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Prediction of sunspots using reconstructed chaotic

system equations

Kenji Jinno,! Shiguo Xu,23 Ronny Berndtsson,* Akira Kawamura,!

and Minoru Matsumoto!

Abstract. Modeling of sunspots is important since they indicate the relative activity of
the Sun which in turn influence different terrestrial properties. To predict the nonlinear
and chaotic behavior of sunspot time series, the problem of reconstructing underlying
system equations is studied. The proposed procedure for this is (1) based on the
behavior of observed time series and dimension of strange attractor, find reference
system equations (in our case the modified Rossler equations) that show similar basic
features as the time series (e.g., appearance of attractor, amplitude and pseudoperiod),
(2) assume a general structure of the governing system equations by Taylor series
expansion, (3) use the reference equation systems as initial state in an updating
procedure (extended Kalman filtering) to estimate the structure of the governing system
equations. Using this procedure, results show that predictions on an average up to
eight months ahead can be made with good agreement for sunspot time series after
identifying the governing system equations. The extended Kalman filter was shown to
be an efficient tool to identify parameter values and to make updated predictions of the

chaotic system.

1. Introduction

Analyses and prediction of sunspots have been made by
numerous researchers during the latest decades [Bray and
Loughhead, 1964; Brown, 1988; Butcher, 1990; Mundt et al.,
1991]. The sunspot number is a quantitative coefficient of
sun activity and therefore important for, for example, global
weather, satellite trajectories, geomagnetic variations, etc.
Recently, studies that consider the chaotic behavior of the
Sun’s behavior have indicated that better predictions can be
made using developments within dynamical systems theory
[Kurths and Herzel, 1987; Weiss, 1988; Mundt et al., 1991].

Many studies during recent years have indicated chaotic
characteristics for sunspot time series and solar activity in
general [Ruzmaikin, 1981; Zeldovich and Ruzmaikin, 1983;
Gilman, 1986; Kurths and Herzel, 1987; Weiss, 1988; Feyn-
man and Gabriel, 1990; Mundt et al., 1991; Berndtsson et
al., 1994]. None of these studies may be said to constitute an
absolute evidence of a chaotic Sun since no universal
method exists at present to discriminate between colored
noise with power law spectra and underlying dynamical
processes in data [Theiler et al., 1992]. However, observed
time series may at least tentatively be viewed as determin-
istically chaotic if prediction methods based on underlying
deterministic properties are significantly better as compared
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to autoregressive linear models based on stochastic theory
[Farmer and Sidorowich, 1987, 1988; Sugihara and May,
1990]. As noted by Mundt et al. [1991], one reason why
models based on periodic behavior fail to predict sunspot
time series accurately may be the nonlinear behavior.

Current sunspot forecasting methods can be grouped in
three broad categories [Withbroe, 1989; Mundt et al., 1991]:
(1) statistical methods that assume fundamental periods in
the solar cycle, (2) statistical methods which assume a
certain behavior of the Sun in a current cycle and together
with the behavior in past cycles will give the future of the
current cycle, and (3) precursor techniques which assume
that the behavior of the solar magnetic field in the previous
cycle determines the behavior of the present cycle. In this
paper, we attempt to exploit a somewhat different possibil-
ity, namely, a method that embraces the entire and long-term
behavior of the observed time series. We aim at trying to
reconstruct the unknown governing equations for the ob-
served time series. With the knowledge of these underlying
equations it will be possible to make predictions of the future
behavior of sunspots.

Although chaos limits predictability, repeated short-term
forecasts may prove feasible [Farmer and Sidorowich,
1987]. Models based on chaotic premises do not contain any
explicit random components. These models are based on
purely deterministic but nonlinear equations, and pseudope-
riodical behavior is observed if the system contains a so-
called strange attractor. If similar characteristics can be
found in the original data, it is reasonable to believe that a
description of the time series can be made using chaotic
principles.

In section 2 we outline a methodology that can be used to
reconstruct unknown system equations that display chaotic
behavior based on observed time series. The only informa-
tion that we have about the unknown governing system
equations is observed time series. Consequently, analysis of
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basic properties for these observations becomes crucial for
the modeling. Several studies have shown that nonlinear
analyses methods are extremely noise sensitive [e.g., Grass-
berger et al., 1991, 1993]. Therefore observed time series
must firstly be cleaned by a noise reduction scheme. The
procedure for this and how to find initial conditions for the
system equations are described in section 3. In section 4 we
describe the application of the extended Kalman filter algo-
rithm for updating parameter values and to determine the
structure of the system equations. Sections 5 and 6 describe
the prediction results and the identified governing system
equations for monthly as well as annual sunspot time series.
We close with a summary and discussion of how results may
be interpreted.

