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Abstract: Several studies have used artificial neural networks~NNs! to estimate local or regional precipitation/rainfall on the basis
relationships with coarse-resolution atmospheric variables. None of these experiments satisfactorily reproduced temporal inter
and variability in rainfall. We attempt to improve performance by using two approaches:~1! couple two NNs in series, the first to
determine rainfall occurrence, and the second to determine rainfall intensity during rainy periods; and~2! categorize rainfall into intensity
categories and train the NN to reproduce these rather than the actual intensities. The experiments focused on estimating 12-h me
in the Chikugo River basin, Kyushu Island, southern Japan, from large-scale values of wind speeds at 850 hPa and precipitable w
results indicated that~1! two NNs in series may greatly improve the reproduction of intermittency;~2! longer data series are required to
reproduce variability;~3! intensity categorization may be useful for probabilistic forecasting; and~4! overall performance in this region is
better during winter and spring than during summer and autumn.
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Introduction

While numerical atmospheric models can accurately reprod
free-atmosphere circulation, they are far less successful in
dicting precipitation @for example, Giorgi and Mearns 1991#
mainly because of the simplified parametrization schemes u
and the large grid size, which causes relevant geographical
tures to be crudely represented in the models. Therefore, sta
cal weather forecasting has been used by meteorologists for m
years to complement and enhance the output from atmosph
models@for example, Klein~1982!; Glahn~1985!; Wilks ~1995!#.
The concept here is to derive statistical relationships betw
observed precipitation at a certain point or in a region~the pre-
dictand! and relevant free-atmosphere variables~the predictors!.
The methodology has recently gained interest as a tool for re
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ing large-scale, coarse-resolution atmospheric data to local or
gional hydrometeorological variables—so-called~atmospheric!
downscaling@for example, Hewitson and Crane~1996!; Wilby
et al.~1998!#. In particular, it has been applied to the output from
general circulation models in order to assess local hydrometeo
logical impacts under different scenarios for future clima
change@for example, Giorgi and Mearns~1991!; Zorita and von
Storch~1999!#.

The concepts of statistical forecasting and downscaling a
open up possibilities for hydrologists and engineers to deve
rainfall prediction models with limited effort, but this prospec
does not seem to have been given much attention. A particula
attractive feature is that the forecasting models are tailor-made
a certain catchment or region, so that the derived relationsh
implicitly take the specific geographical forcing into account. F
model calibration, access to a sufficient amount of historical d
on both the potential predictors and the desired predictand is
quired. Predictor data are generally obtained from stand
~coarse-resolution! atmospheric data sets covering the region
interest. For model application, access to real-time or forec
predictor data is required. Note that coarse-resolution global
mospheric forecasts, potentially applicable for the present p
pose, are expected to become routinely distributed in the not-t
remote future@for example, Kidson and Thompson~1998!#.

A wide range of statistical techniques have been used to id
tify predictor-predictand relationships, such as ordinary and
flated regression and canonical correlation@for example, Karl
et al.~1990!; Wigley et al.~1990!#. Recently, artificial neural net-
works ~NNs! also have been used, which are particularly attra
tive owing to their natural ability to accommodate the nonline
interactions taking place between atmospheric processes at di
ent scales@for example, Giorgi and Mearns~1991!; Zorita and
von Storch~1999!#. In an early application of NNs for short-term
downscaling, Hewitson and Crane~1992! used a back-
propagating NN to estimate daily mean precipitation in a regi
in Mexico on the basis of sea-level pressure and 500 mb geo
tential height, obtaining a correlation with observed precipitatio
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Fig. 1. ~a! Kyushu Island, southern Japan, and location of Chikugo River basin;~b! area in which grid point value meteorological data were
available~Kyushu Island is marked in black!. Dots in bottom left corner of~b! represent density of grid point value grid points~1003100 km
resolution!
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of ;0.8. Similar results for the same region were obtained b
Cavazos~1997!. Crane and Hewitson~1998! used NNs for daily
downscaling in the Susquehanna basin in the eastern Uni
States, reaching similar correlation strengths.

A few studies have compared the performance of NNs wi
daily downscaling based on other methods, such as weather g
erators, historical analogs, and vorticity index techniques~Wilby
et al. 1998; Zorita and von Storch 1999!. In these comparative
studies the performance of NNs was generally somewhat poo
than the other methods, mainly owing to an inability of the NN
to reproduce two key features of high-resolution precipitatio
time series: intermittency and variability. Intermittency refers t
the incidence of both ‘‘wet’’ and ‘‘dry’’ time intervals, that is, with
and without observed precipitation; NNs tend to generate sm
trace precipitation in actual dry intervals, thereby underestimati
the observed zero-depth probability@for example, Wilby et al.
~1998!#. Variability, on the other hand, is particularly manifeste
in sudden and short-lived extreme intensities of magnitudes ma
times the mean intensity; NNs typically underestimate the o
served extreme intensities@for example, Zorita and von Storch
~1999!#.

The overall aim of the present study is to further investiga
the potential of NNs for rainfall prediction by atmospheric down
scaling, and in particular to explore ways to improve the perfo
mance with respect to intermittency and variability. The exper
ments are carried out for the Chikugo River basin on Kyush
Island, southern Japan, and the temporal resolution is 12 h. T
predictand is the mean catchment rainfall, and the predictors
wind speeds at 850 hPa and precipitable water, selected in a p
vious investigation~Uvo et al. 2001!. As the predictors’ explana-
tory power varies in both space and time@for example, Wilby and
Wigley ~2000!#, the areas used to specify the predictors’ value
are determined by correlation analysis on a seasonal basis.
interpret the results with respect to rainfall-generating mech
nisms in the region.

