15

Journal of Hydroscience and Hydraulic Engineering
Vol. 18, No.2 November, 2000, 15-42

A COMPUTATIONAL METHOD FOR OPTIMAL CONTROL OF MULTI-RESERVOIR SYSTEM
BASED ON DIFFERENTIAL DYNAMIC PROGRAMMING

By

0. Nakamura
‘West Japan Engineering Consultants, Inc., Fukuoka, Japan.

A. Kawamura
Associate Professor, Institute of Environmental Systems

Kyushu University, Fukuoka, Japan
and

T. Komatsu
Professor, Department of Civil Engineering
Kyushu University, Fukuoka, Japan

SYNOPSIS

A computational method is proposed for the optimal control problem of the multi-reservoir system
having a convex cost that function consists mainly of drought damage and secondary of a special penalty
function. The method is based on differential dynamic programming (DDP) under the condition that inflows
to reservoirs and water demands can be assumed to be deterministic. If the cost function of multi-reservoir
operations is expressed as a function of water demands and supplies only, finding the optimal control
generally causes singular control probléms which are very difficult to solve. In order to cope with the singular
control problems, our method is based on the modification of two methods, i.e., the K.Ohno's new DDP
algorithm with Newton’s method for discrete time systems [15] and the Bell-Jacobson’s & -algorithm for
singular control problemé [2].

The simulation study shows that the proposed method can accurately solve the optimal control problem

of the multi-reservoir system on the relatively long time interval with the moderate computational load.
INTRODUCTION

Efficient operations of the reservoir systems are important for the effective use of water resources.

As for the techniques on reservoir operations, many studies have been presented . In this paper, we have
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referred to Takasao, et al. [19], Takeuchi [20], Kikkawa, et al. [21], Murray and Jacowitz [12], Yeh [23],
Ikebuchi [7] and so forth.

There are two types of models handling the operations of reservoir systems, namely deterministic and
stochastic models. Stochastic models are very difficult to compute, if state constraints are considered.
Practically there are many cases where the optimal operations of a multi-reservoir system can be treated
deterministically. Standard or drought duration curves of inflows to reservoirs can be treated as deterministic
by the results of the suitable statistical analysis on the long actual duration curves, for example. Further-more
the water demands of a region and its sub-regions can be estimated deterministically by a suitable regional
planning.

In this paper, we assume that the state transition equation of reservoirs can be expressed by a discrete-
time dynamic system. And from the above-mentioned we treat of the deterministic case on the optimal control
problem of a multi-reservoir system. In formulating the practical optimai control problem of a multi-reservoir
system, the selection of the cost function is very important. For urban water supply problems other than
electric power use, a useful cost function is what can be evaluated by economical drought damage. Therefore
we adopted the drought damage function as the main cost function of control problems.

In our model, there are several water demand sites assigned in the sub-areas of a region. These are
regarded as the sink nodal points of a network which connects reservoirs (main part of sources) and demand
sites with water channels or rivers. The defined main cost function is incorporated with suitable drought
damage functions assigned to each demand site.

With the above model configuration, the optimal control problem of the multi-reservoir system is
realistically and generally formulated. However, it will usually cause singular control problems to adopt the
drought damage function only as the cost function. For example, the solution (i.c., the discharge from each
reservoir) for a parallel two-reservoir system with one demand site can not be decided uniquely by minimizing
the drought damage function. In order to treat these singularities we introduced a special penalty function.
Few papers directly consider the possible singularities for optimal control problems of multi-reservoir
systems.

In this paper, we have firstly adopted the DDP algorithm with Newton’s method which was proposed by
Ohno [15] to solve discrete optimal control problems with state and control constraints. In our case we have
used the damped Newton’s method for the stability of numerical computation. As a result, the convergent
domain of starting variables is extended remarkably. We refer to the method as DN-DDP (DDP with damped
Newton's method).

Secondly, we have coped with singular control problems by combing the sequential regularization
process, similar to the ¢ -algorithm proposed by Bell and Jacobson [2], with DN-DDP under a newly
introduced penalty function. This regularization process is referred to as SR-process. As a whole, a new
general computational method for the optimal control problem of the multi-reservoir system is proposed here,
and it is named as SDN-DDP (Sequential regularized DDP with damped Newton’s method).

SDN-DDP was applied to the model shown as Fig. 1, i.e., the multi-reservoir system composed of three
reservoirs, the five component control variable, two demand sites and the drought damage function on 216
time periods as the main cost function. The solution of DN-DDP converged sufficiently on the criterion
deduced from Khun-Tucker optimality conditions, and the value of the penalty function decreased
monotonously by the SR-process. We obtained satisfactory computation results described later.
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Fig. 1 Configuration of the example computation model

STATE EQUATION OF MULTI-RESERVOIR AND COST FUNCTION

(1) State Equation of Multi-reservoir System and Its Optimal Control Problem

expressed by the following linear difference equation:

X, =X, +Bu At +q, At

=/, (00000, AD)= £, (5,,8,), =12+, N -1 . M

Further, initial and terminal boundary conditions can be expressed as:
x =a, )
Xy =ay 3)

where

X, AX 155X 57 X )" = state variable at the 7 -th stage , i.c., storages of reservoirs at the 7 -th
stage, and m is the maximum number of reservoirs;

U, AU,y 0y, U, ) = control variable during the 7 -th period, i.c., discharges and/or intakes of
reservoirs during the 7 -th period, and 7 is the maximum number of conirol
components and each reservoir must have at least one control component. m=r ;

9,915 955 Gom )" = inflows to reservoirs during the 7 -th period;

At = time interval , i.¢., length of the period, and maximum period number is (N -1);

stage = the time at the starting and/or end point of each period , and maximum stage numberis N ;

n = stage number or period number in the finite time horizon, n=12,:-.N ,and ¢, =(n-1)At;

N =maximum value of n;

B = matrix indicating the relation between x,,, and u,, (mxr matrix) ;

n+l
a, = initial state (vector), i.e., initial storages of reservoirs;

a, = designated final state (vector), i.e., designated final storages of reservoirs at the N -th stage ;
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Similar to ordinary reservoir operation models, we adopt storages of reservoirs as the state variable and

discharges of reservoirs as the control variable. The discrete state transition equation of the multi-reservoir is



18

As for the constraints on X, and #,, only the linear functions regarding to X, and , are considered
and it is supposed that each state constraint always contains the components of #, corresponding to that of
x,,. For example,

Xy <M, u, >0, etc. are expressed as follows:

8.(x,.u,)= f,(x,,u)-M,=0, g, .4(x,, u,)= —Uy; =0.
here, i=constrained component number of the state variable; j =constrained component number of the
control variable;
§ = constraint number.
The equality constraints can be expressed similafly. By putting in order, these are written as follows:
g,(x,,u,)=0, h (x,,u,)=0, n=12,N-1 )
here g, and h, arethe m,-thand the 7, -th dimensional vector respectively. As for the terminal constraint,

we treat here the fixed end constraint only.
t
In this paper, the optimal control problem finding {x; ,u; } which satisfies Eq. 1, Eq. 2, Egs. 3 and 4
and minimizes the cost function .J (Z) that is defined in the next section under given £ and involves the

penalty function, is referred to as problem (A). Where £ is the sequential regularization process number
defined later, and upper subscript * denotes the optimal value.