2. Methodology and Basic Model Structure

One interesting property of low-dimensional dissipative
systems is that their dimension may provide the number of
equations needed to describe the system. These systems are
completely deterministic, however, extremely ‘sensitive to
initial conditions, and thus they are called chaotic. Although
the chaotic system is unpredictable in the long term, the
system’s settling on a fractal trajectory (strange attractor)
may be used for short-term predictions.

The dimension d of the strange attractor indicates how
many variables are necessary to describe the evolution in
time. For example, d = 2.5, indicates that the time series
can be described by a system equation containing three
independent variables. The structure of the equation system,
however, is unknown. Moreover, we do not know whether
the observed component is a single independent variable of
the system or an element composed by several variables.
Generally, it is very difficult and indeed impossible to find
the exact original system equations. Therefore an equivalent
system equation (reconstructed system equation) which can
generate a time series similar to the observed one is what at
best can be expected [e.g., Rdssler, 1976; Gouesbet, 1991a,
b; Xu et al., 1993a].

The state variable with dimension d = n for an unknown
system may be expressed as a vector system X = [x;, x,,
x3, **+, x,]T. The general form of the system equations
may be expressed as

X=Fx (1
or
-'x] =fl(x]7 X2y X3, *° xn)

C, Xy)

e e e 00

Jy = folxq, x5 X3,

2

L I R

> Xp)

The necessary information needed to determine the sys-
tem equations includes three parts, namely: (1) the number
of independent variables (the dimension), (2) the structure of
the equations, and (3) the parameter values. To determine
the number of necessary independent variables, we can use
the dimension d of the strange attractor for the observed
time series.

A relevant structure of system equations means proper
functions f1, f,, f3, *** , fu, so that the number of param-
eters for the system equations is minimized. The work of

-.xn =fn(xl’ X2, X3, °°°
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Gouesbet [1991a, b] employs the ratio of polynomials as a
general form of a three-dimensional equation system. In this
paper, we choose a Taylor series expansion to define a
general form for the system equations and we then employ
an extended Kalman filter to identify the parameter values.

If a low-dimensional equation system can be assumed
(e.g., d < 3), then it is sufficient to expand the function F(X)
in (1) into a Taylor series up to second-order terms according
to

X=ajptapx+tapytanuztasxy+agxztagyz

+agx’ + apy? + ayz? (3a)

Yy=ay tanx+ayy+tayztaysxytaxz+ayyz

+ azex? + azy? + axnoz’ (3b)

z= az; taxpx t+aszy +asz+ assxy + azgxz + as7yz

(30)

Equation (3) contains 30 parameters. It is obviously diffi-
cult to identify these many parameters at the same time by
use of only one observed time series. Consequently, some
simplifications are necessary. In general, efficient estimation
of the parameter values may not only decrease the number of
unknown parameters but may also simplify the structure of
the system. For this, we apply an assumed structure of the
system as initial conditions. All 30 parameters in (3) are then
updated by the extended Kalman filter. As initial conditions
for the system, we have chosen a modified form of the
Rossler equations. The reasons and advantages for this are
further elaborated on below.

+asx’ + asgy? + asoz’

3. Properties of the Attractor

The sunspot number data used in the paper are monthly
mean Wolf sunspot numbers from Chernosky and Hagan
[1958]. Figure 1 shows raw and noise-reduced sunspot
numbers using the noise reduction algorithm of Schreiber
[1993]. This algorithm was especially developed for dimen-
sion estimations. Known methods for dimension estimations
are extremely noise sensitive, and it is therefore necessary to
work with cleaned data [Grassberger et al., 1991].

The general idea of the noise reduction method is to
replace each coordinate in the time series x; by an average
value over a suitable neighborhood in the phase space. A
radius 7 is chosen and for each coordinate in x; a set Q" for
all neighbors x; is selected so that

SuP{|xj—k - xi—kl’ tety, |Xj+t - xi+l|} = ||Xj - Xi"sup <7
4

where k and ! denote past and future coordinates. Conse-
quently, coordinates in x; are replaced by mean values in
QO ,'T': '

1
x{ == > x; ®
a2

The noise reduction results in removal of high frequencies
from the time series and leave low frequencies more or less
unaffected as seen in the power spectrum diagram (Figure 2).
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Consequently, general properties of the time series are kept
while small-scale variations are evened out. This is also seen
in Figure 3, which shows the phase space portrait of raw and
noise-reduced sunspot time series and the strange attractor
for a time lag 7 = 10 months. Modeling and prediction of the
system depend on the ability to describe this attractor. From
the figure, it is in a striking way clear that raw data cannot be
used to gain information on the attractor. No pattern is
discernible for raw data. Noise-reduced data, however,
display a clear structure that can be used to investigate the
attractor dimension.

