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The Red River Delta (RRD) is the second largest delta in Vietnam, and its local communities depend on
groundwater sources for water supply. A clear understanding of the groundwater hydrogeochemical
properties, particularly their changes from the dry to rainy seasons and spatial characteristics, is invalu-
able and indispensable for the management and protection of this important water resource. In this
study, self-organizing maps was systematically applied for the first time to investigate the seasonal
and spatial hydrogeochemical characteristics of groundwater in the Pleistocene confined aquifer of the
RRD. The hydrogeochemical characteristics clustered by SOM were further examined using the Gibbs Dia-
grams. The groundwater chemistry dataset used in the analysis comprised eight major dissolved ions (i.e.,
Ca2+, Mg2+, Na+, K+, HCO3

�, Cl�, SO4
2�, and CO3

2�) and total dissolved solids that were collected from 52
groundwater monitoring wells within the study area during the dry and rainy seasons. Based on the
results, the hydrogeochemical groundwater data of the confined aquifer monitoring wells for the delta
were classified into 8 clusters, which revealed three basic representative water types: high salinity (2
clusters), low salinity (3 clusters), and freshwater (3 clusters). The high-salinity types were located in
the middle-stream and coastal areas of the RRD, while the low-salinity types were observed near the
western and northeastern boundaries of the delta. Cluster changes from the dry to rainy seasons were
detected in approximately one-third of the observation wells. The increase in groundwater recharge dur-
ing the rainy season is the main reason for these changes. Based on Gibbs diagrams, the source of soluble
ions in the groundwater of the freshwater types was found to be the weathering of rock-forming miner-
als, while evaporation and marine activities (leaching from salty paleowater and salt water intrusion)
were found to be the main factors affecting the chemistry of the groundwater characterized by the
low- and high- salinity types, respectively.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Clustering is an unsupervised method of data grouping using a
given measure of similarity. Clustering algorithms attempt to orga-
nize unlabeled feature vectors into clusters (natural groups) such
that samples within a cluster are similar to each other but differ
from those in other clusters (Hilario and Ivan, 2004). Clustering
analysis is an important and useful tool for analyzing large datasets
that contain many variables and experimental units. Therefore, the
application of cluster analysis to complex datasets has attracted a
high level of scientific interest in various aspects of water research,
such as surface water (Hall and Minns, 1999), rainfall (Astel et al.,
2004), and water quality (Alberto et al., 2001; Vialle et al., 2011).

In hydrogeochemical studies, cluster analysis serves the pur-
pose of isolating a group of representative clusters (also known
as water type or hydrogeochemical facies) that reflect the pro-
cesses generating the natural variability found in hydrogeochemi-
cal parameters. These representative clusters, which help define
the major chemical trends, can provide insight into aquifer heter-
ogeneity and connectivity, as well as the physical and chemical
processes controlling water chemistry (Güler and Thyne, 2004). A
number of studies have been published during the past few
decades that investigate hydrogeochemical characteristics of
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groundwater by applying cluster analysis, e.g., from Europe
(Lambrakis et al., 2004), Africa (Belkhiri et al., 2011; Hussein,
2004), and Asia (Zhang et al., 2012; Reghunath et al., 2002). Our
study area is the Red River Delta (RRD) in Vietnam, where hydrog-
eochemical facies, an important diagnostic chemical aspect of
groundwater solutions occurring in hydrologic systems, has not
been examined adequately by cluster analysis in the assessment
of groundwater quality.

The RRD is the second largest delta in Vietnam with an area of
about 13,000 km2 and a population of around 20 million people in
2012 (23% of Vietnam’s total population), which makes it one of
Vietnam’s most densely populated regions (Vietnam General
Statistic Office, 2013). All its residents depend entirely on ground-
water for their domestic water supply. Due to the importance of
groundwater in the RRD as well as the region’s importance in the
development of Vietnam, in recent years several studies on
groundwater have been carried out. For example, Tran et al.
(2012) investigated the origin and extent of fresh groundwater,
salty paleowaters, and saltwater from recent seawater intrusions
in the RRD using geological observations, geophysical borehole log-
ging, and transient electromagnetic methods. Arsenic pollution of
groundwater in the entire RRD has been studied by Winkel et al.
(2011) on the basis of a complete geo-referenced database with
37 chemical parameters from several hundred wells. In our earlier
studies, we investigated the spatial characteristics of the aquifer
system (Bui et al., 2011) as well as groundwater level trends in
the entire RRD (Bui et al., 2012). The hydrogeochemical character-
istics of groundwater in the two main aquifers of the RRD were also
investigated by analyzing the physicochemical data from 31 con-
junctive wells using classical hydrogeological and hydrochemical
approaches (Piper and Gibbs diagrams) (Nguyen et al., 2014). Piper
diagram was valuable in pointing out features of analyses of the
hydrogeochemical data, but did not suffice to investigate the
intrinsic relationships of the data in the RRD. Therefore, it is neces-
sary to apply the methods of clustering analysis for the hydrogeo-
chemical data in order to achieve a better understanding of the
physical and chemical properties of the groundwater system in
space as well as in time (Subyani and Al Ahmadi, 2009).

The hydrogeochemical characteristics in the RRD can be
affected by the change in seasons; hence, investigation of the
changes in the hydrogeochemical properties from the dry to the
rainy seasons (or vice versa) may reflect the groundwater hydrody-
namics and circulation (Nguyen et al., 2014).