A part of the final parameter of the penalty function, namely the final pilot trajectory X~ mentioned

later, can not be estimated accurately beforehand, since it involves the equivalent of {x,,} Then, it is
necessary, for obtaining the final optimal solution {u’}, to adopt the sequential process that solves the
problem (A) relating to each £, suchas £=0,1,2,-+, for the improvement of the pilot trajectory X * and the

convergence of J(£)'. We shall refer to the finding of the final optimal solution {x;,u; } and X~ that

satisfy J(o)'| L {J(me =0,1,2,-}, as problem (T).

’X'l}

(2) Cost Function and Stabilization Function

It ié a very difficult problem to express simply the cost function for the effective control of the multi-
reservoir system in practice. In this paper, referring to [9], [14] and so forth, we adopt the drought damage
function as the main component of the cost function for the optimal control problem of the multi-reservoir.
system and a special penalty function as remainders. We assume referring to the above cited literatures that
the drought damage fuﬁction of a region where the multi-reservoir is assigned can be expressed by the sum of
L, ,(n=12,.-,N—1) defined below.

Remark 1: Here, for convenience, a region implies the water supply district connected by a water-
channel network containing reservoirs, and the multi-reservoir implies the group of -
reservoirs connected by one water-channel network. And a sub-region implies the suitable
part of a region defined later.

L,, is composed of the minimum of the quadratic function of the supply cut ratio under given control



u, onthe n -th period in the region, and the provided supply cut ratio is defined as shortage of water supply
divided by demand.
In order to show concretely how to obtain L,,, we will consider the multi-reservoir system drawn in

Fig. 1. The positions of reservoirs, sources of the rivers and water channels, their junctions, demand sites and non-
effective discharge points of the region, etc. can be expressed as nodes. Suitable sections of rivers and water
channels having a flow-direction are expressed as arcs . We shall compose the directed graph from these nodes
and arcs, and express the configuration of the demand-supply system of the region including the multi-
reservoir. Subsequently, if the connections between the arcs expressing channels, etc are cut at the nodal
points correspond to reservoirs, sub-graphs can be obtained. We shall call them sub-regions for convenience.

In the model depicted in Fig. 1, the configuration of the demand-supply system is composed of three
sub-regions. The j -th component #,; of #, and the demand D,,p at the demand site p are allotted to
nodes of the corresponding network of sub-regions.

It is assumed that the channel flowing into at each demand node is limited to one channel. If it is not

satisfied, an assumed channel is added to the demand node and transfer the demand node to the opposite node,
so that the assumption will be satisfied. It is evident that the component of L, corresponding to a sub-region
is independent of the others under the given control #,, of the multi-reservoir.

In our problem, even if the control u, are given, there are some cases, in which L, cannot be easily
obtained, unless we solve the flow problems of the sub-region networks. Sometimes the flows in the network
problem for finding the component of L, can not be solved uniquely even L, exists. In these cases, we

can avoid this singularity by giving small quadratic transport costs to some arcs. Based on the above, the
objective function (cost function) L,, onthe 7 -th period is defined under given u, as follows:

L,()= min{;[Lo,. +ZC,Q?)R}

R

-uu{3{zc 0.0 0. 0] |

=Z{min(ZCPD,¢(AQ,,F /D,) +ZC,Q}) } ©)

where

R = sub-region number in the region;
v = node number in the sub-region R ;
£ = water-channel number in the sub-region R ;
p = demand node number in the sub-region R ;

L,,= main cost function of the system on the 7 -th period, i.e., the drought damage function of the

’ region on the 7 -th period;
C, = coefficient of the drought damage function at the demand node p;

D,, = water demand at the demand node p in the sub-region R onthe 7 -th period;
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Q, = flow (or discharge ) of the channel £ in the sub-region R onthe #-th period;

C,= coefficient to Q,2 in the case where the cost of the water flow is necessary, and it is usually set
at0;
AQ,, = (Q,p ). —D,,= shortage of the flow of the demand channel £, absorbed into the
demand node p onthe # -th period;
Furthermore, in order to treat with excess water which appears when flooding, it is frequently
necessary to assign to the configuration of each sub-region one non-effective discharge channel which
generally has no transport cost. The assignment of non-effective channels to the configuration of the region

should be done under suitable observations. L,, is the main component of the cost function for the optimal

control problem of the multi-reservoir system on the 7 -th penod
Some remarks for modeling the configuration of the multi-reservoir system are as defined follows:
@ The configuration of the demand and supply system of the region should be simplified by the
equivalent transformation, if possible. The control components which are dependent on others should
be eliminated beforehand, so as to reduce the number of unknowns and constraints.

@ The number of control component u,,; from one reservoir into the same sub-region should be set up

to one. The rivers flowing into reservoir i are not treated as inflow arcs to 7, but these flows are

expressed by ¢, as the inhomogeneous term of the state equation.
@ The component u,; from an upstream reservoir to the downstream reservoiri, should be treated
independently of ¢, and u,, from another, if there is no divergence into the demand nodes.

@ 1If there are more than one path from one node to another, the excessive paths should be assigned their
transport costs .
® If the problem finding {Q, } > €tc. which minimize (L,,), under the given (u,), becomes singular,

the configuration of the sub-region should be reformulated to proper one.

The iterative process of the Newtop’s method finding %, that minimizes the cost function, requires the
approximations of V, L and V2L . In this paper , for scalar L, and vector f, following symbols are used.
V,L,=(0L,10u,,0L,10u,,0L,1du,), V'L =(FL,10udu,),
V1o =0 fulduy).
Since there is no case in which one component #,; of u, is supplied over more than one sub-region,

symbol ‘min’ and ‘ ¥ of Eq. 5 are exchangeable. Accordingly L, , its derivative V L, and V2L at u,
can be obtained by searching for these components in each sub-region. Notice that there are also sub-regions

which have no contributionto L, directly.
In the sub-region R of a very simple configuration, (L, ), and its first and second derivatives with

respect to (u,), are directly obtained. When the configuration of the sub-region R is somewhat complicated,

these are obtained by adopting quadratic programming,. In the later case, {Q, } r Of the sub-region is adopted
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as the unknown variable to formulate the problem. Then, continuity equations of flows at sources and
intermediate nodes become constraints on the quadratic programming. For example, constraints can be

expressed as follows:

for the source node v supplied ,;; O, |,=u,

for the intermediate node v; XQ,|,=0 ©)
And for the demand node p the new variable AQ,, is introduced as Eq. 5, and the other sink nodes exceptv
the special cases have no constraints.
In this paper, as the solution method of quadratic programming, the Wolfe’s method (short-form) is adopted,
because it is frequently used and AL, /(du,), and &L, /(Fu, ), are obtained easily. In the solution
of this method, the values of Lagrangian multipliers to constraints Eq. 6 are contained , and these consist of

the negative derivatives of (L,,)p by right-hand side inhomogencous terms of constraints containing