A remarkable impression from Figure 3 is that the different
sunspot cycles appear to follow about five preferential
development or attraction lines. Once such an attraction
line, which the present cycle is following, is identified, it may
be possible to make accurate short-term predictions of future
states in the cycle. '

As a result of the noise-reduction technique, k (in this
case, k = 30) values at the beginning of the time series and
k values at the end, are not filtered. In order to still keep
these data for the below analyses, a simple filter was applied
for these 60 values.

Attractor dimensions were calculated according to the
algorithm given by Grassberger [1990]. This is displayed in
Figure 4 which shows the slope of log C(r) for the slope of
log r according to

log C(r) = d| log r]| (6)

where C(r) is the correlation integral defining the density of
points around a specific coordinate x; within a distance r
related as (for small r):
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Figure 1. Raw and noise-reduced monthly sunspot time
series from 1753 to 1994.
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The correlation integral C(r) is calculated as

Z 0(r—

i,j=1
i#j

Clr) = - xj{) ®

where 0 is the Heaviside function defined by 6(x) = 0 if x <
0 and 0(x) = 1 if x > 0. As seen from Figure 4, there is a
clear scaling region for —2.0 < log r < 0(d log C(r)/d log r
does not change for changing values of log r). According to
Figure 4, noise-reduced sunspots display saturation at a
correlation dimension d < 2 [Berndtsson et al., 1994].

Mundt et al. [1991] found d =~ 2.3 for the same sunspot
data. However, they used a second-order, digital Butter-
worth filter with a cutoff frequency of 1/6 yr~!. When
comparing their power spectrum for the filtered data with the
power spectrum in Figure 2, it appears that the algorithm by
Schreiber [1993] preserves more of the high-frequency vari-
ation compared to the Butterworth filter. A reason for this is
that the method of Schreiber [1993] is a nonlinear technique,
while the Butterworth filter works as a linear procedure.
Nevertheless, for the modeling work below, we will assume
that d < 3.

As a result of the complex nonlinear behavior of the
sunspot time series, it is difficult to assess the structure of
the governing system equations. However, by studying the
properties of the attractor, the general behavior of the
system’s time evolution can be evaluated.

As mentioned before, it is possible to describe a chaotic
behavior by purely deterministic and nonlinear differential
equations. Since, however, it is extremely difficult to assess
the structure of an unknown nonlinear equation system [e.g.,
Rossler, 1976; Gouesbet, 191a, b; Xu et al., 1993a], further
simplifications are necessary. Consequently, we suggest a
method that significantly reduces the computat10nal difficul-
ties in estimating the structure of the unknown nonlinear
system. The method involves the choice of an equation
system with similar time evolution as the observed time
series as initial condition for the system parameter identifi-
cation scheme. By drawing the phase space portrait for time
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Figure 3. Strange attractor of raw and noise-reduced sunspot time series (lag time 7 = 10 months;

monthly data during 241 years).

series z(f) generated by the Réssler equations it is found that
the attractor pattern of the smoothed sunspot time series and
the one for z(#) display obvious similarities. Therefore we
assume that a modified form of the Rossler equations can be
used as an initial state for the system identification proce-
dure according to below.

The Rossler [1976] equations are a set of differential
equations according to:

X=-y-—z
y=x+ay )
z=b+z(x —¢)

where a, b, and c are constants. For different values of the
constants, the system has different behavior and the pattern
of the attractor changes as well. To use the Réssler equa-
tions as an initial state for the system to be identified, a linear
transformation is performed. The transformation z* = vz is
applied to adjust the amplitude of z(¢) of the Rossler equa-
tions to the noise-reduced sunspot time series, and t* = Tt
to temporally synchronize the two series. As a result, the
modified Rossler equations can be expressed as

(10a)

dlog C/dlog r

= ! + 10b

y (x + ay) (10b)

= ! b+z¥(x—c¢ 10c)
e T[)’ z*( )] (

where the linear transformation parameters y and T are
determined from the sunspot time series. In this case, y =
26.0 and T = 21.12 months. Figure 5 shows the time series
and the phase space portrait for the time series z*(¢)
generated by (10). As seen from Figure 3, there are obvious
similarities between the two attractors. Especially appealing
is the appearance of several attraction lines which the
system follows, that is, the same temporal behavior as the
noise-reduced sunspot data (Figure 3). Below, we exploit
this similarity to make real-time predictions of the sunspot
time series.