Study Region and Databases

The experiments aimed at predicting the mean rainfall in th
Chikugo River basin~;3,000 km2!, located in the northern part
2 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JANUARY/FEB
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of Kyushu Island, Japan@Fig. 1~a!#. The river flows from a vol-
canic caldera in central Kyushu and plays an important role as
freshwater resource. The river is particularly characterized by
wide range of flows between its low and high extremes, whic
has been manifested, on the one hand, in severe droughts for
surrounding communities, notably in 1978 and 1994, and on t
other hand, in devastating floods and debris flows, exacerbated
the catchment’s steep mountain slopes and river beds@for ex-
ample, Merabtene et al.~1998!#.

The main climatological rainfall-generating mechanisms of th
basin, and of Kyushu Island in general, are as follows:

• Spring: transient midlatitude synoptic cyclones moving alon
well-defined storm tracks;

• Summer: so-called Bai-u front, a polar front gradually passin
Kyushu Island from south to north, associated with mesosca
rainbands and cyclones bringing heavy precipitation;

• Fall: similar to spring with the addition of frequent typhoons
and

• Winter: winter monsoon, occasionally associated with snow
fall, and synoptic disturbances originating from the so-calle
Taiwan low.
The present study specified the large-scale atmospheric pr

erties by grid point value~GPV! meteorological data in a region
spanning approximately 105–160°E and 20–55°N, provided b
the Japan Meteorological Agency@Fig. 1~b!#. The data consist of
sounding measurements at 21 vertical levels, obtained at 00Z and
12Z. Originally measured variables include sea-level pressure
geopotential height, zonal and meridional wind speeds, tempe
ture, and dew point depression. These were interpolated from
irregularly spaced measurement stations into a 20320 km resolu-
tion grid by means of optimum interpolation@for example, Daley
~1991!#. From the original data, additional variables including
vorticity, precipitable water~that is, vertically integrated humid-
ity!, and total-totals index~a measure of atmospheric stability!
were derived. Note that the importance of including some me
sure of humidity in statistical atmospheric downscaling has be
recently emphasized@for example, Crane and Hewitson~1998!#.
Finally, all data were reduced to a 1003100 km resolution by
arithmetic averaging@Fig. 1~b!#.

Mean rainfall in the Chikugo River basin~CRb rainfall! was
RUARY 2004



g
a

2
2
g
i

n

l

t
s

U

th
u
t
r
a
t

p

r
u

r
t
o
d
io

b
e

a
o
h
i
u
i
o

t

.

d

e
he

d
a

or

a

s

g
l

ial
t

-
-
g

l

determined as the arithmetic average of 11 precipitation gau
from the Japanese national meteorological network, which
evenly distributed within and just outside the catchment area@Fig.
1~a!#. Measurements were made on an hourly basis, but 1
totals were used to correspond with the GPV data. Each 1
accumulation period started at the time of the GPV soundin
that is, the GPV values were used to estimate the rainfall dur
the next 12-h period.

Uvo et al.~2001! used singular value decomposition~SVD! to
investigate the potential of the~original and derived! GPV vari-
ables to function as predictors for the CRb rainfall. It was fou
that zonal and meridional wind speeds at 850 hPa (u850,v850) and
precipitable water~PW! are highest correlated to the CRb rainfa
and thus the most efficient predictors, especially when combin
However, SVD is based on linear combinations of variables, a
thus the possibly nonlinear response in CRb rainfall to large-sc
atmospheric changes could not be accurately represented, no
resulting in a systematic underestimation of high rainfall inten
ties. In the present study we therefore replace SVD with NNs
the method used for the prediction of CRb rainfall, as NNs allo
for nonlinear relationships to be interpreted.

Data were available between April 1996 and August 199
leading to a total of 2,417 12-h periods, with 614 in sprin
~March–May!, 717 in summer ~June–August!, 546 in fall
~September–November!, and 540 in winter~December–January!.
For further details of the study region and databases, see
et al. ~2001!.

Correlation Analysis

While using the predictors specified at every grid node in
GPV area as input to the NN is theoretically possible, this wo
make the model less efficient as not all GPV nodes’ predic
values are strongly related to the CRb rainfall. Moreover, a la
number of input nodes require large amounts of calibration d
which further makes NN training slow. Therefore it is desirable
isolate the predictor areas exerting the highest influence on C
rainfall and use these as the basis for determining the NN in
as also argued and demonstrated by Wilby and Wigley~2000!.
Note that in previous rainfall downscaling experiments this iss
has generally not been taken into consideration, but an arbit
synoptic area covering the region of the predictand has been
when specifying the predictor values.

The present study used the standard~linear! correlation coef-
ficient ~CC! between the time series of CRb rainfall~the pre-
dictand! and the potential predictors’ values at each GPV g
point to evaluate the spatial correlation pattern and in turn de
mine the influencing predictor areas. It may appear contradict
to use a linear technique to define the inputs to a nonlinear mo
but it should be emphasized that the predictor-predictand relat
ships~as visualized, for example, in scatter plots! are not clearly
and strongly nonlinear. A nonlinear regression is likely to
somewhat more accurate than a linear one, but the differenc
generally small; therefore linear correlation was found sufficie
for comparing correlation strengths, both between predictors
within the GPV area for the same predictor. Note that linear c
relation is only used for the identification of predictor regions; t
NN model uses the actual predictor-predictand relationsh
rather than any simplified linear approximations. From the res
ing correlation fields in the entire GPV area, subareas in wh
the correlation was significant at a 95% level, corresponding t
maximum absolute correlation coefficient~uCCu! of at least 0.25,
JOURNAL OF H
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were used for calculating the final NN inputs. For each subarea
and time step~that is, 12-h period!, the final input was a weighted
areal mean; in the averaging the predictor value at each grid poin
was weighted according to the grid pointuCCu.

