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Environmental monitoring data for planning, implementing and evaluating the Total Maximum Daily

Loads (TMDL) management system have been measured at about 8-day intervals in a number of rivers

in Korea since 2004. In the present study, water quality parameters such as Suspended Solids (SS),

Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), Total Nitrogen (TN), and Total

Phosphorus (TP) and the corresponding runoff were collected from six stations in the Yeongsan River

basin for six years and transformed into monthly mean values. With the primary objective to

understand spatiotemporal characteristics of the data, a methodologically systematic application of

a Self-Organizing Map (SOM) was made. The SOM application classified the environmental

monitoring data into nine clusters showing exclusively distinguishable patterns. Data frequency at each

station on a monthly basis identified the spatiotemporal distribution for the first time in the study area.

Consequently, the SOM application provided useful information that the sub-basin containing

a metropolitan city is associated with deteriorating water quality and should be monitored and

managed carefully during spring and summer for water quality improvement in the river basin.
aDepartment of Civil and Environmental Engineering, Tokyo Metropolitan
University, Japan. E-mail: nmdrjin@gmail.com; Fax: +81-42-677-2772;
Tel: +81-42-677-2787
bDepartment of Civil and Environmental Engineering, Tokyo Metropolitan
University, Japan. E-mail: kawamura@tmu.ac.jp; Fax: +81-42-677-2772;
Tel: +81-42-677-2787
cDepartment of Civil Engineering, Dongshin University, Korea. E-mail:
psc@dsu.ac.kr; Fax: +82-61-330-3161; Tel: +82-61-330-3135
dDepartment of Civil and Environmental Engineering, Tokyo Metropolitan
University, Japan. E-mail: nakanaok@tmu.ac.jp; Fax: +81-42-677-2772;
Tel: +81-42-677-2787
eDepartment of Civil and Environmental Engineering, Tokyo Metropolitan
University, Japan. E-mail: amaguchi@tmu.ac.jp; Fax: +81-42-677-2772;
Tel: +81-42-677-2779
fResearch and Development (Hydrology), Swedish Meteorological and
Hydrological Institute, Sweden. E-mail: jonas.olsson@smhi.se; Fax: +46-
11-495-8001; Tel: +46-11-495-8322

Environmental impact

Environmental monitoring data for planning, implementing and eva

system have been measured at about 8-day interval and accumulated

a Self-Organizing Map (SOM) was systematically applied to class

sponding runoff measured from a river basin in Korea for the first

characteristics of the data. To conclude, the SOM application is su

data and provided meaningful information for comprehensive imp

representation of the spatiotemporal distribution was displayed by
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Introduction

Anthropogenic activities in river basins such as intensive land use

and development with rapid growth of population have

increased the amount of pollutants discharged into rivers

worldwide, resulting in a substantial deterioration of water

quality and degradation of river environments.1,2 Such intensive

development has also been carried out in a number of river basins

in Korea and its environmental impact has negatively influenced

the water quality in the rivers.

Therefore, the Ministry of Environment (ME) in Korea has

been trying to prevent rivers and the surrounding environment

from any kind of pollution by launching the Comprehensive

Water Management Measures in 1996 and the Comprehensive

Measures of the Four Main Rivers (i.e., the Han River, the

Nakdong River, the Geum River and the Yeongsan River) in

1998.3 In particular, the recent focus on the environment in rivers
luating the Total MaximumDaily Loads (TMDL) management

in a number of rivers in Korea since 2004. In the present study,

ify the data including water quality parameters and the corre-

time with the primary objective to understand spatiotemporal

bstantially useful to examine the spatiotemporal distribution of

rovement of water quality condition in the study area. Visible

the spatiotemporal mesh proposed in this study.
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emphasizes that nonpoint source pollution should be more

strictly controlled than before for watershed management and

water quality improvement, because of its increasing relative

impact compared to point source pollution.4

Furthermore, the Total Maximum Daily Loads (TMDL)