In order to investigate the spatial–seasonal hydrogeochemical
characteristics of groundwater, it is essential for a robust classifica-
tion scheme to cluster water chemistry samples into homogeneous
groups (Güler and Thyne, 2004). Several common clustering tech-
niques have been utilized to divide groundwater samples into sim-
ilar homogeneous groups (each representing a hydrogeochemical
facies) with the ultimate objective of characterizing the quality
of groundwater. For example, Belkhiri et al. (2011) adopted princi-
pal component analysis and Q-mode hierarchical cluster analysis
to assess the chemistry of groundwater and identify the geological
factors that affect the water chemistry in the east of Algeria. Güler
and Thyne (2004) applied the fuzzy c-means clustering technique
to a large hydrochemical dataset from the Indian Wells-Owens Val-
ley area of southeastern California to delineate clusters of water
samples with similar characteristics. Reghunath et al. (2002)
applied Q- and R-mode factor and cluster analysis to improve the
understanding of groundwater systems in Karnataka, India. These
methods are efficient at grouping water samples by chemical sim-
ilarities, but are not useful for the visual assessment of the results
and presentation of maps showing hydrogeochemical facies (Güler
et al., 2002). The recently proposed method of the self-organizing
maps (SOM) is likely to become a complementary or alternative
tool to the clustering methods (Kalteh et al., 2008; Iseri et al.,
2009).

The SOM is based on an unsupervised learning algorithm, and
has excellent visualization capabilities, including techniques that
use the reference vectors of the SOM to give an informative picture
of the data (Hong et al., 2003). The SOM has been implemented in
various aspects of hydrology, e.g., identification of homogeneous
regions for regionalization of watersheds (Farsadnia et al., 2014),
regional flood frequency analysis (Srinivas et al., 2008), and region-
alization of hydrological model parameters (Wallner et al., 2013).
The SOM has also proven to be a powerful and effective data anal-
ysis tool in meteorological analysis and detection of long-term
changes in climate (Nishiyama et al., 2007; Leloup et al., 2007).
However, the SOM has not yet been systematically applied for
the classification of groundwater quality samples in order to inves-
tigate hydrogeochemical characteristics. This study is the first
attempt to apply the SOM in combination with a hierarchical clus-
ter analysis for clustering hydrogeochemical groundwater data.

Through the initiative of the national government (National
Hydrogeological Database Project), hydrogeochemical data of the
Pleistocene confined aquifer in the RRD were collected in 2011
during the dry and rainy seasons. The objective of this study is to
cluster spatial–seasonal hydrogeochemical data to assess the
groundwater quality of the confined aquifer in the RRD using
SOM and Gibbs diagrams. In this study, Gibbs diagrams were aptly
used to elucidate the cause and significance of the hydrogeochem-
ical characteristics clustered by the SOM. Gibbs (1970) proposed
chemical diagrams for the assessment of functional sources of dis-
solved chemical constituents and for inferring the mechanism con-
trolling the chemistry of surface water. Various researchers have
already demonstrated the usefulness of Gibbs diagrams for
groundwater (Raju et al., 2011; Marghade et al., 2012; Yidana
et al., 2010). The findings from this study will provide valuable
insights into the spatial–seasonal hydrogeochemical characteris-
tics of groundwater in the Pleistocene confined aquifer of the RRD.
2. Materials and methods

2.1. Study area

Fig. 1 shows the geographical location of the study area (the
entire RRD) and the 52 groundwater observation wells for the con-
fined aquifer. In order to facilitate investigation of spatial hydrog-
eochemical characteristics, the RRD was divided into three zones:
upstream, middle-stream, and downstream by two lines, AA0 and
BB0, as shown in Fig. 1. The two lines are the lines connecting bore-
holes of two typical hydrogeological cross-sections, which were
created in our previous study (Bui et al., 2011). Well Nos. 1–15
and 32–50 were in the upstream area; Well Nos. 16–24, 51, and
52 were in the middle-stream area; and Well Nos. 25–31 were in
the downstream area. The RRD is the most-developed region in
Vietnam and comprises 11 provinces and cities (Fig. 1). It has a
population density of more than five times the national average.
Two of Vietnam’s major economic centers, Hanoi and Hai Phong,
are located in the RRD (Bui et al., 2012).

The RRD is situated in the tropical monsoonal region with two
distinct seasons: rainy (May–October) and dry (November–April).
The annual average rainfall is about 1600 mm, 75% of which occurs
during the rainy season. The annual average humidity is about 80%,
and the average temperature is 24 �C. The annual evaporation aver-
age is approximately 900 mm. The river network is quite extensive,
with a network density of about 0.7 km/km2 (Bui et al., 2011). The
average discharge of the Red River at the Hanoi station is 1160 m3/
s during the dry season and 3970 m3/s during the rainy season



Fig. 1. Study area and location of sampling points.
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(IMHE-MONRE, 2011). In the Red River, a high concentration of sus-
pended solids is always present, which gives it its ‘‘reddish’’ color.
The tidal range along the coast is approximately 4 m. The lakes,
ponds, and canals in highly urbanized areas are seriously polluted
with untreated domestic and industrial wastewater. The groundwa-
ter, being relatively cleaner and generally unaffected by the surface
environmental problems, has become the most-trusted freshwater
source in the RRD (Bui et al., 2011).

