* �0.60*

SO4
2– �0.03

HCO3
�

Naþ

Kþ

Mg2þ

*Correlations significant at p¼ 0.01.
was observed, indicating that they originate from common

sources, such as human and animal waste (e.g., Diédhiou

et al. ). Moreover, the same result can be observed

between SO4
2– and Ca2 (r¼ 0.79). The high correlation

implies that the dissolution of gypsum may be one of the

key factors controlling the geochemical evolution of ground-

water (Liu et al. ).

Figure 4 shows the variation of DBI with a magnified

front between 2 and 14 clusters. The minimum DBI is

shown for five clusters, meaning that this number should
Naþ Kþ Mg2þ Ca2þ

0.47* 0.86* 0.46* 0.78*

0.38* 0.82* 0.36* 0.71*

0.84* 0.92* 0.79* 0.94*

0.43* �0.11 0.52* 0.11

0.71* 0.92* 0.82*

0.72* 0.94*

0.88*



Figure 4 | Variation of DBI values with the optimal number of clusters marked by the

circle on the figure.

Figure 6 | Pattern classification map of the five clusters by the SOM. The numbers on the

hexagons of the map represent the number of data classified into each node.
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be used as an optimal value. After determining the number of

clusters, the hierarchical clustering algorithm by Ward was

carried out for the five clusters to fine-tune pattern classifi-

cation. Figure 5 shows the hierarchical cluster dendrogram.

The 91 nodes of the SOM were classified into five different

clusters. Figure 6 shows the pattern classification map for

these five clusters. The number for each node represents

the raw data classified into each node. Simultaneous analysis

of the component planes (Figure 3) and the pattern classifi-

cation result (Figure 6) indicates what kind of data the

respective clusters include. For example, cluster-3 (the

lower left part of Figure 6) is associated with a high content

of Cl� and NO3
�. This pattern is observed in the same part
Figure 5 | Dendrogram with node number classified into clusters.
of the respective component planes for each parameter, as

shown in Figure 3. On the other hand, groundwater samples

in nodes with an extremely low concentration of all ions are

located at the upper left part of each component plane

(associated with cluster-1), as shown in Figure 3.

More quantitative information than the visualized pat-

tern classification can be extracted and interpreted from

the obtained reference vectors. Stiff diagrams for the

respective clusters were represented by mean and upper

and lower limits of one standard deviation using reference

vectors of each cluster to characterize the clustered data.

For example, the Stiff diagram for cluster-1 is represented

by reference vectors of 18 nodes classified into the cluster.

Figure 7 shows Stiff diagrams for the five clusters, with

eight parameters containing mean values and standard devi-

ations. Cluster-1 (Figure 7(a)) shows low values for all ions

compared to other clusters. The visible patterns of cluster-

2 (Figure 7(b)) and cluster-3 (Figure 7(c)) are not similar,

as shown in the figure. However, they are characterized by

high concentrations of NO3
�. Cluster-2 represents lower con-

centrations than that of cluster-3 for all ions except HCO3
�.

The pattern with the highest Ca2þ in cations and HCO3
� in

anions is associated with cluster-4 (Figure 7(d)). In this clus-

ter, the concentration of Naþ, Kþ, and Mg2þ is slightly lower

than that for Ca2þ. For anions, the concentration of HCO3
�

is significantly higher than other anions. This pattern is

also shown in cluster-5 (Figure 7(e)). It is clear that all ion



Figure 7 | Stiff diagrams for the respective clusters with mean value and upper and lower limits of one standard deviation by obtained reference vectors: (a) cluster-1, (b) cluster-2, (c)

cluster-3, (d) cluster-4, (e) cluster-5, and (f) legend.
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concentrations except for Cl� and NO3
� of cluster-5 are

higher than that of cluster-4.