4. Application of the Extended Kalman Filter

The system and observation equations of the Kalman filter

are expressed in discrete form as
X(k+ 1) = (k)X (k) + a(k) + v(k) (11)

Yk +i)=Hk+ )Xk +i)+ Bk + i) + wk + i) (12)

Noise—reduced

15.0

Figure 4. Slopes d log C(r)/d log r versus log r for raw and noise-reduced sunspots (embedding

dimensions are m = 2, 40).
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Figure 5. Generated time series and strange attractor from
the linear transformed Réssler equations (parameters of the
Rossler equations are a = 0.398, b = 2.0, ¢ = 4.0, y =
26.0, T = 21.12; At = 1; initial values are (xg, Yo, Z9) =
(1.0, 1.0, 26.0); lag time = = 10 time steps).

where

Xtk + 1)
(k)
a(k)
u(k)

Y(k + i)

Hk + i)

system vector to be estimated;

known state transition matrix;

known constant vector;

white Gaussian system noise vector;

observation vector;

known observation matrix;

B(k + i) known constant vector;

w(k + i) white Gaussian observation noise vector;
k calculation time step;
i time step of observations.

The estimate of the state vector at time step k + i,
calculated using the observation obtained at time step k, is
denoted X(k + i|k) and at time step k + i, X(k + ilk + ).
If X (k|k) is known after the observation is obtained at time
step k, X(k + ilk) and X(k + ik + i) are calculated as

Xk+ik)y=®k+i—1DXk+i-1k)+ak+i-1)

(13)
Xk +ilk +i) = X(k + ilk) + K(k + ) V(k + ilk)  (14)
where
K(k + i) = P(k + ilk)HT(k + i)
<[H(k + i)P(k + i|j)HT(k + i) + Wk + D11 (15
Yk +ilk) = Y(k + i) — Y(k + i|k) (16)
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in which W(k + i) is the covariance matrix of the observa-
tion noise w(k + i) and T denotes transposition.

Similarly, the state estimate error covariance matrix at
time step k + i, calculated using the observation obtained at
time step k, is denoted P(k + i|k) and at time step k + i,
P(k + ik + i). They are calculated as "

Pk +ilk)=®k+i—-DPk+i-1k@Tk+i-1)

+Vk+i-1) (18)

P(k + ilk + i) = [Iy — K(k + )H(k + )1P(k + i|k) (19)
where V(k + i — 1) is the covariance matrix of the system
noise v(k) and Iy is a unit matrix. Further details on the
above procedure can be found in the works by Athans et al.
[1968], Bras and Rodriguez-Iturbe [1985], or Kawamura et
al. [1984, 1989].

The extended Kalman filter [Athans et al., 1968] is used to
identify parameters and update predictions based on ob-
served time series. Even though the time series possesses
chaotic characteristics the extended Kalman filter is effec-
tive to identify parameter values of the system [Xu et al.,
1993a, b]. In the extended Kalman filter, (3) is used as
system equation for the sunspot prediction. The system
vector X includes three state variables and 30 parameters
according to

_ T
X =[xy, X3, X3, ***, X33]
_ e T 20
=[x,y z, a1, ap, as, > asiol (20)
As a result, the system equation becomes
5c1 =f1(X) = X4 + X5X1 + XeX2 + X7X3 + XgX1Xp
" 2 2 2
X9X1X3 +x10x2x3+x1,x1 +x12x2 +x13x3 (213)

Jp = fo(X) = x4+ x15%1 T X16X2 T X17X3 + X18X1 X2
+ X19X1X3 T Xp9XpXx3 + x21x12 + x22x§ + x23x§ (21b)

d3 = f3(X) = x34 + x25%1 + XX T Xg7X3 + X2gX1 X2
+ Xp9X X3 + X39XpXx3 + x;le + x32x§ + x33x§ (21c)
x=f(X)=0, 4=i=33 (21d)
Equations (21) can be rewritten according to
X =F(X) (22)

where F(X) is a nonlinear function of the vector X. If we
expand F(X) at X * (close to X) into Taylor series and take
first-order terms, then

F(X) = J(X*)X + B(X*) (23)
where J(X*) is the Jacobian matrix and
B(X*) = F(X*) — J(X*)X* (24)
Equation (22) then becomes
X = J(X*)X + B(X*) (25)
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Figure 6a. One-month ahead prediction of noise-reduced

sunspot time series using (10) to (14).