In terms of regional geology, the RRD is composed of Quater-
nary-aged unconsolidated sediments with the thickness ranging
from a few meters in the northwest to 150–200 m at the coastline
in the southeast (Tran et al., 2012). In our previous study (Bui et al.,
2011), five hydrogeological cross-sections were identified by
hydrostratigraphically interpolating strata data from a number of
well logs to demonstrate the vertical framework of the aquifer sys-
tem. From these cross-sections, we found that the groundwater
mostly exists as porous water that forms the topmost Holocene
unconfined aquifer and the Pleistocene confined aquifer, with the
latter serving as the highest groundwater potential and most
important aquifer for water supply. Thus, the Pleistocene confined
aquifer was the focus of this study. The confined aquifer consists of
sands mixed with cobbles and pebbles, and is situated below the
Holocene unconfined aquifer in the stratigraphic sequence. The
thickness of this aquifer fluctuates over a large range with an aver-
age of about 80 m, and gradually increases from the northwest to
southeast of the delta. The transmissivity ranges from 700 to
3000 m2/day and indicates a very high potential of groundwater
resources (Bui et al., 2011).
2.2. Data used

The RRD has the most extensive hydrogeochemical database in
Vietnam with a large number of data owners such as the Vietnam-
ese geological survey departments, local or national environmental
agencies, public and private institutions, consultant firms and
many others. However, the record lengths and intervals vary
greatly depending on the completion time and the intended usage
of the observation wells, as well as the aquifers and variables that
are being monitored. In this study, we used the most recent
groundwater chemical data from the National Hydrogeological
Database Project (Tong, 2004), which were collected from 52
observation wells in the confined aquifer (Fig. 1) in the months
of February (dry season) and August (rainy season) in 2011 to
investigate the hydrogeochemical characteristics of groundwater
in the RRD.

Sampling was done in accordance to the guidance on the sam-
pling, preservation and handling of groundwater samples of Minis-
try of Natural Resources and Environment (MONRE, 2008). All
samples were filtered with 0.45-lm filter membranes and col-
lected in clean and dry Polyethylene or Polytetrafluoroethylene
plastic bottles. To take account of any physicochemical change that
might take place, all field-based water parameters such as temper-
ature and pH were measured in situ. Chemical analyses were
undertaken at the laboratory of Analytical Chemistry Department,
Vietnam Academy of Science and Technology, following the
national technical regulation on underground water quality of
MONRE (2008).
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In our previous study (Nguyen et al., 2014), the Piper diagram
was used to classify the major ions in the groundwater into various
hydrogeochemical types to investigate and identify the hydrogeo-
chemical facies of groundwater in the RRD. In this study, we also
used the same kind of the chemical data, consisting of major cat-
ions (Ca2+, Mg2+, Na+, and K+) and major anions (HCO3

�, Cl�, SO4
2�,

and CO3
2�) to cluster and characterize the groundwater quality.

Total dissolved solids (TDS) data were used for Gibbs diagram to
validate the significance of the hydrogeochemical characteristics
clustered by the SOM.

Standardization of the data was necessary prior to the applica-
tion of the SOM to ensure that all values of the chemical parame-
ters were given the same or similar importance. The results of
the SOM application were sensitive to the data pre-processing
method used, as the SOM is trained to be organized according to
the Euclidean distances between input data (Jin et al., 2011). In this
study, the range of the standardized values of the hydrogeochem-
ical data for all parameters was 0–1.

2.3. Methods

The SOM, developed by Kohonen (2001), is one kind of artificial
neural network that is characterized by unsupervised training. It
can project high-dimensional, complex target data onto a two-
dimensional, regularly arranged map in proportion to the degree
of similarity (Jin et al., 2011). In other words, the SOM accom-
plishes two objectives simultaneously: reducing dimensions and
displaying similarities. Therefore, it is an effective tool to visualize
and explore data properties. In general, the objective of the SOM
application is to obtain useful and informative reference vectors
(also referred to as weight vectors, prototype vectors, and code-
book vectors (Hilario and Ivan, 2004)). These vectors can be
acquired after iterative updates through the training of the SOM,
which is composed of three main procedures: competition
between nodes, selection of a winner node, and update of the ref-
erence vector of each node.

Design of the SOM structure (calculation of the total number of
nodes, side lengths), selection of a proper initialization method,
and data transformation methods are very important features in
the SOM application. The number of map nodes determines the
accuracy and generalization capability of the SOM. According to
the properties of the SOM, the bigger the map size is, the higher
the resolution for pattern recognition, while the topographical
adjacency is further among the clusters. A reasonable optimum
solution of the compromise among the accuracy of pattern classi-
fication and topographical proximity of clusters to determine the
number of the SOM nodes is the heuristic rule of m ¼ 5

ffiffiffi

n
p

, with
m denoting the number of the SOM nodes and n representing the
number of input data (Vesanto et al., 2000; Jeong et al., 2010;
Hentati et al., 2010; Jin et al., 2011). In this study, this heuristic for-
mula was used to determine the total number of nodes in the SOM.
The ratio of the number of rows and columns was calculated by the
square root of the ratio between the two biggest eigenvalues of the
transformed data (Hilario and Ivan, 2004).

After establishing the SOM structure, reference vectors for the
SOM with the commonly used hexagonal array are initially set
using the linear initialization method. The method first determines
the two eigenvectors of the autocorrelation matrix of input vectors
that have the largest eigenvalues, and then to let these eigenvec-
tors span a two-dimensional linear subspaces. A rectangular array
is then defined along this subspace, in which its center coincides
with that of the mean of the input vectors, and the dimensions
are the same as the two largest eigenvalues. The initial values of
the weight vectors are then identified with the array points (Su
et al., 2002). In this study, due to limited data, the linear initializa-
tion method was used, as it is more suitable for the pattern
classification than the random initialization. The random initializa-
tion requires a large dataset and might cause boundary effects near
the edges of the map (Vesanto et al., 2000; Hentati et al., 2010; Jin
et al., 2011). In addition, the linear initialization approach can use
eigenvalues and eigen vectors of the input data to set the initial
reference vectors on the structured SOM. This means that the ini-
tial reference vectors already include prior information about the
input data, resulting in an acceleration of the training phase
(Vesanto et al., 2000; Jin et al., 2011). In this study, each reference
vector was updated through the SOM training process using the
batch mode. The reference vectors obtained at the end of the train-
ing process can be fine-tuned using cluster analysis methods.