{u,y })z . Therefore, because of the linearity of the Wolfe's tableau, we place the perturbation (matrix) terms
correspond to each {u,y }R at the right-hand side of inhomogeneous terms of the constraint equations (6). By
solving it through expanding the range of sweeping, we can obtain & 2 (LI,, )R / (0" u? )R together with the

original solution. From these , we can construct JL,, /Ju, and &L, /S u} inthe n-th period.
In order that the problem can be solved by the Wolfe's method, the network of the sub-region must be

constituted so that the solution {Q; }R is uniquely determinable. But the judgmentlof solvability of the

problem seems to be done easily by the observation of the sub-region configuration
Remark 2 : The technique called as depth-first search on a graph was useful in our experience to
decompose the graph of the region to sub-graphs and to formulate the first tableau of
Wolfe’s method in the computer memories ‘
When reservoirs are placed in parallel or there is flooding and in some other cases, the inverse matrix of
AL, / Ju? does not exist. Accordingly, if we construct the cost function of problem (A) by L,,(u,) alone,
there is the large possibility that the control becomes generally singular, namely, the optimal control can not
be determined uniquely even if it exists. In such cases, the procedure to find the desirable control becomes

very complicated.

As mentioned above Bell and Jacobson proposed an iterative computational method called as &-

algorithm for solving the singular optimal control problems. Stating with regard to our problem, it is adding
the penalty function such as &,4u7u, to L, and converts the singular control problem to nonsingular one.
Next, minimizing the normalized functional by the suitable method, &, is progressively reduced toward zero
and the solution close to original one is obtained. Note that the numerical ill-condition may happen as ¢,
approaches to zero. Bell and Jacobson suggested that the penalty function works even if it is the function of
{x,, ,u,,} . By referring that, we provide the water storage sequence X ‘= {X ( pt)}l of reservoirs, called the

pilot trajectory in this paper, which is temporarily assumed to be optimal. The penalty function proportional to
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the square of the difference between {X,( pt)}‘ and computed storages {x,}" is introduced. Furthermore
instead of reducing &, , we improve the pilot trajectory progressively solving the problem (A) and finally we
can obtain a suitable solution in practice which is very close to one of original singular optimal solutions.

If there are more than one components #,,, of #, supplying sub-regions from one reservoir i, we
introduce & -penalty function of u,,, components except one passing through the same channel as the

discharge from the spillway.
Putting in order the above, we define our penalty function of the 7 -th period as follows:

L;u = Z i {8u(.f;;,i(xn:un) - X,»l,z(pt)lt )z} ’ (I =12, m) @]
L= 3 {5 e, (i) ) ®

where, &, = coefficient of the penalty function correspond to the reservoir 7, and ordinary constant;
£ = process number of solving problem (A) and progressing {X (p1), }‘ , £=0L12.-
And k = above mentioned component number of 1, of u, inthereservoir i, ik <> jwhich indicate
a component of u,; &, = small constant coefficient of the penalty function correspond u,,, , if need,
usually &, =0.
We refer to L;, and its functional as the stabilization function or regularization function and, L,, and its
functional as & -penalty function.
By adding L’znv and L, to L, ,the cost function onthe 7 - th period is set as:

L=L,+L,+L, ©)
Based on this, the cost function J(?) of problem (A) is defined as:

J0=3"r (10)
Here, L; =0 is assumed. It is evident that J(£) is a strictly convex function of {x,,} and {u,, }, and
separable on 7. We shall refer to J(£) as the modified drought damage cost function. For simplicity, £ is
expressed by the subscript letter or is omitted occasionally.

Using SDN-DDP that is always accompanied by J(£), we can obtain the accurate approximation of the

optimal control {un }‘ which satisfies following relation;

O) <= min {J(£)|€=01,2;-}.

(%m0 X}

The starting pilot trajectory {X ( pt)}0 should be set at high level as possible as being explained in the
chapter of Numerical Computation Method for Optimal Control, so that the numerical optimal solution
{x;,u;} can be obtained at high water level. However, getting the numerical optimal solution by

introducing the stabilization function generally implies that one solution supposed to be useful is selected

from innumerable singular optimal solutions. The characteristics of the numerical solution and matters

concerning to it will be also mentioned in the above cited chapter. In the case of £, # 0, although the



numerical optimal solution may be slightly strained, we shall permit to adopt small ¢, for stability of the
numerical analysis and ¢, is kept constant.

We define J,, J{ and J; correspondto £ as:

Jy = Jxl = Z::(Lm +L3,.)11 an -
s=y"r, (12)

Remark 3: By a process similar to that of L‘z,, , the function L,, may be improved, but such process is

not adopted for the sake of simplicity here.
In the numerical computation, the original V, L, and V2L, are modified like Eq. 13 and 14 by

expressing with same symbol. In this case, Vﬁl,,, is regarded as a consistent approximation [17].
V,L,,A(originalV L) x s (13)
VL, A (the diagonal elements of original V2L,, are kept unchanging, and the other elements of

it are multiplied by  0.5) x §° 14
here, s = the correcting factor which will be explained in the later chapter.

In this paper the computational model mentioned above is referred as the water demand and supply model.
PRELIMINARIES TO DDP

(1) Assumption of the Existence of Feasible Solutions
If the conditions and the constraints of the computational model of a reservoir system are suitably

defined, we can expect that problem (A) of the model has feasible solutions, because the control #%(?) always

exists in the real reservoir system. In this paper, the existence of feasible solutions of problem (A) is assumed.

(2) Properties of the Solution for Optimal Control Problem (A)

Problem (A) can be converted to the problem of mathematical progamming' equivalent to it.
Subsequently, based on some theorems of convex programming, the assumption of existence of feasible
solutions and strict convexity of the cost function, the existence of the unique global solution can be easily
proved [4], [6]. Accordingly, if the numerical sélution for problem (A) converges locally, it is the global

solution.