In agreement with the SVD analysis of Uvo et al.~2001!,
u850, v850, and PW proved to be the most meaningful predictors,
both owing to their correlation strengths and to the fact that their
spatial correlation patterns have a clear physical interpretation
Figs. 2~a–c! shows the results from the correlation analysis for
summer. Concerning PW, a significantly correlated area elongate
in an east-west direction was found covering Kyushu Island@Fig.
2~a!#. This location corresponds to the Bai-u front~see the section
on the study region and databases!. Fig. 2~b! displays the corre-
lation field for u850, and the overall picture is similar to PW,
although the significant area extends to southern China in th
west and far beyond eastern Japan in the east, emphasizing t
strong control of the Bai-u front over summer rainfall. The field
of v850, however, displays quite different features, with a posi-
tively correlated area centered over Kyushu Island and elongate
in a southwest-northeast direction and a negatively correlated are
located over the Yellow Sea@Fig. 2~c!#. This picture suggests a
cyclonic flow of synoptic disturbances migrating approximately
along the Bai-u front, a well-known climatological feature of the
area@for example, Uvo et al. 2001#. For the positively correlated
areas in Figs. 2~a–c!, the maximum CC reached;0.4, and the
weighted means of these areas were thus used as NN input. F
the negatively correlated area in Fig. 2~c!, maximum uCCu was
,0.25, and thus this area was not selected as input for the NN.

It must be emphasized that the correlation fields differ mark-
edly with the season in both the location of significant areas and
their correlation strength~CC!. For example, compare Fig. 2~b!
(u850, summer! with Fig. 2~d!, which shows the correlation field
for u850 in winter. Rather than the elongated, east-west oriented
pattern found in summer, three distinct areas appear in winter;
positively correlated area northeast of Taiwan and two negative
areas north and east of it. This pattern suggests a cyclonic flow
west of Kyushu Island, bringing in cyclones from the Taiwan low
~see the section on the study area and databases!. A convergence
zone with northerly winds is located south of Kyushu Island, and
further east of Japan the influence of the Pacific high become
apparent. In Fig. 2~d!, the maximumuCCu was.0.25 in the nega-
tively correlated area northwest of Kyushu Island but,0.25 in
the negative area southeast of Kyushu Island.

For different seasons, the number of NN inputs varied between
three~summer, autumn!, four ~spring!, and five~winter!, depend-
ing on the number of significantly correlated areas correspondin
to each predictor. This underlines the importance of seasona
separation. The maximum value ofuCCu reached was 0.62~PW,
winter!.

Neural Network Experiments: General Design and
Initial Application

Prior to NN application, the original input and target time series
were preprocessed. Since the rainfall target was given as a spat
average, the definition of wet and dry periods required some limi
below which the average rainfall is considered insignificant. This
limit must be related to the application. For example, rainfall
fields of a very limited spatial extension, such as those of convec
tive origin, can most probably not be traced on the basis of larger
scale atmospheric features. By studying the data and considerin
the rainfall station network density, it was decided to require a
nonzero rainfall intensity in at least three stations for the spatia
YDROLOGIC ENGINEERING © ASCE / JANUARY/FEBRUARY 2004 / 3



Fig. 2. Correlation fields representing covariation between mean rainfall in Chikugo River basin and grid point value variables:~a! precipitable
water; ~b! zonal wind speed;~c! meridional wind speed~850 hPa! in summer;~d! zonal wind speed~850 hPa! in winter. Isolines correspond to
correlation coefficient and shaded areas denote 95% statistical significance
-
as
e

on
rainfall to be significant, that is, to define the 12-h period as a wet
period. If rain occurred in less than three stations, the period was
considered dry. This limit roughly corresponded to a spatial aver-
age rainfall of 1 mm.

To ensure that every input receives equal attention during the
training, the input series were standardized by subtracting the

series’ mean and dividing by the standard deviation@for example,
Maier and Dandy~2000!#. The target values were rescaled, gen
erally in the range 0.1–0.9, in order to be directly attainable
output from the log-sigmoid transfer function, avoiding th
asymptotic limits 0 and 1@for example, Smith~1993!#. One-
fourth of the series were reserved for independent verificati
Fig. 3. Neural network performance expressed as correlation coefficient-root mean square error for training~solid line! and validation~dashed
line! sets as function of number of hidden layers~left curves: one; right curves: two! and nodes in each layer~numbers!
4 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JANUARY/FEBRUARY 2004
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~verification period! and were not used at all in the NN calibratio
process. As the data span almost 4 years and the application
done on a seasonal basis, the validation data generally co
sponded to one season. The remaining 75%—the calibra
period—were further divided into training and validation period
with 80% in the former~including the maximum input values
during the entire calibration period! and 20% in the latter.

General properties of NNs, as well as their applications
hydrology and water resources, have been thoroughly covere
a number of publications@for example, Smith~1993!; Bishop
~1995!; Maier and Dandy~2000!#. For background information
the reader is referred to this literature; only specific properties
the NNs employed are given here.

We used feed-forward NNs trained by a back-propagation
gorithm using the Levenberg-Marquardt optimization~Hagan and
Menhaj 1994!. In plain language, back-propagation can be e
plained as the adjustment of NN parameters~weights and biases,
in NN terminology! by back-propagating the differences betwee
the NN output and the actual target~that is, CRb rainfall!. Typi-
cally the data available for NN calibration are split into two pe
riods, one for training and one for validation. This division
made in order to use cross-validation or early stopping, a comm
and practical method to avoid overfitting but ensure proper g
eralization@for example, Bishop~1995!#. Only the training set is
used for the back-propagation, and parameter adjustment b
on one sequence through all values is termed one epoch. Cr
validation means that during the training, the performance for
validation period is checked after each epoch. When a consis
decrease in the performance for the validation period is observ
training is stopped and the NN is considered calibrated.