Various clustering algorithms are available in literature. These
algorithms are generally classified into two types: hierarchical
clustering and partitional clustering. These two clustering types
can be integrated such that a result given by a hierarchical method
can be improved via a partitional step, which refines via interactive
relocation of points (Hilario and Ivan, 2004). In this study, both
clustering algorithms were applied for the fine-tuning of the refer-
ence vectors. For the partitional clustering methods, the k-means
algorithm is the most frequently used method for the SOM (Jin
et al., 2011; Hentati et al., 2010; Nishiyama et al., 2007; Hilario
and Ivan, 2004). The optimal number of clusters was selected by
the Davies–Bouldin index (DBI) using the k-means algorithm. The
DBI values were calculated from a minimum of 2 clusters to the
total number of nodes. The calculation was based on the ‘‘similarity
within a cluster’’ and ‘‘dissimilarity between clusters.’’ Therefore,
the number of clusters showing the minimum DBI was optimal
for the trained SOM (Hilario and Ivan, 2004; Nishiyama et al.,
2007). For the hierarchical method, Ward’s linkage method is the
most commonly used approach (Jin et al., 2011; Hentati et al.,
2010). In this study, a final fine-tuning cluster analysis was carried
out by Ward’s method using the optimal number of clusters.

To investigate the mechanisms governing the groundwater
chemistry of the RRD, the chemical diagrams that were proposed
by Gibbs (1970) were used to further evaluate the clustered data
from the confined aquifer wells. The weight ratios Na/(Na + Ca)
and Cl/(Cl + HCO3) were plotted against the TDS separately on a
logarithmic axis to represent the Gibbs cation and anion diagrams,
respectively. The Gibbs diagrams were originally used to evaluate
surface waters, but recent groundwater quality studies have used
these diagrams to assess the sources of dissolved chemical constit-
uents of groundwater (Raju et al., 2011; Marghade et al., 2012;
Yidana et al., 2010).
3. Results and discussion

3.1. SOM and clustering results

The input data for the SOM application were concentrations of 8
chemical parameters (major ions as described in Section 2.2) of
104 samples, which were observed in 52 confined aquifer wells
during the dry and rainy seasons. Based on the methodology
described above, the number of the SOM nodes was calculated as
56, and the numbers of rows and columns were 8 and 7, respec-
tively. This SOM was used for the cluster analysis of the standard-
ized groundwater chemistry monitoring data.

Fig. 2 shows the 8 component SOM maps finally obtained after
the training process. Each map represents the component value of
the reference vectors for the 56 SOM nodes, in which the reference
vectors were standardized to range 0–1, using shades of gray. The
nodes that represent the high values are in dark gray and the low
values are colored light gray. A comparison between the compo-
nent SOM maps, by means of a gradient of gray shades, can indi-
cate informative and qualitative relations (or correlations) among



Fig. 2. Component planes for (a) Ca2+, (b) Mg2+, (c) Na+, (d) K+, (e) HCO3
�, (f) SO4

2�, (g) Cl�, (i) CO3
2�.
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the studied parameters. Through visual investigation of SOM maps
in Fig. 2, Mg2+, Na+, K+, and Cl� have similar gray gradients. This
means that there is strong positive correlation among these 4
parameters. In contrast, CO3

2� showed a negative correlation with
these parameters by the inverse gray gradient of the SOM maps.
The component maps of HCO3

� and SO4
2� show weak positive corre-

lation with other parameters, except for Ca2+, as can be seen in
Fig. 2. HCO3

� is mainly dissolved from carbonate rock, which wide
spread in the RRD, and combines with any cations by ion exchange
reactions. Therefore, there is no specific correlation between HCO3

�

and other ions. The source of Ca2+ and SO4
2� are mainly from the

dissolution of sulfate minerals (gypsum and anhydrite). Hence,
SO4

2� shows higher correlation with Ca2+ than other parameters.
To quantitatively confirm the strength of relations between these
parameters which are shown in Fig. 2, the correlation coefficients
among 8 physicochemical parameters were calculate by using
the standardized reference vectors, as shown in Table 1. The results
show that the relationships between those parameters are consis-
tent with the findings in the qualitative correlations from Fig. 2 as
mentioned above. In order to select the optimal number of clusters,
the DBI values based on the k-means clustering algorithm were
calculated for the minimum (2 clusters) to the maximum (56 clus-
ters) number of possible clusters. Fig. 3 shows the variation of the
DBI values after being applied to the data and the front part
between 2 and 20 clusters was magnified to show the minimum
DBI visibly. The most appropriate number of clusters correspond-
ing to the minimum DBI was 8. Once the optimum cluster number
had been selected, the hierarchical clustering algorithm using
Ward’s method was carried out to obtain the 8 clusters for fine-
tuning the pattern classification.
Table 1
Correlation coefficients among 8 physicochemical parameters.