(3) Dynamic Programming (DP) and Pay-Off Function
Based on the property of the state equation and the cost function, DP can be applied to problem (A) for

each £. If the pay-off function V,,(x,,) is defined concerningto n=12,-- N as follows:
. N-1 .
Vn(xn) =min {ZF"Lj +LN(xN) l xj+l = .fj(xj’uj)’gjéoahj = 0:.1 =n, ",N—l} as)
Eq. 16 can be obtained from the principle of optimality.
V,(x,) = min{L,(x, 4,)+V,.(f, 0, 0,)|g, S0k, = 0},n =12, N -1 (16)

23
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In the case of problem (A), terminal condition Eq. 3 can be transformed into Eq. 17. (refer to Eq. 42)
Vy(x,)=Ly(xy)=0 a7
The minimum value of the cost function J(£) for each £ can be written by the definition of Eq. 15 as
follows:
I (0)=7(x)=V(a) D)
In usual DP, the optimal control {u:} can be obtained by solving Eq. 16 recursively starting from the
terminal condition Eq. 3. On the other hand, in the case of DDP, in order to alleviate the dimensional

difficulty, {u:} is obtained by solving equations derived from Eqgs. 16 and 17 iterativelly under optimality

conditions.

(4) Necessary Conditions for Optimality and so forth »

In this paper, we adapt many materials from Ohno [15] concerning DDP. In the analysis of optimal
control problems, it is usual to set some assumptions in regard to the functions. These will be briefly
described.

Assumption 1 :  All the functions f,, g,, h,, L,, n=12;-N-1 and Ly are twice differentiable

and all their second derivatives are piecewise continuous.
Assumption2:  Forthe activated g, and /., V, g, and V,,h,; are linearly independent.
Assumption3 :  Asfor g, strict complementarity holds, that is , for all activated g, A4, >0.

1t is clear that these assumptions do not add new constraints to problem (A).

In order to obtain the formulation for the minimization problem of V,(x,), ie., Eq. 16, we shall
introduce the Lagrangian function F,,(n=12,--N —1) as follows:

E (x4, 4,5 1,) = L(x,,u,) 4V, (f,(x,,u, )+ X8, (x,.4,) + 4 1, (x,.4,) 19
where A, and g, are Lagrange multipliers.

“ The following Kuhn-Tucker conditions, Eq. 20, Eq. 21, Egs. 22 and 23 hold as necessary conditions that u;
be an optimal solution of Eq. 16;

V=V L+ VeV, £+ () Vags + (e Vb =0 @0)
diag(4,)g, =0,k =0 @
£.50,% 20 2)

and for the vector Z which satisfies Vg, Z = 0 for all activated g, and V,,h,;Z =0,.

Z'VIEZ20 23)
where
ViE = VI + VYL Vi S+ (1 Vigs + (u) Vin + (., 5 VYLV @4)

Furthermore from the strict convexity of L, , the following holds for above vector Z.



Z'VIEZ>0 (25)
Eqgs. 20 ~ 23 and Eq. 25 are the necessary and sufficient conditions for u,', to be an optimal solution of Eq.16,
- and obviously V(x,) equals J *(€) of the problem (A). Now, we define Y, and I,(x”, y,,) as follows,
for n=12,--N-1:

Vo= A, ) (26)

T(x,.5,) = (V,F, gldiag(4,), k)" @
The Egs. 20 and 21 can be rewritten as:

T(x,,y;) = 0,(n=12,-,N-1) @8)

For fixed x,, Y:,(X,,, y,,) =0 is a system of (7 +m, +7,) equations for the same number of unknown

CRS L A . o .
Y, It is evident that {x,,, y,,} satisfying the initial and terminal conditions and Eq. 28 are the optimal

solution of problem (A), since these satisfy the necessary and sufficient conditions for optimality and J(¢) is
strictly convex.

Regularity of the Jacobian matrix J,(x,,y,) of T,(x",y) with respectto Y, is evident from Eq. 25,

assumption-3, etc., then y, can be obtained from T,(x;,y,)=0. And J,(x,,y,) is expressed as

follows:
V:Fn Vﬁgnr Vllhnr
J, =|diag(4,)V g, diag(g,) 0 29
v.h, 0 0

Although the same letter J is adopted to denote the cost function, this will not cause any confusion since the
subscript is different.
Now, K,(x,,¥,), e, the Jacobian matrix of T;(xn, yn) regarding X, is expressed as:
K,(x,.y,) = (V.F,.V,g, diag(2,),V.h,")" (30)
here
From implicit function theorem (17) the following holds:
V. .(x)=(V 0 (x,) VA (x,) V) =, ) K (%, (5) (32

The strict complementarity condition for g, leads to

+1

&, (x,,u,)V2,(x,)=0 (33)
Accordingly when considering V), (xN) =L, , the following can be proved for n=12,.--,N-1:
Vo(x,) = F(x,,5, (x,)) (34)

VV,(x,) =V, F(x,y, (x,)
=V L +VV, V[, +Xx) Vg, + 1) VA 35)

n+l1
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VW, (x,) = VAL 4V [TV, f A YV, Vo 2 () Vig, + 1(5,) V2,
HVAL AV IV Vo, 4T,V S 2 (5, ) Vo, + (5,) VER,)- Y 0(x,)

+V.8, V. 2,(x,) + VIV p(x,) (36)
Here, all functions are assumed values at (x,,u,(x,)). Since, functions f,, g,, A, of problem (A) are

linear concerning X, , their second derivatives become zero. Such terms will be omitted in the later algorithm.

NUMERICAL COMPUTATION METHOD FOR OPTIMAL CONTROL

The numerical computation method used in this paper for the optimal control of the multi-reservoir
system is composed of the double iterative computational processes. The first process is similar to Bell-

Jacobson’s £ -algorithm, and corresponds to the outer loop of the flowchart of computational processes. In
the process, pilot trajectory {X ( pt)}' of stabilization function which has been introduced to cope with the

singular control, is improved and the cost function .J (K) is reformed. We shall refer to this process as the
sequential regularization process (SRP).

The second process is the iterative computational process performed by DDP with damped Newton’s
method for problem (A) of index £. The process is referred to as DN-DDP .  The process putting the £ -
th SRP and the £ -th pN-DDP together is referred to as the £ -th sequential process of SDN-DDP.

As mentioned previously, Ohno [1 5] proposed DDP with Newton’s method as an algorithm of DDP to
solve optimal control problems of the discrete-time dynamic systems with state and control constraints. He
proved the convergence of the method and showed the rate of convergence. In his method, it was assumed that
the starting values of variables are close enough to the optimal values. In our paper, considerable
improvement of his original algorithm has been done in practice as DN-DDP by adopting the line search in
Newton’s method and Lagrange multiplier method for the terminal constraint. With the strictly convex cost
function J(£), DN-DDP has obtained the robust stability of the numerical computation and has expanded the
convergence area of the starting variables. As the result, DN-DDP has been made to be an effective
computational method for problem (A). .

In the following, we describe the algorithm combining SRP and DN-DDP, i.e., SDN-DDP which is
assumed to be always accompanied by the J(£) type cost function. Subsequently, the convergence of the

algorithm and some characteristics of the numerical optimal solution are briefly described.