A log-sigmoid transfer function was allocated to every neur
and defined as

ov5
1

11e2 iv
(1)

where iv5input value to the neuron andov5output value from
the neuron.

Determination of the number of neurons and how to divid
them into separate layers are delicate issues. Large~or complex!
NNs require a lot of data to generalize well and are computatio
ally intensive; small~or simple! NNs may not be able to repro-
duce intricate input-output~I/O! relationships @for example,
Bishop ~1995!#. Some attempts have been made to relate the
timal number of neurons to the number of training samples@for
example, Rogers and Dowla~1994!#. Some systematic ap-
proaches also have been made that include so-called constru
algorithms, which essentially start from a minimal NN and ad
neurons until performance ceases to increase@for example, Kwok
and Yeung~1997!#. Conversely, so-called pruning algorithms sta
from a large NN and remove neurons until performance starts
decrease@for example, Reed~1993!#. NN size and geometry are
however, highly problem-dependent, and therefore trial-and-er
still appears to be the most widely used method@for example,
Maier and Dandy~2000!#. In the present study we use the prin
ciple of constructive algorithms in combination with cross
validation to find the most suitable NN size.

It is worth noting that cross-validation generally can not com
pensate for the tendency to overfitting arising from an excessiv
large and powerful NN, which runs the risk of also learning
reproduce noise in the calibration set@for example, Smith~1993!#.
For the present data, this is illustrated in Fig. 3. The figure sho
a typical example of how the performance for the training a
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validation sets, respectively, varies with the number of neuron
and hidden layers. Performance of the NNs was assessed in te
of both the correlation coefficient~CC! and the root mean square
error ~RMSE! of the rescaled data. We started from an NN with
two neurons in one hidden layer and then increased the NN si
up to two hidden layers with 16 neurons in each, keeping trainin
parameters and methods constant. From Fig. 3 it is obvious th
despite using cross-validation, generalization ability decreas
with increasing NN size. The picture may change somewhat wi
location of the validation set~for example, the beginning or end
of the calibration period!, season, and NN configuration~see the
section on dealing with intermittency and variability!, but overall
it is clear that a small NN is preferable. As two hidden layer
generally proved slightly superior to one, the final NN geometr
employed consisted of two hidden layers with four and two
nodes, respectively.

The performance of calibrated NNs for the validation period
exhibited some variation, even when a small NN was used. F
example, for ill-conditioned configurations of initial weights and
biases determined by the method of Nguyen and Widrow~1990!,
which essentially ensures that the initial neurons are active with
and roughly cover the input space, proper convergence was n
attained during training, making the NN output arbitrary. To
tackle the NN output variation required developing a procedur
for extracting a final output from a number of calibrated NNs
First, from ntot-calibrated NNs, thensel NNs that exhibited the
highest performance for the entire calibration period~training
1validation! were selected. Second, the outputs of thesensel NNs
for the verification period were averaged, and to evaluate perfo
mance this averaged series was compared with the observed v
fication data. Averaging was required since there was still som
variation in performance among thensel NNs. Generally, the av-
eraged series performed similarly to the output of the betternsel

NNs. To reach a stable and optimally accurate averaged outp
usingntot525 andnsel55 generally proved sufficient. In the fol-
lowing, NN output refers to the averaged output for the verifica
tion period from the 5 out of 25 trained NNs of the above-given
size and geometry that performed best for the calibration perio

Fig. 4 shows a typical example of NN output using the origina
summer time series as target~CC50.70 and RMSE510.8!. Gen-
erally, the NN well captures the timing of rainfall events, but it is
clear that peak intensities are severely underestimated, and
fraction of zero rainfall in the NN output,f o(0), is also severely
underestimated. The actual zero-rainfall periods are in the N
output represented by a small positive intensity makingf o(0)
50.00, to be compared withf t(0)50.54 for the target series. It
should be remarked that the output averaging is likely to hav
some negative impact on performance, particularly in terms o
f o(0). Nevertheless, the overall reasonable agreement shown
Fig. 4 suggests that modifying the NN application strategy ma
be possible to obtain a more accurate and useful output, and t
possibility is explored in the following section.

Dealing with Intermittency and Variability

In this section we explore two ways to deal with intermittency
and variability:~1! using two serially coupled NNs, one for rain-
fall occurrence and one for rainfall intensity; and~2! classifying
the target~that is, rainfall! into intensity categories. For this pur-
pose, results for summer are presented as this is the domin
season in the present rainfall regime.
YDROLOGIC ENGINEERING © ASCE / JANUARY/FEBRUARY 2004 / 5



Fig. 4. Neural network output~solid line! for summer using original observed time series~dashed line! as target
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Two Neural Networks in Series

An idea previously put forward is to use two NNs in series, t
first to determine rainfall occurrence, and the second to determ
the intensity during rainy periods@for example, Wilby et al.
~1998!#. The first NN, trained on a binary wet-or-dry serie
would fix the zero-depth probability, and the second, trained o
series of only rain events, would have a better chance to re
duce high intensities than would using the entire time series
training.

NN1: Rainfall Occurrence
To evaluate the NN’s ability to separate periods with zero rain
~dry periods! from periods during which rainfall occurred~wet
periods!, the original Chikugo River basin mean rainfall time s
ries were initially converted into a binary series with 0 represe
ing a dry period and 1 representing a wet period.