Ca2+ Mg2+ K+ Na+ HCO3
� SO4

2� Cl�

Mg2+ 0.77
K+ 0.43 0.88
Na+ 0.56 0.95 0.98
HCO3

� 0.37 �0.09 �0.37 �0.30
SO4

2� 0.53 0.42 0.17 0.27 0.07
Cl� 0.59 0.96 0.97 0.99 �0.32 0.28
CO3

2� �0.16 �0.19 �0.18 �0.18 0.44 �0.16 �0.23
Fig. 4 shows the hierarchical cluster tree with the nodes of the
SOM classified into 8 different clusters. The nodes in the SOM map
are numbered from top to bottom and from left to right. As shown
in this figure, Clusters 4 and 6 have the smallest distance or highest
similarity between clusters. This means that Cluster 4 has similar
hydrogeochemical characteristics to Cluster 6. In the same way,
Clusters 1 and 3 have similar characteristics, as well as Clusters 5
and 8. In addition, Clusters 2 and 7 have higher similarity with
Clusters 5 and 8 and Clusters 4 and 6, respectively, than the other
clusters, as shown in Fig. 4.

Fig. 5 shows the pattern classification map of the 8 clusters, in
which the numbers in the nodes represent Well Nos; the charac-
ters D and R correspond to the dry and rainy seasons; and the last
characters u, m, and d denote upstream, middle-stream, and down-
stream areas, respectively. Simultaneous analysis of Fig. 2 (compo-
nent SOM maps) and Fig. 5 reveals what kind of data the respective
clusters include. For example, Cluster 1 (upper left part of Fig. 5) is
associated with high-salinity water characterized by high Na+, K+,
Mg2+, and Cl�, which is observed in the same location of the
respective component SOM maps as shown in Fig. 2. On the other
hand, the groundwater samples in nodes with extremely low con-
centrations of all ions are located at the lower left part of each SOM
map (classified as Cluster 6), as shown in Fig. 2.

3.2. Fundamental characteristics of the respective clusters

The reference vector values of each node obtained from the
SOM can provide quantitative information. In order to numerically
characterize the classified data, the first quartile, median, and third
quartile of the reference vector values for the 8 clusters were cal-
culated. Fig. 6 displays the radar charts of the 8 parameters for
the 8 clusters with the first quartile, median, and third quartile
plotted. As shown in this figure, the visible patterns of Clusters 1
and 3 are similar (as mentioned above for Fig. 4). Both the clusters
have the pattern of significantly high values of all cations and Cl�

and very low values of HCO3
� and CO3

2�. In particular, Cluster 1 with
the highest Na+ and Cl� values represents the most saline water
type of all the clusters. Clusters 4 and 6 have low concentrations
of all the major ions, and it can be assumed that the wells in these
clusters are of freshwater type. In particular, Cluster 6 with the
lowest concentrations of all ions represents the freshest water



Fig. 3. Variation of DBI values with the optimal number of clusters marked by the circle on the figure.

Fig. 4. Dendrogram with node numbers classified into the respective clusters.

666 T.T. Nguyen et al. / Journal of Hydrology 522 (2015) 661–673
type. Clusters 5 and 8 have similar ion patterns with significantly
high values of Ca2+ and HCO3

�, in which Cluster 8 has higher con-
centrations of all major ions than Cluster 5. Cluster 2 is character-
ized by high Ca2+, SO4

2�, Mg2+, and HCO3
� and low Na+, Cl�, K+, and

CO3
2�, which according to Fig. 4, is close to the water type of Clus-

ters 5 and 8. Cluster 7 shows a pattern where almost all ions have
low values except CO3

2� and HCO3
�, which is close to the freshwater

type (Clusters 4 and 6).
As mentioned above, groundwater in the RRD is mainly used for

domestic water supply, drinking water and agriculture purposes.
Therefore, from the practical point of view the 8 classified clusters
should be divided into three main water types based on the simi-
larity observed from the 8 radar charts in Fig. 6, in order to be more
generalized and understandable for groundwater users and
authorities in Vietnam. The freshwater type was associated with
Clusters 4, 6, and 7 due to the low values of Na+ and Cl�, as
indicated in the lower part of Fig. 5. Clusters 1 and 3 were charac-
terized by high concentrations of all cations and Cl� ion, represent-
ing the high-salinity type, as seen in the upper left part of Fig. 5.
The remaining 3 clusters (Clusters 2, 5, and 8) were characteristic
of the low-salinity type, as shown in the upper right part of
Fig. 5. In fact, to make the water users and authorities understand
more easily, grouping clusters obtained from SOM has also been
carried out in other studies (Jin et al., 2011).

In order to confirm and give more quantitative information of
each cluster, the mean values of each parameter for the whole
and the classified data were calculated from the raw data, as
shown in Table 2. Clusters 1 and 3 show considerable higher mean
values of cations and Cl� than those for the whole data. It confirms
that the two clusters represent the most saline groundwater in the
study area, as mentioned above. Similarly, clusters 4, 6, and 7 have
lower mean values of almost all ions, which confirms that these
clusters represent the freshwater type. Cluster 8 shows relatively
higher values of almost all ions except K+ than those for the whole
data, while Cluster 5 shows slightly lower values. Cluster 2 indi-
cates the highest SO4

2� mean value and slightly higher mean values
of Ca2+, Mg2+, HCO3

�, and Cl� than those for the whole data.
3.3. Seasonal changes in the respective clusters

Fig. 7 displays the SOM map, in which all the observation wells
showing cluster changes from the dry to rainy seasons are indi-
cated. From this figure, it is observed that 16 out of the 52 obser-
vation wells exhibited seasonal changes, in which 6 wells (Well
Nos. 3, 7, 16, 20, 31, and 33) showed changes of water types and
the other 10 wells showed changes within the same water type.