The five classified clusters can generally be divided into

two water quality types. Cluster-2 and -3 can be character-

ized as polluted water due to the high concentration of

NO3
�. The other group includes cluster-1, -4, and -5, repre-

senting non-polluted water (pristine water type).

Table 3 shows mean ion concentrations calculated from

raw data and classified into the respective cluster. The NO3
�

for cluster-3 indicates a higher mean value than 50 mg L�1

which is the maximum contamination level recommended

by the World Health Organization (WHO ) for drinking

water. The NO3
� for cluster-2 meets the WHO standard.

However, it exceeds 13 mg L�1 which is the maximum

nitrate concentration unaffected by human activities

(Eckhardt & Stackelberg ). It confirms that the two clus-

ters include polluted water as mentioned above. Cluster-1,
Table 3 | Mean ion concentrations calculated from raw data and classified into clusters

Cl� (mg L�1) NO3
� (mg L�1) SO4

2– (mg L�1) HCO3
� (mg L

Cluster-1 5.1 9.9 3.2 37.7

Cluster-2 14.3 42.1 22.5 39.0

Cluster-3 21.3 78.8 37.7 27.5

Cluster-4 6.4 9.9 10.5 108.5

Cluster-5 6.8 6.2 41.3 175.4
-4, and -5 display much lower mean NO3
� concentrations.

An NO3
� concentration exceeding the maximum concen-

tration level recommended by the WHO has also been

reported in other studies (e.g., Diédhiou et al. ;

Hansen et al. ; Liu et al. ; Dragon et al. ;

Matiatos ). In these investigations, the maximum NO3
�

concentration ranged from 91 to 855 mg L�1.

Figure 8 shows Piper trilinear diagrams for all reference

vectors (91) and the respective cluster. With respect to

cations, most vectors of all clusters are located in zone B in

the lower left delta-shaped region, indicating a non-typical

water. However, a part of the reference vectors for cluster-3

is located in zone A, indicating a calcium-type water. For

anions, reference vectors are mostly located in zone B, E,

and F in the lower right delta-shaped region, suggesting that

the reference vectors of cluster-1, -4, and -5 are bicarbonate-

type water and the reference vectors of cluster-2 and -3 are
�1) Naþ (mg L�1) Kþ (mg L�1) Mg2þ (mg L�1) Ca2þ (mg L�1)

6.5 3.4 3.2 8.7

11.2 6.2 8.1 20.5

14.4 8.6 11.2 31.5

11.1 4.9 10.6 21.0

25.1 7.9 17.6 33.5



Figure 8 | Trilinear diagram for clusters obtained by reference vectors.

Figure 9 | Spatial distribution of clusters.
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sulfate and nitrate-type water or non-typical water. Thus, in

the Piper trilinear diagram, two main water types are

revealed. These are calcium-magnesium bicarbonate type

(zone I) including cluster-1, 4, and 5 (non-polluted water

type) and calcium-magnesium chloride-sulfate-nitrate type

(zone III) including cluster-2 and -3 (polluted water type).

Based on the Stiff and Piper trilinear diagrams, the pol-

luted water type is represented as Ca-(SO4þNO3) (calcium

sulfate nitrate type), while the non-polluted water type is

classified as Ca-HCO3 (calcium bicarbonate type). Similar

results were reported by Shin et al. (). According to the

study, water samples collected from the upper reaches of

Korean rivers were of Ca-HCO3 type, whereas water samples

collected from lower reaches and with relative high nitrate

concentrations were classified as Na-Cl-NO3 type. This indi-

cates that water samples are affected by anthropogenic

factors such as fertilizer, manure, and septic waste.