A type of NNs tailor-made to produce binary output are t
so-called perceptron networks@for example, Rosenblatt~1961!#.
For the perceptron neuron,ov51 for iv>0 andov50 for iv
,0. However, successful application of a perceptron model
quires the binary classes in the target to be linearly separa
Preliminary tests indicated that this was not the case for
present data, which would lead to a poor performance of perc
tron NNs. Instead, feed-forward NNs with nonlinear~log-
sigmoid! transfer functions were employed. Since for the lo
sigmoid function 0,ov,1, to be attainable the dry and we
periods were represented by 0.1 and 0.9, respectively@for ex-
ample, Smith~1993!#. In the final output from a trained NN the
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exact values 0.1 and 0.9 are generally not attained, but the valu
vary between 0 and 1. A threshold of 0.5 was used to determin
the most probable output; that is, periods with lower values wer
considered dry and periods with higher values wet.

To evaluate the performance of the NNs, denote bynt(C) and
no(C) the number of values of categoryC ~W for wet periods,D
for dry! in the target and output series, respectively. Further, de
note byno5t(C) the number of hits, that is, the number of cor-
rectly reproduced values, of categoryC. The fraction of correctly
reproduced values or hit ratehr in the verification period, is de-
fined as

hr5
no5t~W!1no5t~D !

nt~W!1nt~D !
(2)

which varies between 0 and 1, with high values indicating a hig
accuracy, and the bias of wet periods,b(W), defined as

b~W!5
no~W!

nt~W!
(3)

for which values close to 1 indicate an accurate number of simu
lated wet periods@for example, Wilks~1995!#.

Fig. 5 shows a typical NN output using the binary wet-or-dry
summer time series as target. To make the figure clear, only ha
of the validation period is shown. For extended wet and dry spel
the agreement is generally good, but the NN in some cases fails
identify single or a few wet periods embedded within longer dry
spells, and vice versa. The overall satisfactory agreement is su
ported by the valueshr50.78 andb(W)50.99. This technique
Fig. 5. Example of neural network output~crosses! for summer using observed time series converted into a binary wet-or-dry series~squares! as
target~NN1!
BRUARY 2004



Fig. 6. Neural network output~solid line! for summer using observed time series with zero values removed~dashed line! as target~NN2!
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thus appears to be a viable way to improve the reproduction
zero-depth probability; what remains to be estimated is the ra
fall intensity during wet periods.

NN2: Rainfall Intensity
To study NN performance for wet periods, all 12-h periods wi
zero values in the target, as previously defined as rainfall at l
than three stations, were omitted from the original series. T
resulting series were then divided into training, validation, an
verification periods of the relative proportions given in the sectio
on the general design and initial application of NNs.

Fig. 6 shows a typical NN output for the present case. Over
the agreement is very similar to the agreement during wet perio
when using the original series as a target, shown in Fig. 4. T
values CC50.67 and RMSE514.9 for NN2 are essentially iden-
tical to the CC and RMSE obtained for the original series aft
removing periods with zero target from the results. Thus, for t
present data, excluding the zero targets does not substantially
prove the estimation of wet-period intensities.

Combining NN1 and NN2 „2NNÕint …
NN1 and NN2, described in the sections on rainfall occurren
and rainfall intensity, must be run in series to produce a compl
output~we term this experiment 2NN/int: two NNs in series with
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actual intensity as output!. This may be done by training them
separately, as described in the respective sections, running NN1
determine whether a period is wet or dry, and running NN2 to
estimate the rainfall intensity during periods classified as wet i
NN1. A result from such a two-stage run is shown in Fig. 7
Visually the agreement between observed and simulated series
nearly identical to Fig. 4, and so are the values of CC~0.67! and
RMSE ~11.1!. However, for the two-stage NNf o(0)50.56, that
is, very close to the observedf t(0)50.54.

We conclude that the present approach of using two serial
coupled NNs appears to be an effective way to improve perfo
mance with respect to the simulated fraction of zero rainfall
f o(0). Even if NN1 introduces some inaccuracy concerning th
division into wet and dry periods, when combined with NN2 for
wet period intensities, the result is similar to the result from usin
the original series as a target, except for a greatly improved es
mation of f t(0).

Target Classification

As is obvious from the previous section, even if training the NN
using nonzero values only, its ability to reproduce the exact rain
fall intensity is limited for the present data. An alternative is to
categorize the rainfall using hydrologically meaningful intensity
Fig. 7. Neural network output from experiment 2NN/int~solid line! for summer and observed time series~dashed line!. Horizontal lines mark
intensity limits used to separate classesL, H, andE
DROLOGIC ENGINEERING © ASCE / JANUARY/FEBRUARY 2004 / 7
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thresholds and to train the NN with these categories. If a sepa
class for dry periods is included, classification can simultaneou
address the problem of intermittency.

Categories and Evaluation
The experiments covered in the section on two NNs in ser
clearly demonstrate the difficulties involved in accurately predi
ing short-term rainfall intensities on the basis of large-scale atm
spheric features. However, in many hydrological applications
exact value of the rainfall intensity may not be required, but
more qualitative assessment is sufficient. One important exam
is flood warning systems, in which flood forecasting is often tri
gered by a forecast~spatial average! rainfall intensity above some
critical threshold@for example, Krzysztofowicz~1993!#. Thus,
consideration may be given to dividing the rainfall intensity in
meaningful categories and training the NN to reproduce the
rather than the exact intensities. In light of the reasonably ac
rate reproduction of relative intensity magnitudes in the abo
experiments~for example, Fig. 4!, we assume that classification
has a good chance of improving NN output accuracy.