With regard to changes in water types, it is noted that samples
from Well No. 31 changed from the high-salinity type (Cluster 1) to
the freshwater type (Cluster 7). In fact, Well No. 31 is located in the
southern coastal area, as shown in Fig. 1. According to Wagner
et al. (2012), in this region there is a constant influx of fresh
groundwater from the adjacent mountain coming to the aquifer.
The increase of the groundwater recharge during the rainy season
may be the reason causing the change in the water type of this
well. Furthermore, samples from Well Nos. 16 and 7 changed from
Clusters 2 and 8 (the low-salinity type) to Clusters 6 and 4 (the
freshwater type), respectively, and Well No. 20 changed from Clus-
ter 3 (the high-salinity type) to Cluster 8 (the low-salinity type).
These changes imply that water infiltration from the Holocene



Fig. 5. Pattern classification map of the eight clusters by the SOM. Numbers represent the name of sampling wells in Fig. 1. The characters D and R correspond to the dry and
rainy season. The last characters u, m, and d denote upstream, middle-stream, and downstream areas.

Fig. 6. Radar charts for the respective clusters with the first quartile (dashed lines), median (solid lines) and the third quartile (dotted lines) by obtained reference vectors.
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unconfined aquifer may affect the concentrations of chemical con-
stituents of the confined aquifer groundwater during the rainy sea-
son through hydrogeological windows, where the aquitard
sandwiched by the aquifers is completely missing that directly
connect the two aquifer systems (Bui et al., 2012). Interestingly,
samples from Well Nos. 3 and 33 located near the western bound-
ary in the upstream area (as shown in Fig. 1) changed from Clusters
7 and 6 (the freshwater type) to Clusters 5 and 8 (the low-salinity



Table 2
Mean values of eight parameters for the five clusters and whole data.

Mean Ca2+ (mg/L) Mg2+ (mg/L) Na+ (mg/L) K+ (mg/L) HCO3
� (mg/L) SO4

2� (mg/L) Cl� (mg/L) CO3
2� (mg/L)

Cluster 1 113.57 146.19 1387.54 81.20 86.58 10.81 2860.21 0.00267
Cluster 2 93.02 51.17 138.71 7.58 266.71 157.77 338.84 0.00555
Cluster 3 87.35 85.26 474.99 13.22 91.56 34.17 1111.71 0.00315
Cluster 4 41.50 20.01 51.86 3.89 203.35 6.78 99.51 0.00760
Cluster 5 72.18 28.45 73.37 4.13 414.33 10.40 114.96 0.01798
Cluster 6 18.21 8.83 29.08 2.80 117.77 3.87 45.52 0.00448
Cluster 7 31.23 23.53 137.85 7.94 272.65 8.15 192.61 0.07371
Cluster 8 113.67 66.63 254.66 5.73 599.52 20.08 533.53 0.02836
Whole data 53.43 33.50 163.75 8.61 243.68 17.99 327.19 0.01637

Fig. 7. Representation of the sampling points showing the changes in clusters from the dry to the rainy seasons.
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type), respectively, which were characterized by high values of
Ca2+ and HCO3

�. According to Tran et al. (2012), the Pleistocene con-
fined aquifer in the RRD is recharged mainly from the surrounding
mountains, in which the western mountains are carbonate rock
formations consisting of marble, limestone, and dolomite
(Drogue et al., 2000). This suggests that the increase of groundwa-
ter recharge from the western mountains during the rainy season,
which causes the increase of dissolution of carbonate minerals, is
the reason for these changes.

Regarding changes in clusters within the same water type, most
observation wells exhibited the changes from the cluster with
higher concentrations of most major ions in the dry season to
the cluster with lower concentrations in the rainy season. For
example, within the high-salinity type, samples from Well Nos.
24 and 26 changed from Cluster 1 to Cluster 3; within the freshwa-
ter type, Well No. 12 changed from Cluster 4 to Cluster 6; and
within the low-salinity type, Well No. 25 changed from Cluster 2
to Cluster 5. The increase of groundwater recharge during the rainy
season may create a dilution effect, which could explain the down-
ward trends in the ion concentrations during the rainy season.

In our former study (Nguyen et al., 2014), we used Piper dia-
gram to investigate the seasonal changes in hydrogeochemical
facies. However, some of the seasonal changes in water types as
well as clusters within the same water type, which were obtained
by using SOM, were not detected by using Piper diagram. For
example, samples in Well Nos. 31 and 20 showed significant sea-
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sonal changes as mentioned above, but Piper diagram showed that
groundwater in these wells was the [Na+–Cl�] ion type in both sea-
sons. Similarly, samples in Well Nos. 24 and 26, which showed the
seasonal changes in clusters within the same water type, were the
[Na+–Cl�] ion types and in Well No. 12 was the [Ca2+–HCO3

�] ion
type in both seasons.

Furthermore, it is difficult for Piper diagram to visually detect
the seasonal changes in ion types because of many overlapped
samples plotted in Piper diagram, especially when the amount of
data increases. On the other hand, SOM can distinctly visualize
the seasonal changes as plotting in the different nodes, as well as
how big the changes were in a manner more easily by distances
between the nodes of samples in both seasons.

3.4. Spatial distribution of the respective clusters

Figs. 8 and 9 show the spatial distribution of the 8 clusters clas-
sified by the SOM in the RRD in the dry and rainy seasons, respec-
tively. The symbols star, triangle, asterisk, circle, diamond,
rectangular, cross, and inverse triangle represent Clusters 1–8,
respectively. As seen in this figure, observation well locations are
unevenly distributed across the study area. Due to the region’s
importance, the wells are denser in urbanized areas, especially
around Hanoi. Therefore, well density should be taken into consid-
eration while discussing the spatial distribution of the clusters.