management system in Korea has been implemented to achieve

the water quality targets within an intended timeframe since it

was initially introduced in the Special Comprehensive Measures

on the Han River watershed in 1998.3 The TMDL consists of

three main procedures: a basic plan, an implementation plan and

an implementation review. Local governments should establish

implementation plans for the TMDL by compulsion if they fail

to meet the water quality targets allocated by the basic plans of

the TMDL. Implementation reviews of the local governments are

conducted to evaluate whether or not the implementation plans

are carried out properly.3

The ME in Korea has also established Water Environment

Research Centers for the four main rivers. At these centers, water

quality and corresponding runoff data have been measured at

about 8-day intervals since 2004 in the outlets of numerous sub-

basins in the four major river basins.5 Various data analysis tools

may be developed and applied to the observations to detect key

features and improve the understanding of the governing

processes, with the objective of more efficient watershed

management and, in turn, improving water quality. However, the

environmental monitoring data were rarely analyzed and

utilized, although they could play an important role in planning

new environmental policies as well as implementing and evalu-

ating the TMDL. A few researchers have examined spatiotem-

poral characteristics of water quality in the Han River and the

Nakdong River basins.6,7 However, no simultaneous spatiotem-

poral characterization of water quantity and water quality has

yet been performed in Korea.

The four main river basins in Korea generally contain one or

two large intensively developed and densely populated cities. The

sub-basins including cities have negatively influenced the water

quality and overall environment of the rivers with larger amounts

of pollutants than in other sub-basins. Hence, it is crucial to

understand, evaluate and compare the environmental impact of

each sub-basin in order to efficiently design environmental

policies and measures for sustainable improvement of water

quality and watershed management.

However, it is generally difficult to understand the spatiotem-

poral characteristics of multivariate data such as the environ-

mental monitoring data in a river basin as a whole. It can be

meaningful to obtain and extract information from the classifi-

cation ofmultivariate data into a number of patterns representing

different characteristics. In other words, it is considerably appli-

cable and feasible to divide the overall environmental aspect into

a number of characteristic patterns. Recently, the Self-Organizing

Map (SOM) has been frequently used as a powerful and effective

data analysis tool for detection of data characteristics by pattern

classification and visualization onto two-dimensional arrays. The

application of SOM has been reported in diverse research fields

such as ecology,8–14 geomorphology,15,16 hydrology,17–23 meteo-

rology,24,25 and wastewater treatment.26,27 Previous work by the

authors has demonstrated the efficiency of SOMs to evaluate

vulnerability to erosion16 and to classify complex nonlinear

synoptic fields for identifying heavy rainfall events.25
This journal is ª The Royal Society of Chemistry 2011
In terms of water quality applications, the SOM has been used

for analyses of coastal water quality, sediment contamination

and detection of abnormal water quality changes.28–30 Other

applications include the assessment of various impact sources on

a river and the evaluation of spatiotemporal patterns.31,32 In

conjunction with a statistical analysis and a decision support

system, SOMs were utilized for classification, modeling, inter-

pretation and assessment of the water quality in rivers.33,34 The

above studies applied SOMs for the respective purposes without

taking into account the water quantity such as river runoff.

However, when water quality parameters are analyzed by

a SOM, it is crucial to include also the corresponding runoff data

in the analysis because the concentration data are significantly

influenced by runoff.

As mentioned above, the applicability of SOMs has been

demonstrated in a number of studies using a variety of data types

from diverse research fields. However, although the SOM

structure is extremely sensitive to the data transformation

method, most studies perform data transformation and SOM

structure determination without considering the close relation-

ship between them. The distribution of raw data should be

initially investigated to select a proper data transformation

method which can guarantee the appropriate application of

SOMs. Thus, the application of SOMs must be carried out in

a methodologically systematic way and not as a black box

method. To date, no such systematic application of SOMs has

been carried out for environmental monitoring data from river

basins in Korea.

Therefore, in the present study, pattern classification analysis

by SOMs combined with a hierarchical cluster analysis is carried

out with the primary objective of better understanding the gov-

erning processes by a detailed spatiotemporal characterization of

the environmental monitoring data. The research utilizes the

data measured in the Yeongsan River basin, which have never

been used before for this purpose. Water quality concentrations

and the corresponding runoff data are jointly examined for

simultaneous consideration of both water quality and quantity.

A methodologically systematic approach for SOM application

with appropriate methods for data transformation, map size

determination and SOM training is applied in order to ensure

robust and credible results.
Study area and data used

For the implementation and evaluation of the TMDL in Korea,

environmental monitoring data with the corresponding runoff

have been measured in the outlets of sub-basins at about 8-day

intervals since 2004. The Yeongsan River basin, which is one of

the four main rivers in Korea and located in the southwestern

part of Korean peninsula, was chosen for the present study

because the data have not yet been much analyzed.