We chose to employ a classification of intensities into fo
categories: zero~Z!, low ~L!, high ~H!, and extreme~E! intensity.
CategoryZ was defined as rainfall in less than three stations.
separateL from H, the median of observed intensities is an obv
ous candidate. The separation ofH from E is more difficult due to
the conflict between the desired isolation of very high intensit
and the need to have a sufficient number of occurrences of e
category for a meaningful NN training and evaluation. The 85
percentile was found a reasonable choice for the present data.
8 shows an ordered plot of observed~target! intensitiesI t for the
wet periods, with the median and the 85th percentile mark
Whereas the median is located in a region of slowly increas
gradient, the 85th percentile roughly corresponds to a locat
where the gradient increases rather abruptly, indicating a suita
separation point of extreme values.

In the following application to summer data, categoriesL and
H are separated by the median, corresponding to an intensity
mm per 12-h period, andH andE by the 85th percentile, 27 mm
per 12-h period. Thus, target intensitiesI t<6 were converted to
categoryL, 6,I t<27 to H, and 27,I t to E ~Fig. 7!.

From the definition, the relative proportions of categoriesL, H,
andE is 50/35/15. Thus, a particular training set is likely to con
tain more than three times as manyL as E, which essentially
means that the NN will learn the I/O relationship of categoryL
three times better than that ofE. Naturally the situation is similar
when using actual values as output; the NN will be better train
on ~the frequent! low than on~the rare! extreme intensities. When

Fig. 8. Ordered plot of nonzero target intensities during summ
with median and 85th percentile marked
8 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JANUARY/FE
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using categories, however, this effect may be compensated for
rather straightforwardly in different ways@for example, Smith
~1993!#.

One possibility is to employ what is termed a stratified sample
for the NN training. From the entire training set a nonrepresenta-
tive subsample designed to contain an identical or similar number
of occurrences of each category is extracted and used in the NN
training. We tested this approach for the present data, but did not
reach any noticeable improvement. The potential gain in accuracy
for high-intensity categories was generally offset by an overall
reduction resulting from the shortening of the training set. We
conclude that for the present data the entire training set is required
for accurate NN calibration, and we assume that the definition of
the categories produces a sufficient number of each.

For the NN training, the four categoriesZ, L, H, andE were
represented by the values 0.2, 0.4, 0.6, and 0.8. As the~log-
sigmoid! NN output node can produce any value between 0 and 1
~in practice generally between the outer category values, that is,
0.2 and 0.8!, the output value is generally between two categories
~say,C1 andC2) and closer to one of them (C1) than the other
(C2). For example, if the output value is 0.35,C15L and C2

5Z. In light of this, it is natural to define two NN output series,
o1 ando2. Serieso1 consists ofC1 , that is, the rainfall category
closest to the actual NN output, for each 12-h period in the veri-
fication set. The entries in this series thus represent the most
probable intensity category. Output serieso2 containsC2 , essen-
tially specifying whether the correspondingC1 is inclined toward
lower or higher intensities.

To evaluate NN performance for the case of multiple catego-
ries Ci , the hit rate expressed in Eq.~2! may be generalized as

hrk5
( i 51

NC no5t~Ci !

( i 51
NC nt~Ci !

(4)

wherek denotes the output series~1 or 2! andNC is the number of
categories. While being a proper measure of the overall output
accuracy,hrk is insensitive to variations in performance between
categories. In particular, the performance for rare categories,
which often are of most interest~for example, extreme rainfall!,
has very little impact onhrk . An NN producing only the most
frequently occurring category as output may get a highhrk de-
spite being practically useless. To better take each category into
account, a weighted hit ratewhrk in which the hits were weighted
with respect to the category’s occurrence frequency was also
used. This is defined as

whrk5(
i 51

NC no5t~Ci !

NCnt~Ci !
(5)

which, while varying similarly tohrk between 0 and 1, gives
equal weight to the performance of each category. It should be
remarked thatwhrk may suffer from being overly sensitive to rare
categories for which a few hits or misses may have an excessive
impact on the total value ofwhrk . Thushrk andwhrk need to be
used complementarily for the overall assessment. Finally, in the
evaluation we use the biasbk(C) of each output series and cat-
egory, defined as equivalent to Eq.~3!.

Neural Network Experiment „1NNÕcat…
In the NN experiment based on categorized data, 1NN/cat~single
NN with output in terms of categories!, the actual target values in
the entire original series were replaced by their corresponding
category value (Z50.2, L50.4, H50.6, orE50.8), after which

er
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data separation, NN calibration, and NN simulation were p
formed as outlined in the section on the general design and in
application of NN experiments.

Typical values of the performance indicators are given in Ta
1. Looking first at the most probable output serieso1, hr1

50.56, that is, just over half of all target categories were hit
the NN. The lower value ofwhr1 , 0.45, indicates an unequa
performance between categories. From the biases, we find tha
NN produces far too many items in categoryL @b1(L)51.6# and
far too few in categoryE @b1(E)50.2#. Generally, the bias val-
ues reflect an inability of the NN to fully reach the outer categ
riesZ andE; Z in the target is sometimes estimated by the NN
be L. As categoryZ is more frequent thanL, this affectsb1(L)
more thanb1(Z). Similarly for categoriesH andE, even if most
E in the target are actually estimated to beH, this has only a small
influence onb1(H).

The valuehr250.31 shows that if considering botho1 and
o2, only 13%—that is@12(hr11hr2)#•100—of the target val-
ues are entirely missed by the NN. In other words, out of the 4
of the targets missed byo1, more than 70% are captured byo2.
Thus the present approach does allow a rough quantitative
mate of the rainfall intensity with reasonable confidence.