Besides the fact that Clusters 1 and 3 (the high-salinity type) are
observed in the coastal area, such as Well Nos. 26 and 31, they are
also found in the middle-stream area (Well Nos. 20, 23, 24, and 51),
as shown in Figs. 8 and 9. This is consistent with our previous study
(Nguyen et al., 2014), the [Na+–Cl�] ion type, typical of saline
Fig. 8. Spatial distribution of the re
water, was also found in these observation wells. Saltwater intru-
sion could be the reason for the presence of the high-salinity type
in the coastal area. However, high salinity in the middle-stream
area could be due to leaching of salty paleowater. According to
Tanabe et al. (2003), during the Holocene, the sea transgressed
the flood plain as far inland as the present location of Hanoi. The
transgression during the Holocene, induced by sea-level rise, must
have caused an intrusion of seawater into the underlying highly
permeable Pleistocene sediment and the salty porewater may still
be present in the middle-stream area.

It is noted that the low salinity type clusters (Clusters 2, 5, and
8) were found near the western and northeastern boundaries of the
RRD. Clusters 5 and 8 characterized by high Ca2+ and HCO 3

� were
distributed near the western boundary, while Cluster 2 with signif-
icantly high Ca2+ and SO4

2� is found near the northeastern bound-
ary. Ca2+ and HCO3

� are released by the dissolution of carbonate
rock (Jalali, 2009). In fact, the mountains near the western bound-
ary of the delta, which are the main recharge zones for the confined
aquifer, are carbonate rock formations comprising marble, lime-
stone, and dolomite, as mentioned in Section 3.3. This suggests that
dissolution of these minerals will add significant amounts of Ca2+

and HCO3
� to the groundwater near the western boundary of the

RRD. On the other hand, high Ca2+ and SO4
2� (Cluster 2) probably

resulted from the dissolution of sulfate minerals (gypsum and
anhydrite), which are commonly found in the Quaternary aquifer
system (El-Fiky, 2009). Piper diagram in our previous study
(Nguyen et al., 2014) could not detect the samples in the western
and northeastern boundaries that showed significantly high Ca2+

and HCO 3
� (Clusters 5 and 8) and Ca2+ and SO4

2� (Cluster 2) respec-
tively. It only revealed that groundwater in the upstream area is
spective clusters in dry season.



Fig. 9. Spatial distribution of the respective clusters in rainy season.
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dominated by the [Ca2+-HCO3
�] ion type, whereas the [Na+-SO4

2�]
ion type was found only in the middle area of RRD (Well No. 16).
These findings were neither found in the previous study of Tran
et al. (2012), which were based on the geophysical investigations.

The freshwater type clusters (Clusters 4, 6, and 7) were distrib-
uted mostly in the upstream and downstream areas except the
coastal area, in which the freshest water type cluster (Cluster 6)
was found in the upstream area, as shown in Figs. 8 and 9. The
study of Tran et al. (2012), which investigated the distribution of
groundwater types in the RRD by using the different kind of data
(formation electrical conductivities, the transient electromagnetic
soundings) and different methods (geophysics and electromag-
netic methods), also revealed that in the Pleistocene aquifer, fresh
groundwater is present in those areas. A local lens of freshwater
existing in the Pleistocene aquifer in the downstream area of
RRD, which was identified by Wagner et al. (2012), could be the
reason for the presence of the freshwater type found in the down-
stream area. The existence of freshwater type in the downstream
area was not obtained by using Piper diagram as in our previous
study (Nguyen et al., 2014).

The objective of using Piper diagram is neither to cluster the
hydrogeochemical data to discover absorbing characteristics nor
to find a new set of water types, but rather to decide how the
hydrogeochemical data should be classified into different ion
types. Basically in Piper diagram, cations of Na+ and K+ as well as
anions of HCO3

� and CO3
2� are plotted as their sum values, not sep-

arately treated like in SOM. Furthermore, Piper diagram just classi-
fies the water ion types into the combination of one of three cation
types and one of three antion types, whereas application of SOM
can flexibly cluster the hydrogeochemical data into any combina-
tion among 8 cation and anion parameters by the automated
process. Therefore, application of Piper diagram did not suffice to
investigate the intrinsic relationship between each parameter of
the hydrogechemical data.

In conclusion, in this study the SOM provided understandable
and visualized results for clustering the hydrogeochemical ground-
water data into exclusively distinguishable water types. These
results are not easily obtained from the traditional graphical
method like Piper diagram. In addition, the seasonal changes in
clusters and water types are easy to be detected. In other words,
by using SOM, the hydrogeochemical data is easily interpreted
and understood. It does not need great knowledge about the geol-
ogy (e.g., formation factor of the sediments) and geophysics (e.g.,
electromagnetic properties) in the RRD (Tran et al., 2012), nor
how to interpret Piper diagram (Nguyen et al., 2014).