Figure 9 shows the spatial distribution of the five clusters

in Shimabara. All sampling locations belonging to cluster-2

and -3, representing the polluted water type, are located in
the northern part of Shimabara encompassing a concen-

tration of agricultural fields. In order to investigate the

interaction between groundwater and river water, one
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sample was taken from the river (R-2) and included into the

SOM analysis. The results showed that R-2 also is classified

into cluster-3 as O-1 and 2. This revealed that they are con-

nected and exchange water with each other. Samples with

high nitrate concentrations often correspond with agricul-

tural land use (Babiker et al. ; Esmaeili et al. ). This

confirms that agricultural activities are related to high nitrate

concentrations in groundwater. Ishihara et al. () reported

that fecal coliforms were detected in the northern part of

Shimabara. This means that the groundwater in this area is

affected by livestock waste. It is observed that most sampling

locations for cluster-1 are distributed in the mountainside

forest area upstream of the heavily polluted areas. This

shows that groundwater is recharged in the area and typically

is of pristine water type. The average NO3
� concentration of

cluster-1 is slightly lower than that of cluster-4 according to

Table 3. Sampling points such as W-12 and 13 located in

the agricultural area are thus affected by agricultural activities

belonging to cluster-1. This suggests that cluster-1 shows a

transition of water chemistry from pristine to polluted water

type. The sampling locations for cluster-4 and -5, character-

ized by high ion concentrations, are located in the urban

area at a lower altitude (below 100 m). This suggests that dis-

solution of ions from the aquifer matrix during groundwater

flow from the mountainside to the urbanized area may

increase ion concentrations. Mayuyama avalanche debris

deposits are distributed in the eastern area of Mt Mayuyama

(Ozeki et al. ). This area corresponds to sampling

locations for cluster-5. The pattern of cluster-5 has high con-

centration for all ions, as shown in Figure 7. This is due to

the effect of volcanic deposits on the groundwater chemistry

in the area.
SUMMARY AND CONCLUSION

In this study, water chemistry data from 36 sampling

locations, obtained from April 2012 to May 2015, were

classified using SOM in combination with hierarchical clus-

ter analysis to clarify groundwater characteristics in

Shimabara, Japan. The SOM provided readily understand-

able results for classifying the water chemistry data into

distinguishable hydrogeochemical types. The Piper trilinear

and Stiff diagrams for the reference vectors were plotted to
display fundamental characteristics of each cluster. In

addition, the spatial distribution of the respective clusters

explained the spatial variability of the hydrogeochemical

characteristics determined by the SOM. Based on the

SOM results, the water chemistry data could be divided

into five clusters that revealed two representative water

types characterized by nitrate pollution (cluster-2 and -3)

and non-polluted (cluster-1, -4, and -5) water. The spatial dis-

tribution of cluster-2 and -3 shows that agricultural activities

are causing groundwater pollution in the northern part of

Shimabara. The Stiff and Piper trilinear diagrams based on

the reference vectors for each cluster showed that non-pol-

luted water and polluted water are characterized by

Ca-HCO3 type and Ca-(SO4þNO3) type, respectively. This

indicates that nitrate pollution is a product from agricultural

activities and classified into cluster-2 and -3.

The SOM analysis showed that mountainside recharged

pristine groundwater is classified into cluster-1. Some

groundwater in cluster-1 is also located close to the mid-

slope hills. This means that non-polluted water can be

used from this agricultural area. For other purposes, water

quality evaluation methods such as the Wilcox classification

diagram (Wilcox ), can be used to evaluate whether

water in cluster-2 or -3 can be used for, e.g., irrigation. The

clusters from the SOM analysis are useful for further

groundwater remediation alternatives.

The application and results of the SOM support our pre-

vious conclusion (Nakagawa et al. ) regarding the

spatial distribution of nitrate pollution in the study area

and its causes. Data that display a scattered distribution in

the Piper trilinear diagram can be difficult to analyze by

PCA. However, in this case, SOM can be an alternative

method (Choi et al. ). In this study, both PCA and

SOM successfully classified groundwater chemistry in the

study area. However, SOM gives more robust and explain-

able results that can be used to characterize groundwater

chemistry. More detailed characteristics along this line will

be described in a new paper (Amano et al. in press).
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