The river basin has an area of 3455 km2 and the length of the

main stream is 136 km. Environmental monitoring data from six

stations in the river basin are available for the study as shown in

Fig. 1. Two of the six stations are located in tributaries and are

named T1 and T2, respectively, while the rest of the stations (M1,

M2, M3 and M4) are located in the main stream from upstream

to downstream. In the center of the river basin, the Gwangju

metropolitan city is situated with a population of more than
J. Environ. Monit., 2011, 13, 2886–2894 | 2887



Fig. 1 Location map of the six stations (T1, T2,M1,M2,M3 andM4) in

the Yeongsan River basin situated in the southwestern region of Korea,

showing the Gwangju metropolitan city with gray area.

Fig. 2 Histograms for (a) raw data, (b) log-transformed data and (c)

standardized data of BOD.
1.4 million. The city has a significant influence on the water

quality of the main stream, which has been measured in the M2

station.35

The environmental monitoring data include runoff and the

water quality concentration parameters such as Suspended

Solids (SS), Biochemical Oxygen Demand (BOD), Dissolved

Oxygen (DO), Total Nitrogen (TN), and Total Phosphorus (TP).

The data have been measured in the six stations at about 8-day

intervals containing missing values in some months. Therefore,

the raw data were transformed into monthly mean values during

the 6-year data period from September 2004 to August 2010.

The monthly mean values must be transformed properly

before the application of SOM so that all parameters are given

the same or similar importance.12 In particular, the results of the

SOM application are highly sensitive to the data pre-processing

method used, because the SOM is trained so as to be organized

according to the Euclidean distances between input data.29 Three

methods for data pre-processing such as log-trans-

formation,11,12,29 range scaling into [0, 1]12,25,29 and variance

scaling by mean values and standard deviations of respective

parameters26,29 are generally used for standardization or

normalization of the data used.

In the present study, the skewness of each parameter’s

frequency distribution was initially analyzed by plotting histo-

grams as shown in Fig. 2(a) with BOD as an example. Log-

transformation was applied to reduce the positive skewness (e.g.,
2888 | J. Environ. Monit., 2011, 13, 2886–2894
Fig. 2(b)) for all parameters except forDOwhich did not have any

clear skewness. In addition, the log transformation can smooth

the data and reduce the influence of extreme values.12Without the

application of log transformation, the biased distribution may

remain causing inappropriate classification by SOM. Then, vari-

ance scaling was carried out for all parameters so that the trans-

formed data were distributed symmetrically with the same mean

value and standard deviation as shown in Fig. 2(c).
Configuration of SOM

SOMs, a kind of unsupervised Artificial Neural Network

(ANN), can project high-dimensional information onto a low-

dimensional format, usually a two-dimensional hexagonal array.

It provides a readily understandable and visualized result of

pattern classification. However, in addition to the visualization,

the eventual purpose of the SOM application is to obtain useful

and informative reference vectors. The reference vectors are also

known as weights, connection weights, prototype weights,
This journal is ª The Royal Society of Chemistry 2011



generalized median and codebook.12,17,22,24 The vectors can be

obtained after iterative updates through a training phase con-

sisting of three main procedures: competition between nodes,

selection of a winner node and update of the reference

vectors.25,36

There are several key issues such as determination of the total

number of nodes (i.e., map size) and side lengths for constructing

the SOM and selection of a proper initialization method as well

as a data transformation method, for ensuring that the purpose

of the SOM application is achieved. It is often useful to apply

other clustering approaches for pattern classification using the

reference vectors as a fine-tuning phase after the SOM training,

in addition to the U-matrix (unified distance matrix) which is

commonly used to create a rough visualization of the

classification.

In order to determine the SOM structure, a heuristic rule of

m ¼ 5
ffiffiffi

n
p

is generally used, with m denoting the total number of

nodes and n for the number of input data. In general, the larger

the map size that is determined, the more detailed patterns can be

identified. However, the topographical proximity of clusters is

reduced. The heuristic rule can offer an optimized map size

simultaneously considering the accuracy of pattern classification

and topographical adjacency among clusters.12,26 As the rule

expresses that the total number of nodes varies with respect to the

number of data used, a suitable time scale of the data should be

determined prior to the application of the SOM.