Equation (25) is of linear differential type. By considering
system noise u(k), (25) is transformed into a difference
equation for numerical solving according to

X(k+1) = ®(X*)X(k) + T(X*)B(X*) + u(k) (26)

where

D(X*) = !X = [+ J(X¥)AL + - -+ {J(X*)AD " m!
+ee 7

(%) = (708 = DITX*) = AT+ J(X*H)AL2! + - -

+{I&XHA" Ym! + - 1] (28)

By comparing, in a successive way, with the state equa-
tion (11) of the extended Kalman filter, the terms ®(k) and
a(k) in (11) will correspond to the terms ®(X*) and
I'(X*)B(X*) in (26). Here up to fourth-order terms are used
in the calculations.

The term X* usually takes the value X(k|k — 1). The
X (k|k — 1) is the estimation of the state vector X at time step
k based on the observation at time step k — 1. Therefore, at
the first calculation step the initial value X(0) should be
given. According to above, the initial values of parameters
ay, app, *°*, asyg are the coefficients of (10), that is, x, =
—1/21.12, x; = —1/26.0/21.12, x;5 = 1/21.12, X1 =
0.398/21.12, x5y = 2 X 26.0/21.12, x5, = —4/21.12,
X29 = 1/21.12, and others are equal to zero.

The initial values of the variables x,(= x) and X,(=y)
were set to 1.0 and 1.0 (same as that for generating the
Rossler time series). The initial value of z was set to the
same value as the initial sunspot value, x;(= z) = 31.
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The observation equation in the extended Kalman filter is
shown in its general form in (12). When the observed time
series of sunspot numbers is regarded as observed data of
the system variable x3, then the observation matrix becomes
H =1[0,0,1,0,---, 0] (33-element vector), and the
constant vector 8 = 0. The variable x5 is, consequently, the
monthly sunspot time series.

5. Prediction Results for Monthly Data

Given the preliminary structure of system equations and
initial values for parameters, the extended Kalman filter is
updating the system equations at every time step with
observations and identifying parameters based on the ob-
served time series. Correspondingly, any step ahead predic-
tion can be made by the updated system equations. One-
month, 3-month, and 6-month ahead predictions are shown
in Figures 6a—6¢. From the figures it is clear that prediction
results are acceptable for all time steps ahead. The average
relative error of the one-month ahead predictions is 3%.
Corresponding values for 3-month and 6-month ahead pre-
dictions are 7 and 15%, respectively.

Figure 7 shows the correlation coefficient between ob-
served and predicted sunspot time series versus the predic-
tion lead time. It is seen that, on an average for the entire
observation period, the correlation coefficients for predic-
tions up to eight months ahead remain above 0.9. After this
lead time, the prediction accuracy reduces remarkably. This
kind of decrease in the prediction accuracy is known as a
typical feature of chaotic systems as pointed out by Sugihara
and May [1990]. Also shown in Figure 7, is correlation for
two periods of 30 years each, when the prediction was very
good (best case) and very bad (worst case), respectively.
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Figure 6b. Same as Figure 6a but for 3-month ahead pre-
diction.
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Figure 6¢c. Same as Figure 6a but for 6-month ahead pre-
diction.

The best case was for a period 1790-1820 when sunspots
displayed a very regular behavior and the worst case for a
period toward the end of the observation period when there
was an extreme variation (Figure 1). From Figure 7 it is seen
that even under a worst case scenario, the model is able to
predict sunspots with a lead time of 6 months. For the best
case the correlation gradually drops below 0.6 after a lead
time of 13 months.