Comparative Evaluation

To compare experiments 2NN/int and 1NN/cat, one possibility
to convert the output of 2NN/int into the corresponding intens
category~Z, L, H, or E!. The median~6 mm! and 85th percentile
~27 mm! of observed nonzero intensities were used for this c
version~Fig. 7!. Thus, as in the target classification discussed
the section on catagories and elevation, NN output intensitieI o

50 were converted to categoryZ; 0,I o<6 to L; 6,I o<27 to
H, and 27,I o to E. We denote the converted output 2NN/cat.

The output 2NN/cat was compared with the target, simila
categorized, to assess performance using the hit rates and b
previously described. The results are summarized in Table 1~for
2NN/cat, subscript 1 ofhr, whr, andb corresponds to the on
and only output series!. In fact both hr1 and whr1 indicate a
higher performance of 2NN/cat than of 1NN/cat. Whereas
standard hit ratehr1 is rather close to the value obtained in th

Table 1. Average Performance Measures and Fraction of Z
Rainfall for Experiments 1NN/cat and 2NN/cat, Summer Seas
Standard Deviation of Biases5;0.1 and of Other Parameter
5;0.02

Experiment hr1 hr2 whr1 b1(Z) b1(L) b1(H) b1(E) f o(0)

1NN/cat 0.56 0.31 0.44 0.8 1.6 1.1 0.2 0.4
2NN/cat 0.63 N.A. 0.61 1.0 0.2 1.9 1.3 0.54
JOURNAL OF H
r-
tial

le

y

the

-
o

%

sti-

is
ty

n-
in

ly
ases

e

categorical experiments~;0.6!, the value of the weighted hit rate
whr1 is substantially higher, 0.61, as compared with 0.44 in 1NN
cat. This indicates an improved performance of one or more ca
egories. From visual inspection, and as indicated in Fig. 7, it i
found that 2NN/cat performs significantly better than 1NN/cat fo
extreme values~E!. This is reflected in the value ofb1(E), being
close to 1 for 2NN/cat. From the biases it may further be deduce
that the contributions towhr1 from categoriesZ andH are larger
for 2NN/cat than for 1NN/cat, as moreZ andH are produced in
2NN/cat. The number ofL is, however, severely underestimated
in 2NN/cat. Overall, 1NN/cat is noticeably biased toward low
intensities and 2NN/cat toward high intensities.

Judging from the performance measures in Table 1, the a
proach of separating into two NNs is preferable to intensity ca
egorization. However, the two approaches should be viewed
contrasting rather than complementary. The most appropriate a
proach is much related to any succeeding application of the es
mated rainfall. If only one value of the intensity is accepted
2NN/val is able to produce a reasonably accurate estimate th
however, may differ considerably from the actual intensity. The
output from 1NN/cat is a probability-based range of intensitie
that contains the actual intensity with a high degree of confidenc
Thus 1NN/cat may be more suitable for applications based o
probabilistic forecasts.

Seasonal Application

Table 2 summarizes the results from seasonal applications of a
proaches 2NN/int and 1NN/cat. Looking first at the results from
2NN/int for summer, we find, as previously shown~Fig. 7!, an
overall reasonable agreement between observed and simulated
ries. However, high peak values between time steps 40 and
~June 22–July 2, 1999! are severely underestimated. During this
entire period the Bai-u front was stationed just over Kyushu Is
land, generating favorable conditions for heavy rainfall. Furthe
intensities during the extended wet spell starting at time step 9
~July 17! are often overestimated. This period was characterize
by very high values of PW andv850 ~southerly winds!, which
made the NN forecast rather high intensities. The values ofu850,
however, indicated only weak westerly or even easterly winds
and in reality the highest rainfall intensities were likely found eas
of Kyushu Island.

The value of the CC is markedly lower for autumn than for the
other seasons. This is likely related to the presence of typhoon
which are associated with very extreme and often erratic cond
tions in terms of both the NN input and the target. For a limited
data set such as the present, these values may heavily influen
the training and lead to unanticipated NN output. This is clearl
illustrated in Fig. 9~a!, showing a typical output from 2NN/int for

ro
n.
fall in
Table 2. Average Performance Measures and Fraction of Zero Rainfall for Experiments 2NN/int and 1NN/cat and Fraction of Zero Rain
Target~Observed!, All Seasons

Season

Experiment

Observed
f t(0)

2NN/int 1NN/cat

Correlation
coefficient

Root mean
square error f o(0) hr1 hr2 whr1 f o(0)

Summer 0.64 11.4 0.54 0.56 0.31 0.44 0.43 0.54
Autumn 0.50 9.3 0.72 0.78 0.12 0.50 0.72 0.74
Winter 0.68 1.6 0.89 0.84 0.11 0.40 0.85 0.85
Spring 0.77 5.5 0.74 0.75 0.18 0.59 0.70 0.71
YDROLOGIC ENGINEERING © ASCE / JANUARY/FEBRUARY 2004 / 9



Fig. 9. Neural network output from experiment 2NN/int~solid line! and observed time series~dashed line! for ~a! autumn;~b! winter; and~c!
spring
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autumn. The two sharp peaks in the NN output actually corre
spond to the passage of two typhoons: Yanni~;September 30,
1998! and Zeb~;October 17!. Both were associated with an ex-
ceptionally strong southwesterly wind and a large amount of pre
cipitable water, conditions typically associated with heavy rainfal
over the Chikugo River basin. For Yanni, however, the rainfal
potential never materialized, possibly because the typhoon was
the time rapidly approaching its dissipation stage.

Despite the lower CC for autumn, the RMSE is lower than fo
summer. It should however be noted that the RMSE is close
related to the frequency of rainfall occurrence. For two season
NNs that predict rainfall intensity with the same accuracy, the
10 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JANUARY/FEB
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RMSE will be lower for the season with the higherf t(0) as zero
values are usually accurately predicted by NN1. This is further
illustrated for winter, with 85% dry periods and an RMSE of only
1.6 mm. Despite the small number of wet periods on which to
train the NNs for this season, both occurrence and intensity ar
generally fairly well predicted, as shown in Fig. 9~b!.