(1) Supplementary Notes on DN-DDP

The necessary and sufficient conditions which the optimal solution of problem (A) must satisfy are Eq.
28 and the initial and terminal boundary conditions. Eq. 22 will be satisfied automatically, if the choice of
active inequality constraints are suitable.

In solving optimal control problems by the iterative procedure in DDP, the following amount of

. k -
correction dy, is commonly used;
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=, + O, 05, - &, @7
@1:0 is the amount of correction obtained by Newton’s method , and is sought for the backward time direction
and & and &) are sought for the forward time direction. Here K is the iteration number.

In this paper, by introducing the step-length @ into standard Newton’s method, @Zo is obtained in the
following form,
&y, ==a-(J, v )T, (5, 5,)
here, T,, J,, etc. contain unknown values VV,, (x%,) and V7, (x,). These approximate values

can be obtained by Egs. 35 and 36. Denote these approximate values of VV(x*) and V¥ (x}) by the
Vivand V7, respectively. In the following, the symbol e denotes variable e, with V7V,
substituted by \y ,and l:(.—f:)_l _I?,,l denotes the sub-matrix of (J,)" K. corresponding to variable 8.
We adopt damped Newton’s method as follows,

. =Tt y0) = vk = a- Taeh, Y Tk 02 G38)

The approximate value of & y* /3 x” is obtained from Eq. 32. The succeeding computational procedure

will be shown in section (6) .
As for the criterion of the line search and the convergence of iterations of DN-DDP, we adopt the

following error estimating functions for the 7 -th period:

EE(a) =V, F (et i (VP mt| g+ VP min Bl 2,a)“

and for the total time horizon: '
E*(a)=Zy_ E,(a) (39)
E™(@)=+Z,_E(a)’ (40)

(2) Treatment of Inequality Constraints and Approximation of J,

In this paper, for avoiding Lagrangian multipliers A, appearing in J, directly like Eq. 29, we adopt a
technique of mathematical programming which can treat active inequality constraints in the same way as
equality constraints. The validity of the technique is shown in reference [3]. For the sake of conciseness of
descriptions, we shall omit symbol /4, according to circumstances and shall represent it by g, including
active inequality constraints.

Furthermore in SDN-DDP of this paper, in place of the original J,, the following consistent

approximation J,,, is used, and expressed as .J, instead of original one.

n

ViF, v.gl
J - u"n uon B 41
Mn [V,,g,, dla g(_ CM,,) 1 ( )

where, Cyy, =(Cag»Cag o)



This is effective when the assumption 2 is temporarily broken on the way of numerical computation.

Although the computational speed a little bit decreases by adopting J,,, , the stability of computation
increases sufficiently. The element of C,,, is usually taken larger than that of C,; of the terminal boundary

condition which will be explained in the next section.

(3) Treatment of Terminal State Constraint
The terminal boundary condition, Eq. 3 at the stage # =N, can be expressed as:

Hxy)=xy—ay =0 (42)
In SDN-DDP, we apply the Lagrangian multiplier method[3] to this boundary condition. The validity of the
method is given in [18]. The augmented Lagrangian function Jf cqptaining ¢(xN) is introduced as an
extension of the cost function J/ (t’) to be minimized. J: is defined as:
Ji=J b (x, )+ ) Chd(x, ) “3)
T —
First, setup 5° = (diag(C,?,);t(x;’,)) ,andfor k=0,12.--, VV:r(xf,,) and b**!can be obtained as:
Vin (xN) = b"¢(x;f,) ‘ (44)
T
B =B 4 (diag(Cf,)¢(x§,)) | @5)
k. o 257% ) k
where b” is arow vector. Inaddition, V*Vy = dlag(CN) .
In the numerical example presented in this paper, the initial value of the component C, z?n of C,’f, is set

as about 0.1/ b

nimax >

thereafter it is increased gradually at a rate of around 1% per step with the upper limit to

be an order of 5Cy, .

(4) Pilot Trajectory and its Improvement

The relation between the pilot trajectory {X ,, (pt)}l and the stabilization function L%, is shown as Eq.
7. Here &, is settled by considering coefficients of L,, and the stability of computation. For example, it is
placed like &,, =C,/ (x,,, )max . Here, i is the reservoir number, and (x,',, )m is the capacity limit. C; is

the adequate positive number. The starting pilot trajectory at - £ = O is set at the water level nearly as high

as possible. For example, it is set at a water level that is several centimeters lower than the upper limit water

level in almost every stages, and the boundary of feasible domain of {x,,} should be avoided. In the
neighboring 7 of terminal & , the trajectory ;hould be pointed to the designated terminal water level.

By the optimal solution {x; }l obtained through the £-th sequential process of SDN-DDP and

{X ” (pt)}o , the improvement of the trajectory X *'= {X ( pz‘)}M is performed using either next two ways.

X4 (pr)=(x;), n=12,.N-1 (46)



or XM (pt)= 05" X2 (pr) +(1-05"")-(x))", . n=12.-N-1 “@n

here, £ is the sequential regularization process number, £ = 0,1,2,3,--

(5) Others
The correction factor § mentioned in the chapter State Equation of Multireservoir: <+ should be
selected so that V:Ln becomes considerably large compared with ViL" , for example something around s
%1~5. s would depend on the length of the uﬂit period At As for V.L,, when the small penalty
function 1/2 cg:d(xn) concérning the activated g, is added to L, there are some cases in which the

computational efficiency is somewhat improved.

(6) Algorithm of SDN-DDP
The outline of computational procedure of SDN-DDP accompanied always by J(¥) is as follows.

Step(0): D Select various constants required for the computation. (refer to section (8) of this chapter

and the examples of the chapter Numerical Simulation)

@ Assume the starting pilot trajectory {X i (pt)}0 andset £ =0.
. . 0)° . 0)° P
® Select the nominal control variable {un} and state variable {x,,} satisfying the Eq. 1,
Eq.2,Eqs.3and4. Setup {/1?,} and {/1,? } at 0, and calculate %, and set k =0.

Step(1): Find VW (x,'f,) and V2V (x,'f,) from Eq. 44 and section (3) of this chapter. In addition
update b**' by Eq. 45.

Step(2): @ From step (3)~(6), obtaining { k”}m, {x"“} and E'(am)k for each interpolation

n n

£
step-length @ intheline [ ., ], find @', minimizing E'( . Where m is
m max opt opt

min >

the interpolation number of the step-length and 0 < ¢, < afp, <a,, <lishod

and a_,, are adequately given.