The ratio of side lengths for the SOM is determined by the

ratio between the two largest eigenvalues of the input

data.16,26,29,36 It should be noted that the ratio is strongly

dependent on the data transformation method because the two

maximum eigenvalues are highly dependent on how the data are

transformed. Therefore, the application of an appropriate

transformation method for the data is critical for obtaining an

appropriate SOM structure.

After the determination of the SOM structure, each node is set

with a reference vector by an initialization method. Recently, the

linear initialization method is preferably used because it can

improve the training phase.14 Further, when only limited data are

available, the linear initialization is more suitable for the pattern

classification than the random initialization, as the latter requires

a large dataset and might cause boundary effects near the edges

of the map.14,16,25 In addition, the linear initialization can use

eigenvalues and eigenvectors of the input data to set the initial

reference vectors on the structured SOM. It means that the initial

reference vectors already include prior information about the

input data, resulting in an acceleration of the training phase.36

Iterative updates of the reference vectors are carried out by

a training algorithm for which the batch mode is usually used.26,29

The reference vectors obtained at the end of the training phase

can be fine-tuned using cluster analysis methods.

Two main categories of cluster algorithms have been applied

for fine-tuning of reference vectors.26 One of them is known as

the partitional clustering algorithm, in which the most frequently

used method for SOMs is the k-means algorithm. The optimal

number of clusters is selected by the Davies–Bouldin Index (DBI)

which is calculated based on similarity within a cluster and

dissimilarity between clusters. The DBI values are calculated

from a minimum of two clusters to the total number of nodes.

The number of clusters showing the minimumDBI is the optimal
This journal is ª The Royal Society of Chemistry 2011
for the trained SOM.12,24–26 The second main category is hierar-

chical cluster analyses, in which Ward’s linkage method is the

most commonly applied.9,10,13,16

In the present study, the SOM structure is determined by the

heuristic rule for the total number of nodes and the side lengths

are determined by the ratio between the two maximum eigen-

values of the transformed data. Reference vectors for the SOM

with the commonly used hexagonal array are initially set using

the linear initialization method to improve the training phase by

the batch mode, as mentioned above. The optimal number of

clusters is determined by the minimum DBI using k-means

algorithm and a final fine-tuning cluster analysis is carried out by

Ward’s method with the optimal number of clusters.
Pattern classification

Based on the methodologically systematic configuration

described above, a SOM size of 96 nodes (a hexagonal array

with 16 nodes for a vertical direction and 6 for a horizontal

direction) was used for pattern classification of the standardized

environmental monitoring data. Fig. 3 shows the obtained

component planes of the reference vectors of all six parameters,

which were standardized into [0, 1]. Comparison between the

component planes can indicate informative and qualitative

relationships between parameters of concern.16,29 For example,

the component planes of runoff (Fig. 3(a)) and SS (Fig. 3(b))

reveal that the two parameters have a strong correlation as seen

by the similar increase in shade from the upper right part to the

lower left. The component planes of BOD, TN and TP are also

strongly positively correlated (Fig. 3(c), (e) and (f)); however, no

clear correlation with any other parameter is emergent for DO

(Fig. 3(d)).

Table 1 quantitatively confirms the strength of relationship

between parameters using the standardized reference vectors.

The highest correlation coefficient of 0.98 was shown between

TN and TP. The relationship of BOD with SS, TN and TP

indicated significantly high correlation coefficients of 0.70, 0.88

and 0.93, respectively. DO mainly revealed inversed correlations

with other parameters except for TN but the correlation coeffi-

cients were relatively low as shown in the table.

In order to select the optimal number of clusters for the

configured SOM, the DBI values based on the k-means clustering

algorithm were calculated for the possible minimum number of

clusters (2) to the maximum number (96). Fig. 4 represents the

variation of DBI values and its front part between two and

twenty clusters was magnified with a logarithmic scale for the

vertical axis to show the minimum DBI visibly. The minimum

DBI is found for nine clusters, which is thus the most appropriate

number for the pattern classification of the environmental

monitoring data. Subsequently, the hierarchical clustering algo-

rithm byWard’s method was applied for the nine clusters to fine-

tune the pattern classification.