3.5. Factors governing chemistry of groundwater in each cluster

Fig. 10 shows the Gibbs diagrams for the 8 clusters classified by
the SOM. The symbols for expressing the Clusters 1–8 in this figure
are the same as that in Figs. 8 and 9. Gibbs (1970) found that most
of the world’s surface water falls within the boomerang-shaped
boundaries. Based on analytical chemical data for numerous sur-
face samples, Gibbs theorized the three major mechanisms con-
trolling world surface water chemistry, which are presented in
three domains: precipitation dominance (lower part), rock domi-
nance (middle part), and evaporation dominance (upper part), as
shown in Fig. 10. In addition, Gibbs diagrams have been also used
for the functional sources assessment of dissolved ions in ground-
water in various studies with careful interpretations. For example,
Marghade et al. (2012) used Gibbs diagram to assess the functional
sources of dissolved chemical constituents of groundwater in Neg-



Fig. 10. Gibbs diagrams for the classified data into the respective cluster.
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pur, Central India, with an interpretation that most of the samples
falling in the evaporation zone were influenced by anthropogenic
activities. Yidana et al. (2010) used Gibbs diagram for groundwater
in the Keta basin, Ghana, with an interpretation that samples plot
within the evaporation dominance domain due to elevated TDS
and sodium concentration arising from saline seawater intrusion.
Since this study has focused on the Pleistocene confined aquifer,
the evaporation mechanism probably does not affect directly the
water chemistry. Gibbs diagram has been already used in our pre-
vious study (Nguyen et al., 2014) to investigate the main mecha-
nism controlling groundwater chemistry of RRD, Vietnam. The
results showed that the source of the dissolved ions in the ground-
water is rock-water interaction in the upstream and the south-
western part of the downstream area, but salty paleowater and
salt water from the sea are the main factors influencing groundwa-
ter chemistry in the middle-stream and northern downstream
areas. In this study, we used Gibbs diagram with more samples
in order to investigate factors governing chemistry of groundwater
in each cluster which was classified by the SOM. Therefore, in this
study the samples plotted in Gibbs diagram were represented in
accordance with each cluster, which was not considered in the pre-
vious study.

As shown in the Fig. 10, Clusters 1 and 3 (the high-salinity type)
were plotted toward the evaporation dominance domain as the
result of high TDS and weight ratios (Na/Ca + Na and Cl/Cl + HCO3).
It can be inferred that the occurrence of the high TDS is mostly due
to high concentrations of Na+ and Cl� (as shown in Table 2).
According to Tran et al. (2012), the source of sodium and chloride
in groundwater of the Pleistocene confined aquifer in the middle-
stream area is mixing with salty paleowater, and in the coastal area
is saltwater intrusion from rivers and the sea. This suggests that
saltwater intrusion is the main factor affecting the groundwater
chemistry of these clusters in the coastal area, while high-salinity
type (clusters 1 and 3) found in the middle-stream area could be
influenced by mixing with salty paleowater.

On the other hand, groundwater samples belonging to Clusters
4, 6, and 7 (the freshwater type) fall toward the domain of rock
dominance due to low TDS. Some samples belonging to these clus-
ters fall outside the boomerang-shaped boundaries. It is common
for groundwater that the domain of rock dominance extends fur-
ther toward higher weight ratios (Raju et al., 2011; Marghade
et al., 2012; Yidana et al., 2010). The fall in the rock dominance
domain suggests that these clusters are dominated by the pro-
cesses of mineral dissolution. In particular, Cluster 6 has the lowest
TDS with some samples tending to fall in the domain of precipita-
tion dominance. This explains why this cluster has the lowest con-
centrations of all ions (Table 2). In our previous study (Nguyen
et al., 2014), there is no sample falling in the domain of precipita-
tion dominance due to the fewer set of hydrgeochemical data of
groundwater in the confined aquifer.

In the low-salinity type, Clusters 2 and 8 have relatively high
TDS as a result of the high concentrations of Ca2+ and SO4

2� for Clus-
ter 2 and Ca2+ and HCO3

� for Cluster 8, and thus, falling in the evap-
oration dominance domain. This could be due to evaporation,
which increases salinity and precipitation of CaCO3 from solution,
which increases the relative proportion of Na+ to Ca2+ and Cl� to
HCO3

� (Gibbs, 1970). Cluster 5 falls in the rock dominance domain,
which suggests that rock–water interaction is the natural mecha-
nism controlling the dissolved ions in this cluster.
4. Conclusions

In this study, the SOM in combination with a hierarchical clus-
ter analysis was systematically applied for clustering hydrogeo-
chemical groundwater data comprising major ions from 52
observation wells to investigate the seasonal and spatial hydrogeo-
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chemical characteristics of groundwater in the Pleistocene con-
fined aquifer of the RRD. In addition, Gibbs diagrams were also cre-
ated to elucidate the hydrogeochemical characteristics classified
by the SOM. The main conclusions drawn from this study are as
follows:

� From the results of the SOM application, the major ion chemis-
try data were divided into eight clusters. From the practical
point of view, these eight clusters revealed three basic repre-
sentative water types characterized by the high salinity (Clus-
ters 1 and 3), low salinity (Clusters 2, 5, and 8), and
freshwater (Clusters 4, 6, and 7). The high-salinity water type
is distributed in the middle-stream and coastal areas, while
the low-salinity water type is found near the western and
northeast boundaries of the RRD.
� Changes in the water types from the dry to rainy seasons were

detected in more than 10% of the observation wells, while clus-
ter changes within the same water type was about 20%. The
increase in groundwater recharge during the rainy season could
be the main reason for these changes.
� The results of the Gibbs diagram suggest that the source of

water-soluble ions in the groundwater characterized by the
freshwater type and the low-salinity type are the chemical
weathering of the rock-forming minerals and the chemical
interaction between aquifer rocks and groundwater, while salty
paleowater and saltwater intrusion are the main source of the
dissolved solids in the groundwater characterized by the high-
salinity water type.
� The SOM provided readily understandable and visualized

results for classifying the hydrogeochemical groundwater data
into exclusively distinguishable hydrogeochemical types.
Therefore, the SOM was found to be a very effective tool for
the assessment of groundwater quality in terms of the seasonal
and spatial hydrogeochemical characteristics.
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