. ¢ t
@ From step (3)~(6), calculate E(aop,)" , E (aop,)k s {yf”}m ,and {x:“}m for afp,.

k
@ If constraints are satisfied within the prescribed accuracy and if E(aap,) <g or

k2k,, ,gotostep (7). Where & and k_,, is the prescribed value.
@ Check the active inequality constraints, and update them if necessary. Set k <~ k +1 and
go to step (1).
Step3): For n=N-1,...,2,1; a=a,,; carry out the following computations. Here subscript m

of a, shows the interpolation number of the step-length or optimal one mentioned at step (2).

v = Uty =yt —a- (Talet, ) T, 1) (43)
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_ _ . T —
VWt =V_L + V7V, f, + ﬁ(u'; - u,'f) V165 ut) VY, f,

—ea\T e\T
+(/1i ‘) ngn+(,/;_‘) Voh “9)
VI = VEL 4V [TV eaV. S, —(v;Ln +V IV Y, f,,)[ri;‘in]

- ng: rj;l En] - V,h:[rj;] En] + R(O) (50)
A

u
here, f=02~10; r-'_—-Min(l,max(O.S,Za)); R(0) = the term which becomes 0 for the
problem (A).
Step(4): For n=1, a=q,,,

xH =g,y = U;(x{”’,y,") 5D
Step(5); For n=2,.-.N-1, a=q,, compute the followings.
k= £, (e k) 52)

- _]__
:4—1 - yt’*l _ I:(J,,(x: ,y: )) Kn(x: ,y: )](x:"’l _ x:) (53)
In additioh, at n= N, compute.
xy' =1, N—l(x;tllau:ltll) (59
Step(6): For given @=a,,, by getting E(a)* and E'(a)‘ via {x:“} ,{ :”} , {Wf} , etc.
obtained in the above and with Eqs. 39-40, return to the prescribed place of step (2).
. )¢ £ . £+1
Step(7): @ By setting {x} = {X,'f“}a,. , calculate {X,, (pt)} through Eq. 46.
@ When the variation value of the trajectory X’ improvement falls within the range

prescribed or £>£ ., holds, go to step (8). Here, £ is the prescribed integer.

)¢ )¢ : £ £+1
@ Substitute {u,,} and {xn} to the nominal starting variables {u: } . and {xg } ' 5
update {/12} and {,u,? } (for example 0), calculate B, ,set £« £+1andset k=0,
and go to the step (1).

Step(8): Stop the computation, and output the necessary results. [End of algorithm]

—k+1
Remark 4 : y,  is an improved estimate to the solution of Y;(x,’f , yn) =0, and not to the solution of

—k+1
Z,(x,'f”, y,,) =0. Eq.53 adapts y,,)r for the old state x* to y**! for the new state x**'.
—k+1
Eq. 49 is obtained by approximating Eq. 35 at y,,+ .
. . . 0)° 0 . 0)°
Remark 5 : Nominal starting variables {u,,} and {x,,} are estimated so that {x,,} belong to the

neighborhood of {X n ( pt)}o by suitable conventional methods. This request can be fairly



loosen, but the variables must satisfy the state transition Eq. 1.

(7) Convergence of the Algorithm
a) Convergence of DN-DDP
Since the convergence proof of DN-DDP would be done modifying that of DDP with the standard

Newton's method [1 5] , the only outline of the convergence proof of DN-DDP will be explained adapting from

standard one.

The assertion of [l 5] for DDP with Newton’s method is roughly as follow:

Vs = a(xh)

Arranging the computational process of DDP with Newton’s method, the following inequality can be

“Pﬁt 6: = 1 and 5k=(511‘75:7"" :I—l)r‘

proved for OF atthe appropriate neighborhood of the origin of 5.
S < Qk(ak)é-k
where, Qk(tgk) isa (N —1)x(¥N —1) matrix obtained in [15] , And "Q"(é"‘)" <1 hold for above &*
[l 5]. Thus, &* converges to 0.”
Based on the same logic, we can express the result of the £ -th iterative process of DN-DDP as
St < Ql:(a,ak)é'k
where, Qk(a, 5”) isa (N —1)x (N —1) matrix correspond to above Q* (5”).

If we choose ¢ <1, "Qk(a,(sk)hg

<[@*(8*)] witt hotd for same &*. Accordingly the iterative
process of DN-DDP for J(£) will converge for remarkably wider domain of starting variables than standard

one under. This can be confirmed by the numerical computation. Namely the problem of the numerical
example of this paper does not converge under @ =1, but it converges under suitable {a" < 1} . The
distinctive feature of problem (A) under the modified drought damage cost function is that, if the various

constants are appropriately chosen, VZV: obtained by the difference equation of Riccati type Eq. 50 is

inferred to be symmetric, positive definite and bounded. This fact would serve the stability of DN-DDP
process of problem (A). However , it would be obvious that DN-DDP process converges within the suitable
limit of the number m of reservoirs and N of stages, etc. Moreover, the rate of convergence of DN-DDP is

presumed to be R-linear and the process is uniformly asymptotically stable in the neighborhood of the origin
of 5*.
b) Convergence of Sequential Regularization Process

The cost function J!| (Z) can be divided into two functions J, and J;. J; consists of the drought

damage fanction defined by Eq. 11. le is composed of the stabilization function defined by Eq.12. When

the pilot trajectory {X,,(pt)}l is updated by Eq. 46, Jz({X,,}M,{x,,}l) becomes smaller than

J, ({X R }t, {x:}l) In addition , J (ﬂ + 1) is minimized under the given pilot trajectory {X n(pt)}m.

As the result, the following relation holds .

31
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Jl({x;}“’, {u;}'“) + J,({X,,}l+1 , {x; }M)}
[y oo ) -
) )

From the above inequality, J™ decreases monotonously, and J * > J and J;’ —0 (or &g,) as

| —

IA

A

£ becomes large, resulting in the convergence of the pilot trajectory {X ,,(pt)}t into {X n (pt)}.. On the
above, the optimal solution {x;,u; } of problem (T) can be obtained by SDN-DDP accompanied always by

the J(£) type cost function.

(8) Characteristics of the Numerical Optimal Solution

As previously described, we have introduced the stabilization function to eliminate the singularity of
control and have solved the problem of the multi-reservoir system by SDN-DDP.  This means to select out a
precise approximate solution among innumerable singular optimal controls which consist of drought damage
only as their cost function. The selected approximate solution must be of practical use. In order to satisfy this
request, the selected solution should be characterized to have the high water level transition curve for each
reservoir, if possible. We will explain roughly how the numerical optimal solution having such property can
be oiatained by SDN-DDP.