Fig. 5 shows the hierarchical cluster tree, which is also known

as a dendrogram, with the nodes of the SOM classified into

nine different clusters. Fig. 6 shows the pattern classification

map of the nine clusters in which the numbers of data classified

into each node are also given. Simultaneous consideration of

the component planes (Fig. 3) and the pattern classification

result (Fig. 6) indicates what kind of data the respective clusters
J. Environ. Monit., 2011, 13, 2886–2894 | 2889



Fig. 3 Component planes for (a) runoff, (b) SS, (c) BOD, (d) DO, (e) TN

and (f) TP.

Table 1 Correlation coefficients between reference vectors for each
parameter

SS BOD DO TN TP

Runoff 0.86 0.38 �0.59 0.30 0.30
SS 0.70 �0.55 0.51 0.56
BOD �0.16 0.88 0.93
DO 0.03 �0.09
TN 0.98

Fig. 4 Variation of DBI values with the optimal number of clusters

marked by the circle on the figure.

Fig. 5 Dendrogram with node numbers classified into the respective

clusters.
include. On the one hand, cluster-1 situated in the upper left

part of Fig. 6 is associated with high water quality character-

ized by low runoff, SS, BOD, TN, TP and relatively high DO.

This pattern is seen in the same part of the respective compo-

nent planes for each parameter as shown in Fig. 3. On the

other hand, the worst water quality condition with extremely
2890 | J. Environ. Monit., 2011, 13, 2886–2894
high BOD, TN and TP, significantly high SS, low DO and

relatively low runoff located in the lower right part of each

component plane as shown in Fig. 3 is associated with cluster-5

shown in Fig. 6.
This journal is ª The Royal Society of Chemistry 2011



Fig. 6 Pattern classification map of the nine clusters by the SOM. The

numbers on squares of the map represent the number of data classified

into each node.
Further, more quantitative information than the visualized

pattern classification can be extracted and interpreted from the

obtained reference vectors. The first quartile, median (i.e., the

second quartile) and the third quartile for the respective clusters

were calculated using the standardized reference vectors in order

to numerically characterize the classified data. For example, the

quartiles for cluster-1 were calculated using the standardized

reference vectors of the 12 nodes classified into the cluster.

Fig. 7 displays radar charts of the six parameters for the nine

clusters with the first quartile, median and third quartile plotted.

The most ideal water quality condition can be defined as value

0 for SS, BOD, TN, TP and 1 for DO in Fig. 7.

The visible patterns of cluster-6 (Fig. 7(f)) and cluster-7 (Fig. 7

(g)) are similar as shown in the figure. The pattern with the

highest DO, significantly low SS, BOD, TN and TP is associated

with cluster-6 representing the best water quality condition of all

clusters. Cluster-7 represents a similar water quality condition as

cluster-6 but with slightly higher SS, BOD, TN, TP and lower

DO. The lowest values of SS, BOD, TN, and TP with slightly low

DO are classified into cluster-1 (Fig. 7(a)). Cluster-4 shown in

Fig. 7(d) is characterized by significantly low SS, BOD, TN, TP

and low DO.
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The patterns of cluster-5 and cluster-8 are relatively similar.

The worst water quality condition is represented by cluster-5

(Fig. 7(e)) in which the highest BOD, TN, TP with significantly

high SS and relatively low DO were classified. Cluster-8 (Fig. 7

(h)) includes relatively high SS, BOD and significantly high TN,

TP, DO. Cluster-3 (Fig. 7(c)) and cluster-9 (Fig. 7(i)) commonly

include relatively high SS, BOD, TN, TP and low DO. However,

cluster-3 is associated with higher BOD, DO, TN and TP values

and cluster-9 is associated with higher runoff and SS values. The

pattern including the highest runoff, SS and the lowest DO was

classified into cluster-2 (Fig. 7(b)). Cluster-2 and cluster-9 include

higher runoff values than the other clusters.

The classified nine clusters could be divided into two main

environmental patterns. Relatively better water quality condi-

tions were associated with cluster-6, 7, 1 and 4 shown in the right

part of Fig. 5 and in the upper part of Fig. 6. The other group

included cluster-3, 9, 8, 2 and 5, representing relatively worse

water quality conditions as seen in the left part of Fig. 5 corre-

sponding to the lower part of Fig. 6.