The updated two system variables x and y are shown in
Figure 8. Though, it is not possible to interpret them
physically, they keep an appearance common for chaotic
time series. Equation (29) is the finally identified equation for
the sunspot prediction at the end of the observation period:

dx 1

= (—0.00013 — 0. —-1.3y - 0. *
e T(O 013 — 0.00041x — 1.3y — 0.047z

1.
% 0.8
o]
g 0.6
ke] — Worstcase
% 04 - Average
g 0.21 ~ Bestcase
(@)

0 1

0 5 10 15 20
Lead time (months)
Figure 7. Correlation coefficients between observed and
predicted sunspot time series versus lead time for monthly
data (‘‘average’’ indicates the entire observation period,

while ““worst case’’ and ‘‘best case’’ correspond to the worst
and the best 30-year period, respectively).
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Figure 8. Updated system variables x and y for the obser-
vation period.

+0.00052xy — 0.038xz* — 0.0064yz* + 0.0010x>

+0.0029y2 — 0.0019(z*)?) (29a)
& _1 0.0029 + 0.97x + 0.33y — 0.021z*
T (-0. 97x .33y .021z
— 0.00055xy + 0.020xz* — 0.044yz* — 0.0014x>
+0.0029y2 — 0.0013(z*)?) (29b)
dzr _ 1 11.0 + 0.00059x — 0.00048y — 1.5z*
e T( . . X . y .5z

—0.00042xy + 1.6xz* — 0.016yz* — 0.000089x>

+0.0012y2 + 0.059(z*)?) (29¢)

When comparing (29) and (10), it is seen that underlined
parameters in (29) have similar magnitude as corresponding
parameters of (10). This suggests that these terms are of
dominant importance to keep similar overall characteristics
for the strange attractor of the sunspots as those for the
Rossler equations. However, even so, the structure of (29) is
not equal that of (10). Also, when comparing prediction
results by using (10) and (29), respectively, prediction results
improve substantially when using (29). Figure 9 shows a

" comparison between parameters of (10) (denoted ‘initial’’ in

the figure) and of underlined parameter values in (29). It is
seen that several of these change significantly during the
identification period. This gives support to the relevance of
(29).
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time series.

6. Prediction Results for Annual Data

Prediction of annual sunspot data was also made using
noise-reduced annually accumulated monthly sunspots
(monthly data as in Figure 1). For the annual data, the
transformation parameters take the values y = 26.0 and T =
1.76 years. Figure 10 shows the outcome of the calculations.
As seen from Figure 10, prediction results are not satisfac-
tory for one year lead time. Large discrepancies are found
especially around the peaks of the sunspots time series.

By analyzing the correlation coefficients between observed
and predicted sunspot time series vs. lead time for annual data,
it is found that only for 1-year ahead time steps the correlation
remains high (correlation coefficient is 0.904). This is a small
improvement compared to the monthly predictions for the
same lead time. As a result of the similar appearance of the
monthly and annual time series, it is not possible to improve
the prediction results substantially, however. The annual data
contain less information compared to the monthly data, and
thus less prediction steps are possible with good agreement.

7. Conclusion and Discussion

The sunspot number is a quantitative coefficient of the
activity of the Sun. Therefore it is important to make
predictions of its future behavior which may affect terrestrial
conditions. We have shown that improved prediction can be
made using chaotic system equations for the sunspot time
series behavior. For this, we introduced a procedure to
reconstruct unknown nonlinear system equations from an
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observed chaotic time series. The procedure for this was (1)
based on the behavior of the observed time series and
dimension estimation of the strange attractor, find reference
system equations that show similar basic features as the time
series (e.g., general appearance of the attractor, the ampli-
tude, the pseudoperiod, etc), (2) assume a general system
equation by applying Taylor series expansion, (3) use the
reference system equation as initial state for the general
system equation and use it in an updating procedure. Pre-
dictions of future states of the observed variable can then be
made by means of the updated and identified system equa-
tion. The outcome of the procedure shows promising results
and prediction of noise-reduced sunspot time series indicates
an effective approach.

The extended Kalman filter was shown to be an efficient tool
to identify parameter values and to make updated predictions
of the chaotic system. Owing to the sensitivity of the chaotic
system to initial values of variables and parameters, the updat-
ing capability of the extended Kalman filter should be stressed.

Most of previously published sunspot prediction methods
use what may be called local predictions. That is, based on
the recent past, reasonable predictions for the future are
sought. To make repeated short-term forecasts are consis-
tent with the assumption of nonlinearity and chaotic proper-
ties. However, the method presented here differs from
previous techniques in the sense that it tries to encompass
also the long-term information for the prediction. This is
done by keeping the structure of the governing system
equations through the entire prediction period.

Prediction results for noise-reduced sunspot time series
were encouraging. Continued studies will be made to in-
crease the lead time and to apply the present method to
climatological and hydrological time series.
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