X2
XImx

feasible domainD
Z

Xl

.
///f‘

Fig. 2 Tllustration of the convergence process of the optimal control in SDN-DDP

Xomx X1

Let M equals to mxN. Here m and N are the maximum numbers of reservoirs and stages
respectively.  Next, consider E™  which basis‘ is provided with the unit storage of each reservoir
i,(i=12;--,m), for all n(n=12,-,N). Accordingly, arbitrary {x,, }t and {X ,,(pt)}lare expressed
by x* and X’ as points of E™ respectively, and {u,,}tis uniquely determined for given x’ and X*

from the strict convexity of J| (Z) As the result, J; and J, are defined on E™ | and the feasible domain
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of x' is expressed as domain D on E™ for the given parameters of the problem (A). Fig. 2 shows a

conceptual drawing of the convergence process of the optimal control.

Let C* be the envelope of the set of original (singular) optimal solutions S" of the multi-reservoir
control problem on EM. Suppose that X % is set up at the neighborhood of the upper right corner of D .
x* and u"(x") are obtained through the /£ -th iteration process of SDN-DDP. The point x" on the
drawing shows this position. In this stage, X’ is the point minimizing J(Z). The contour z° of J; (Z)
passing through x* on EM isan (hyper-)ellipsoid, and its shape is determined by the coefficient {em.} of
Jz(l). x" is also the point minimizing J; on the common part of z‘and D. X “1is obtained from
x” byEq46. X s the point such that descend form X* as far as the minimum point of .J (Z) on D,
namely, the minimum point of JI(Z) on z‘AD.

In general the starting pilot rajectory X ® is the outside of S°, then x" and X converge to a
pointon C" without reaching the inside of S". _

The convergent point is determined if all parameters and coefficients of the problem (T) including X,
are given. SRP can be interpreted as a kind of steepest descent method under a suitable norm.

It could be qualitatively said that the position of x" is located on the point not relatively far away from
X%on C*. x° isprescribed by parameters X, and {e,,,} , etc. through the cost function J.

If the solution obtained by SDN-DPP under above mentioned X, is somewhat unsatisfactory for
practical use, it can be improved mainly by adjusting {e‘,, } .

In the next simulation, &, is adopted from the suitable range of C,/x ... ,s0 we can shift x"on C
by adjusting the input data C,. When making some C, to be larger under fixed X 0 the water level
transition curve of the reservoir i at X becomes relatively higher, and if making C, smaller, it becomes

relatively lower. In this paper, we selected C, by the inspection of computation results in several trials.
NUMERICAL SIMULATION

In order to demonstrate the effectiveness of SDN-DDP that is always accompanied by the J(¢) type

cost function, a numerical simulation was carried out for the multi-reservoir system modeled as Fig. 1.

(1) Coefficients and Parameters of the Simulation
The common coefficient of drought damage function: C, =10. "%)_1; At=5day; s=20;
P =05; maximum number of periods N —1=216 (correspond to 3 years); coefficients of the penalty of

activated g,, C, =04/x,..; @y =ay = (3040,21411 63.4)T m’ | s- day ; lower limit of u,,=0 or

0
057%; for starting value of {u°} and {x3}° refer to Remark 5. Table.l shows coefficients and
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parameters used in this simulation. Other data; {x,u.'m }, {qm.} and {an } are given in the diagrams of
results.
Table 1 Coefficients, etc. concerning each Reservoir
X nax(m*/s - day)  |Coef. of L,,: € ; fterminal Cy’ |C,,. of Iy, lupper limit of x,
Reservoir a 605 0.16/X 5 max 0.1/X, max  [20.0/X, 1o exist
Reservoir b 545 0.16/Xt, max 0.1/ X max [20.0/X s exist
Reservoir ¢ 680 0.14/%, 1nax 0.1/X max ~ [20.0/X o no exist
notice : coefficient of inequality g, consisted with only u,,; Cy,;=5.0;
(2) Results
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Each optimal storage trajectory of reservoirs obtained by SDN-DDP is shown in Fig. 4. The duration curve of
the ratio of supply Q,, to D,,p at each demand node is shown in Fig. 3. Where , we have defined supply ratio as:

100% minus supply-cut ratio. 'We can conclude that the numerical solution obtained from this simulation converges
very close to the optimal solution ,which is judged by the above mentioned criterion and obtained diagrams, etc.

£

As for E* of the Eq. 39, at first (E*) was about 2300, and it becomes below 0.80 in every £ as the

£=0,£=0
increase of k. Where, £ isthe iteration number of SR-processand & is the iteration number of DN-DDP. In this

simulation, the maximum £ is 139 and the maximum value of | X" (pt) — X4(pt)/ %, foreach £ wasat

first 0.298, but it became 0.016 at £ =13. The average of maximum k for each £ was about 105. Execution
time of the simulation was about 30 minutes using the engineering work station : DEC-500 au.

(3 Comparison of Efficiency with Other Methods
According to several references, e.g.[1],[12], CDDP and the method based on the maximum principle [18]

are seemed to be effective methods among many computational methods for finding the optimal control of the state
constrained problem on a finite long time horizon. They are originally formulated to treat normal control problems.
The optimal control problem in our case, however, is a bit complex; so that both methods are modified slightly to be
suitable to our problem. Here, the adjusted CDDP is referred as Method A and the adjusted method based on the
maximum principle as Method B. For the simplicity, the comparison of these methods with SDN-DDP was carried out
within the limit of DN-DDP omitting SR process.

(a) Models for Comparison Computations and its Results

The model shown in Fig. 5 firstly used for the comparisons of computation efficiency. The model is a simplified
version of that shown in Fig. 1.

As the various inputs and constants of the model of Fig. 5, we assumed that the capacity of reservoirs, inflows,
demands and the cost function and so forth were same as those of the example model of Fig. 1. But some parameters
were selected more suitable for each method.  The results in table 2 were obtained by the comparison computations of the
model shown in Fig. 5.

© <
(b) Legend
VY : reservoir
> : node of reservoir
<> ) ® : other nodal point
1 O

Fig.5 Configuration of the computation model

Next, the test computations were also done for the model of Fig. 1. In these case, the computational periods were



216 steps (3years). But the results obtained by Method A and Method B were not so good. On the other hand,
SDN-DDP converged within E* = 08 at % = 139 onthe same model. For the detail, refer to [13].

() Comparison of Results
Table2 Comparison of computedresults (A t=5days)

‘ SDN-DDP Method-A Method-B
72 periods literation N, 29 26 43
(1 year) Truncation E* 0.30 0.30 0.30
144 periods [teration N, 83 130 190
(2 years) Truncation E* 0.50 0.50 0.50
288 periods- [teration N, 146 361 508
(4 years) Truncation E* 0.70 0.70 0.70

notice:  results are for the model shown in Fig.3

From the above result, SDN-DDP is more robust and more rapid on its convergence for the medium to traditional
scale models, so that it is judged that SDN-DDP has the wider applicability than Method A and Method B for the
simulation of the multi-reservoir system. ’

CONCLUDING REMARKS

In this paper, we proposed a new computational method SDN-DDP solving the deterministic discrete optimal
control problem of the multi-reservoir system which has a general configuration of the demand-supply system and the
modified drought damage cost function. From the result of numerical simulations, it is shown that SDN-DDP is
sufficiently applicable to practical problems under the above cost function. In addition, SDN-DDP is superior to
standard computational methods of optimal control in robustness and rapidity of the convergence for the medium to
ordinary scale multi-reservoir models.