Table 2 shows the mean values calculated from raw data of

each parameter for whole data and the classified data into the

respective clusters. The runoff for cluster-6, 7, 1 and 4 indicates

much lower mean values than the whole data. Cluster-6 and 7

represented lower mean values for the pollutants such as SS,

BOD, TN and TP with higher DO concentration than those for

the whole data. It confirms that the two clusters included the high

water quality as mentioned above. Cluster-1 and 4 showed

slightly higher mean values for runoff and significantly lower

mean values for DO than those of cluster-6 and 7. The mean

values for the pollutants in cluster-1 and 4 were lower than those

for the whole data.

However, cluster-3, 9, 8, 2 and 5 showed the range between

slightly lower and much higher mean values for runoff

comparing to the mean value for the whole data. Considering

water quality parameters, the clusters showed the general pattern

with high mean values for pollutants and low mean values for

DO. In particular, cluster-8, 2 and 5 represented considerably

higher mean values for the pollutants than those for the whole

data, showing seriously deteriorated water quality.

In addition, the frequency of data classified into each cluster

was investigated in the respective stations on a monthly basis for

better understanding of the spatiotemporal variability. Fig. 8 and

9 display spatiotemporal meshes for the two main groups

mentioned above with the number of data occurrences counted.

The horizontal axis in the mesh represents each month while the

vertical axis shows the six stations from upstream to down-

stream. The thick dashed horizontal lines in the meshes represent

the conceptual location of the Gwangju metropolitan city situ-

ated betweenM1 andM2 stations. The maximum data frequency

of a particular month and station is 6 because the data

measurement period is six years. The sums of data frequencies for

each station are shown in the column to the right of the meshes.

On the one hand, from Fig. 8, only the environmental moni-

toring data in the three upstream stations T1, T2 andM1 (Fig. 1)

were classified into the clusters showing relatively better water

quality conditions. On the other hand, from Fig. 9, the data

associated with relatively worse water quality conditions were

mostly from the three downstream stations M2, M3 and M4. In

particular, station M2 shows the highest frequency in cluster-5
J. Environ. Monit., 2011, 13, 2886–2894 | 2891



Fig. 7 Radar charts for the respective clusters with the first quartile (dashed lines), median (solid lines), and the third quartile (dotted lines) by the

obtained reference vectors.

Table 2 Mean values calculated from raw data of each parameter for whole data and the classified data into the respective clusters

Mean Runoff/m3 s�1 SS/mg L�1 BOD/mg L�1 DO/mg L�1 TN/mg L�1 TP/mg L�1

Whole data 31.07 17.27 4.16 10.00 4.72 0.29
Cluster-1 7.39 6.79 1.70 9.26 1.95 0.09
Cluster-2 121.31 38.65 5.69 7.75 5.29 0.33
Cluster-3 26.71 14.20 3.70 8.93 6.35 0.40
Cluster-4 10.65 12.60 3.08 8.53 2.38 0.13
Cluster-5 22.70 26.09 8.48 8.52 8.72 0.70
Cluster-6 2.27 4.88 2.14 13.41 2.89 0.10
Cluster-7 1.78 12.19 3.84 12.51 3.13 0.17
Cluster-8 19.62 18.66 5.98 12.53 8.60 0.52
Cluster-9 78.14 24.81 3.13 8.09 3.45 0.20

2892 | J. Environ. Monit., 2011, 13, 2886–2894 This journal is ª The Royal Society of Chemistry 2011



Fig. 8 Spatiotemporal meshes for (a) cluster-6, (b) cluster-7, (c) cluster-1

and (d) cluster-4 in the respective stations on a monthly basis with the

thick dashed lines representing the conceptual location of the Gwangju

metropolitan city and the sums for each station on the right.

Fig. 9 Spatiotemporal meshes for (a) cluster-3, (b) cluster-9, (c) cluster-

8, (d) cluster-2 and (e) cluster-5 in the respective stations on a monthly

basis with the thick dashed lines representing the conceptual location of

the Gwangju metropolitan city and the sums for each station on the right.
indicating the worst water quality condition. It should be noted

that there is a drastic deterioration of water quality between M1

and M2 stations where the Gwangju metropolitan city is wors-

ening the water quality in the river.