For spring the value of the CC reaches nearly 0.8, which re
flects the dominance of midlatitude cyclones in this season an
the consequent strong relationship between synoptic-scale fe
tures and basin-scale rainfall. An output example is shown in Fig
9~c!. The overall pattern is well reproduced and the peaks reache
with reasonable accuracy.
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Turning to experiment 1NN/cat, the strong relationship be
tweenhr1 and f t(0) may be noted first of all. Equivalent to the
case of the RMSE in 2NN/int, the more zero values in the dat
the higher the hit rate of output serieso1. The seasonal variation
of hr1 is, however, accompanied by a reverse variation ofhr2 ,
making their sum;0.9 for all seasons. On average,10% of the
intensity classes are entirely missed by the NN. The variation
whr1 shows no obvious seasonal pattern, but the CC in 2NN/in
is highest during spring, indicating optimal performance durin
this season. It should be emphasized thatwhr1 is often strongly
influenced by a few values in the validation period and is there
fore generally more suited for comparing performance of differen
NNs for the same season than for the same NN during differe
seasons. Finally, the pronounced underestimation off t(0) by
1NN/cat during summer turned out to be an exception. For th
other seasons,f t(0) is in fact better estimated by 1NN/cat than by
2NN/int.

Summary and Conclusions

Neural networks~NNs! were used for prediction of 12-h mean
rainfall in the Chikugo River basin~CRb!, Kyushu Island, south-
ern Japan, from values of wind speeds at 850 hPa (u850,v850) and
precipitable water~PW! specified in a 1003100 km grid sur-
rounding the island. Prior to NN application, a seasonal correl
tion analysis was performed to identify the location of areas i
which each predictand significantly influences CRb rain fall. NN
inputs were weighted averages of predictor values in each
these areas.

An initial, straightforward NN application highlighted two dis-
tinct problems related to intermittency and variability in the targe
data, namely pronounced underestimations of the fraction of ze
rainfall f t(0) and extreme intensities. To improve performance
two approaches were tested. The first was to use two NNs
series, the first to determine rainfall occurrence, and the second
determine the intensity during rainy periods. This strategy great
improved the reproduction off t(0), butextreme values remained
underestimated. The second approach was to categorize rain
into intensity categories and train an NN to reproduce these rath
than the actual intensities. This did not lead to any apparent im
provement, but may constitute a viable alternative in cases whe
a probability-based range of intensities can be accepted as outp
A seasonal application showed a somewhat higher performan
during spring, in line with the strong relationship between
synoptic-scale features and basin-scale rainfall in this season.

Overall we conclude that NNs are a potentially powerful too
for relating spatial rainfall to relevant large-scale free-atmosphe
variables. Particularly encouraging results were reached using
binary NN to distinguish between wet and dry 12-h periods, tha
is, periods with zero or nonzero rainfall intensity, discussed in th
section on rainfall occurrence when using NN1. In some forecas
ing applications, knowledge of whether the following period will
be wet or dry is useful information in itself. Accurately forecast-
ing the intensity during wet periods is, however, clearly far mor
problematic. The developed NN models also performed reaso
ably well in this respect during winter and spring, but severel
underestimated extreme intensities during summer and autumn

There are a number of reasons for this seasonal variation
performance. One is the temporally and spatially localized natu
of the heavy rainfalls in summer~triggered by convection! and
autumn~associated with typhoons!, which are often only weakly
related to the large-scale atmospheric state, as represented by
JOURNAL OF HY
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GPV data used in the present study. The only possible way t
overcome this limitation is to use GPV data of higher resolution
in space and time. Another reason is the smoothing nature of th
NNs’ transfer functions. Similar to other deterministic models,
this leads to underestimations of variance and extreme values@for
example, Zorita and von Storch~1999!#. Since the summer and
autumn extremes differ more from the rest of the distribution than
do the extremes in other seasons, this effect is most pronounced
summer and autumn. Developing an NN design and application t
specifically target downscaling of extreme events is a recom
mended area for future research.

A more general limitation of NNs is related to the large
amounts of data required for complete NN training, that is, train-
ing that produces fully converged weights and biases. It is clea
that the performance of the NN models used in the present stud
was constrained by the limited length of the time series availabl
for the present experiments. Rainfall generation is a complex pro
cess, and rainfall occurrence can be associated with a wide ran
of atmospheric states. A limited data set first of all means tha
these different states may be incompletely represented in the s
used for NN training. The limited data further brought about some
‘‘emergency’’ solutions, such as using NNs with very few layers
and nodes and averaging the output from a number of calibrate
NNs. These features, in turn, restricted the models’ flexibility and
prevented them from learning all rain-producing states and a
aspects of their relationship with the basin rainfall. Thus, if more
data would have been available, the confidence in~and most
likely performance of! the models would have been higher. We,
however, wish to emphasize that such data limitations are no
uncommon in hydrology and hydrometeorology, and it is there-
fore of interest to also evaluate the potential of NNs in these
situations and share the experience gained.

Finally, it is clear that the performance of the present approac
can only be fully assessed by comparing the results with alterna
tive methods for rainfall estimation on the same time and spac
scales. Of most interest perhaps is comparison with a physicall
based, numerical prediction model, and currently the present re
sults are being compared with the CRb rainfall predicted by the
Japan Meteorological Agency’s regional model. Preliminary re-
sults indicate a similar performance, and these results will be fully
reported elsewhere.
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