SDN-DDP can cope with the singularity of controls of the multi-reservoir system having the practical drought
damage cost function by virtue of introducing the stabilization function as a penalty function. However, introducing the
stabilization function implies that one solution is chosen from the original singular optimal solutions having
innumerable degrees of freedom. It is advisable from the viewpoint of practical use to balance the coefficients of the
stabilization function for reservoirs so as to obtain the desirable optimal solution.

*“'When we apply SDN-DDP to actual multi-reservoir operations, some problems may occasionally occur in Japan.

Ononehand,thsearesuilziblewﬁmaﬁonmblansof@neinﬂowdmaﬁoncmmofmervoils.However,&ﬂeare
several excellent papers on this subject, for example (21] , and the subject is beyond the scope of our paper, so we do
not mention it more. On the other hand, if there are priorities in water rights and/or target discharges of rivers depending
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2.

13.

14.

on seasons, ie., variable new constraints. The quadratic programming part described in this paper can be slightly
modified to correspond to the new constraints.  This can be essentially done by changing the concerned demand nodes
to the absorbed flow specified sinks (or enlarging the coefficients C, ) and/or adding the flow specified imaginary

channels (equality constraints) or changing ordinary unconstraint channels to the constraints in the configuration of the
sub-region. Wolfe’s method has the criterion phase of compatibility for the problem. By the use of this criterion phase,
itis straight-forward to successively formulate the adaptable Wolfe’s method to above-mentioned variable constraints.
As arule, SDN-DDP is mostly applicable to actual control problems of the multi-reservoir system, if the control
problems have the suitable modified drought damage cost function.

Although the controllable time horizon and the number of reservoirs of the system have their limits, it is safely
said that SDN-DDP is applicable effectively to a wider range of optimal control problems of the multi-reservoir system
than the conventional methods from the results of comparison simulations.
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APPENDIX - NOTATION

following symbols are used in this paper. Although few symbols ‘have been used neduphcauvely according to each

precedent, but we suppose that this will not cause any confusion.

a,

OOQ 'BQ

S

/4

= initial state, initial storages of reservoirs;

= designated final state of reservoirs at ¢ = (N —1)At;

= Lagrangian multiplier regarding the terminal constraint;

= coefficient of #,, inEq. 1;

= coefficient of (; as the penalty in the cost function;

= coefficient of drought damage function at the demandnode p ;
=coefficient of the activated penalty function g, ;

= water demand at the demand node p on the n-th period;
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E;(a) = error estimating function of DN-DDP as defined by Eq, 39;
E*(a) = error estimating function of DN-DDP as defined by Eq. 40;
f.(x,,u,)  =state transition function from X, to X,,, as defined by Eq. 1;

F, = Lagrangian function as defined by Eq. 19;

g, = inequality constraintto (X,,,%,) ;

h, = equality constraint to (X,,,%,) ;

J(£), J*  =costfimction atthe process £, (£=0,1,....), as defined by Eq. 10;
J = minimum value of the cost fumctiori .J*,(£ — o) ; |

J! = drought damage function component of the cost function Jl,as.deﬁnedbyEq.ll;
A = penalty component of the cost function J*, as defined by Eq. 12;
J! = Augmented Lagrangian function of J* , as defined by Eq. 43;

J,(%,,¥,),J, =Jacobianmatrix of 7, originally, and slight modified matrix of original one lately,

as defined by Eqs. 29 and 41,

S = consistent approximation of J,,, lately refer to this as J, , sec Eq. 41,

k =iteration number of DN-DDP process;

K, = Jacobian Matrix of 7, withrespectto X, ;

L, =the main component of the cost function on the 7 -th period, see Eq. 5;

L, =the component of the cost function on the 72 -th period consisted of penalty function as defined
byEq. 7

L = cost function on the 72 -th period as defined by Eq. 9;

£ =sequential number in SRP or SDN-DDP,

m =max. number of reservoirs or max. component number of x,,;

m, =max. number of active inequality constraints at the 72 -th period;

n = stage number or period number;

N =max. value of 7, integer indicating the final time £, =(N — 1)A¢;

P = demand node number in the sub-region
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q, = Inflows to reservoirs on the 7 -th period;

0, =flow of channel £ in the subregion R onthe 7 -thperiod;

‘Q"(a,é"‘) = (N -1)x (N —1) matrix whichtransform &* to &**! atthe  -th process of DN-DDP under
parameter & ;

AQ,, = Q,, - D, ,shortage flow of demand channel £, onthe 72 -th period,

¥ . =max. component number of u, ;

Vn = max. number of equality constraints at 7 -th period, refer to Eq. 4;

R = sub-region number in the region;

s = correcting factor of consistent approximation of V,, L, and V2L, ;

T = (V.F,.gldiag(A,),h}) : refertoBq,27;

u, = (u,ﬂ,u,,z, ..... ,u,,,)T:dischmgas and/or intakes of reservoirs onthe # -th period;

v =node number in sub-region R

V,(x) = minimum value of cost fimction starting from X at the beginning of 72 -th period;

X, = (x,,l,x,,z, ..... ,xm)T:storagsofresa'voitsatﬁle n -thstage;

xt = ()

()} = tpilottmjectory for {x,}';

Y - (.Y

z = any vector satsfying (Vg") Z=0 and V,K'Z=0;

£, = parameter of stabilization function of reservoir 7 onthe # -th period;

& = parameter of penalty function of u,,,, ,referto Eq. 8;

of = damping factor in Newton’s method at the k-th iteration, step length;

2, = Lagrange multiplier for activated g, ;

K, = Lagrange multiplier for 4, ;

flell -4, normof e ,butif p=2,pis omitted for convenience sake;

{',,} =the ordered set of variable e ;

n
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Notice for the subscripts;
o = subscript * denotes the optimal value of variable e ;
. = subscript - denotes that variable e is substituted by approximate values V7, andlor V¥ 1

(¢),0r [¢], = these symbols express the component of (*) or [#] correspond to some variable 6 :

i = i -th component number of state variable or reservoir number of the multi-reservoir,

J = j -th component number of control variable %, and y,;

k = [ -thiteration number of DN-DDP in the £ -th sequential process of SDN-DDP;

@ik) = a component number in control (u, ), of reservoir i,if (u,), areplural. (ik) ¢ j;

£ = { -thsequential process number of SDN-DDP. secondary , water channel number in sub-region R;
n = p indicate the stage number or period number;

r = demand node number in the sub-region;

R = sub-region number in the region.
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