Concerning temporal variations, the environmental moni-

toring data associated with cluster-6, representing the best water

quality condition, were mainly measured during winter as shown

in Fig. 8(a). Cluster-7 and 1 (Fig. 8(b) and (c)) mainly contain

data measured during autumn and spring, but the data for

cluster-4 (Fig. 8(d)) with relatively lowDOwere measured during

summer. The data classified into cluster-5, representing the worst

water quality, were mostly measured during spring (Fig. 9(e)).

The data in cluster-3 and 8 (Fig. 9(a) and (c)) were observed

during autumn and winter, while cluster-9 and 2, with signifi-

cantly high runoff and extremely low DO, had a high frequency

mainly in summer as shown in Fig. 9(b) and (d). The temporal

distribution of the data revealed that the clusters including the

data measured during spring and summer generally showed

worse water quality conditions with low DO values, due to

a seasonal effect related to high temperature.

Characterizing the spatiotemporal variation of each cluster in

detail, cluster-6 includes the runoff and water quality measured
This journal is ª The Royal Society of Chemistry 2011
only in the T1, T2 and M1 stations during winter season and

cluster-7 was related to the data measured in the same three

upstream stations during spring and winter. The data measured

in the same stations were classified into cluster-1 for autumn and

cluster-4 for summer.

Cluster-5 contains the runoff and water quality measured only

in M2, M3 and M4 stations mainly during spring. The data

measured during autumn were associated with cluster-3 and the

data for spring were classified into cluster-8 in the downstream

three stations. Cluser-9 has the data measured during summer

mainly in the downstream stations with six observations in T2

and M1 stations, while cluster-2 includes the summer data

measured only in the downstream three stations.

The spatiotemporal mesh analysis using the results from

pattern classification by SOM application clearly showed that
J. Environ. Monit., 2011, 13, 2886–2894 | 2893



the river basin may be divided into two areas with different water

quality patterns which are influenced by the seasonal effect. The

analysis confirmed that the SOM application classifying the

parameters into the nine clusters was reasonable and feasible for

the river basin. It also summarized the spatiotemporal distribu-

tion of the respective nine clusters with the readily understand-

able visualization. That is, relatively better water quality

conditions were found in the three upstream stations whereas the

three downstream stations showed worse water quality condi-

tions. The water quality in spring and summer was generally

worse than in autumn and winter in both areas. The spatiotem-

poral mesh analysis proposed in the present study was thus found

useful for characterizing and understanding spatial and temporal

variability and interdependence of runoff and water quality

parameters measured in multiple stations.

Conclusions

In the present study, a Self-Organizing Map (SOM) combined

with a hierarchical cluster analysis was applied for pattern clas-

sification of environmental monitoring data from the Yeongsan

River basin in Korea, including water quality parameters and

runoff measured in six stations. The SOM was systematically

applied with a step-wise procedure including data trans-

formation, determination of the SOM structure, initialization of

reference vectors, training with relevant parameters, selection of

an optimal number of clusters and a fine-tuning cluster analysis.

The first, second and third quartiles of the reference vectors were

plotted on radar charts to display fundamental characteristics of

each cluster. In addition, the number of data occurrences in the

respective stations on a monthly basis for each cluster was dis-

played in spatiotemporal meshes in order to characterize the

spatiotemporal variability of the environmental monitoring data.

The spatiotemporal distribution of the environmental moni-

toring data was examined based on the characteristics of

respective clusters. The spatial distribution revealed that the

water quality condition was generally better upstream than

downstream. The temporal distribution showed a clear seasonal

effect. The best water quality conditions were associated with

data measured in the upstream part of the basin during winter,

while poor water quality conditions were found in the clusters

with lowDOmeasured in the downstream part during spring and

summer.

To conclude, by the systematic application of a SOM, it was

possible to classify the overall environmental aspect into

a number of characteristic patterns with exclusively distinguish-

able environmental conditions. Therefore, it has proved to be

practically applicable for assessment of the relative impact of the

respective sub-basins on the overall environmental condition in

the river basin represented by the runoff and water quality

parameters. Specifically, the area downstream of the Gwangju

metropolitan city associated with poor water quality conditions

should be prioritized when designing and implementing envi-

ronmental measures for comprehensive water quality improve-

ment and watershed management. In addition, based on the

applicability and feasibility of the SOM shown in this study,

SOMs are expected to be utilized for integrated assessment of

a river basin with simultaneous consideration of ecological,

environmental and geographical factors.
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