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ABSTRACT

We investigate 238-year monthly series of sunspots,
temperature, and precipitation by dynamical systems
theory. Raw time series of these variables do not
show any chaotic deterministic properties. However,
after noise reduction, all three variables display a
low-dimensional chaotic behavior. Thus, we view this
as indicative, though not conclusive, of chaos. The
results can be used to better understand sudden
jumps and changes in climatological data. We delin-
eate a prediction technique that can be used to
combine both deterministic and stochastic compo-
nents- of the time series.
NTR! TI
The recent progress in dissipative nonlinear dynami-
cal systems which display chaotic behavior has
framed a new view on time series analyses [e.g.,
Schuster, 1984]. While white or colored noise in
many ways may be indistinguishable from chaotic
trajectories [e.g., Osborne and Provenzale, 1989;
Provenzale et al., 1991], observed time series may at
least tentatively be regarded as deterministically
chaotic if prediction methods based on underlying
deterministic properties are significantly better as
compared to autoregressive linear models based on
stochastic theory [see further Farmer and Sidorowitch,
1987; 1988; Sugihara and May, 1990; Mundt et al.,
1991].

There appears to be no universal method at
present to discriminate between colored noise with
power-law spectra and underlying dynamical pro-
cesses in data [e.g., Theiler et al., 1992]. This is espe-
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cially true for finite and noisy experimental data. In-
stead, several methods have been delineated to make
probable or at least indicate the presence of deter-
ministic chaos in observed time series [Provenzale et
al., 1992; Theiler et al., 1992]. Therefore, we prefer to

- view results in this paper as indicative of chaos only

and leave strict definitions of underlying chaotic
behavior for future analyses. ,

As indicated above, our intention of this paper is
not to prove the existence of nonlinear dynamical
systems in climatological data or not. Instead, we aim
at employing any apparent deterministic property to
make short-term predictions. In recent years, a
number of studies have used techniques to exploit
chaotic dynamics to provide improved forecasting
capabilities [Farmer and Sidorowich, 1987; Sugihara
and May, 1990; Mundt et al., 1991; Elsner and
Tsonis, 1992; Tsonis and Elsner, 1990]. Climatological
data are highly variable and unpredictable in the
long term. This is caused by complex interactions
with many independent and irreducible degrees of
freedom. Instead of solving a set of partial differen-
tial equations for atmospheric flow, an alternative
approach is to build models directly from available
observations [Elsner and Tsonis, 1992].

An appealing property of a class of low-dynami-
cal dissipative systems is that its existence can
provide knowledge of the number of equations nee-
ded to describe the system. The trajectories of these
systems are not confined to periodic or quasi-period-
ic cycles but instead to aperiodic, never repeatable,
however, completely deterministic evolutions in time.
Because of the aperiodic behavior, these systems
exhibit frequency spectra that are similar to those of
colored noise (broadband spectra), These systems,
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are extremely sensitive to initial conditions and thus
they are called chaotic. Although the chaotic system
. is unpredictable in the long term, the system’s
settling on a fractal trajectory (strange attractor) may
be used for short-term predictions.

In this paper, we analyze observed monthly time
series of sunspots, temperature and precipitation by
dynamical systems theory. The analyses on sunspot
data are made to compare the applied techniques
with results from other studies (e.g., Mundt et al.,
1991). The objective is to show that at least parts of
the observed time series can be viewed as
deterministically chaotic. We delineate methods for
possible short-term predictions.

MATERIALS AND METHODS
Theory

Lorenz [1963] was the first to display possible chaotic
properties of the atmosphere. He showed that a dy-
namic system may be described by:

% = Flx] ()]

where ¢ denotes time that is the only dependent
variable. The vector x = (xy, x,, x5, ... , X,,) represents
astate of the system and a set of n ordinary differen-
tial equations and can be thought of as points along
a time axis in phase space where the vector F(x) is a
nonlinear operator acting on x. For some initial
conditions the vector x can be shown to have a cha-
otic evolution, i.e., x approaches a strange attractor.
At small changes of the initial conditions, x will have
a very different evolution.
Equation (1) can be expressed as a single nonlin-

ear differential equation according to:

x® = flx,x/,..,.x®] @)

This is in turn equivalent to:
x(0) = @), x@),....x* @] @

In the climatological reality, however, F(x) and initial
conditions are unknown. Instead, one often has
observations of x(¢), e.g., temperature, precipitation
records, etc. According to a theorem by Takens
[1981, see also Ruelle, 1981 and Packard et al., 1980]
it is possible to use the-observations x(t) to evaluate

the dimension of the attractor.

The general procedure to evaluate the attractor
dimension is to perform a phase space (sometimes
called state space) reconstruction. The basic idea
behind a phase space reconstruction is that the past
and future of the time series contain information
about unobserved state variables that may be used to
define a state at the present time [Casdagli et al.,
1991]. The procedure of phase space reconstruction
is motivated due to unknown properties of the
dynamical system such as relevant variables and their
total number. Phase space reconstruction was intro-
duced in dynamical systems by Packard et al. [1980],
Ruelle [1981], and Takens [1981], even though the
basic idea goes as long back as Yule [1927].

For deriving the dimension 4 of the attractor
from observations x(¢) it is sufficient to embed it in
an m-dimensional space (d < m, n):

x(® = x@),x'@),...,.x ™) @

Consequently, it is not necessary to know the original
system’s dimension n or state variables as long as m
is chosen large enough [m = 2d + 1; Takens, 1981].
According to this and introducing a time lag 7 one
gets [Grassberger and Procaccia, 1983a, 1983b]:

x(1), x(t+1), x(+27),...,x(t+(m-1)1) )

Following Eq. (5), new time series are generated
according to:

x(1), x(2),...,x(ty)
x(t] + t), x(t2 + t),"- yx(tN + t)
x(t; +(m - 1)1), x(t, +(m - 1)7)...,.x(t, + (m - 1)7)

O}

where N is a set of points on the attractor embedded
in the m-dimensional phase-space. In the vector x
with the coordinates ((t,), ..., x(t; + (m - 1)7), a
point can be chosen x; so that all distances |x; - x;|
for m-1 points can be calculated. By repeating this
for all i ene gets:

_1ly
co = —I‘;;.,,X-:x 87 - |x,-x;) )
inj

where 8is the Heaviside function defined by 6(x) =
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0ifx < 0 and &x) = 1ifx > 0. The entity C(r) is
called the correlation integral for the strange
attractor and defines the density of points around a
specific coordinate x;. In this paper, the algorithm
according to Grassberger [1990] was used to estimate
correlation integrals. The correlation integral C(r) is
used to describe the dimension d of the attractor,
i.e., if the attractor is a line, surface or volume. If the
attractor can be described by a line one expects that
the number of points within a distance r from a
coordinate is proportional to r/ e, where € is a point
in the middle of the attractor. If, on the other hand,
the attractor is a surface C(r) is proportional to
(r/€)? and similarly if the attractor is a volume C(r)
should be proportional to (r/€)®. Consequently, we
find that for small r, C(r) should relate as:

cr ~r? ®

Values of d that are not integers indicate a fractal
and thus chaotic attractor. The dimension d of the
attractor is given by the slope of log C(r) for the
slope of log r according to:

logC(r) = d|logr| ®

The dimension of the attractor indicates accord-
ing to above how many variables that are necessary
to describe the evolution in time. For example, if d
= 2.5, this indicates that the time series can be
described by an equation system containing 3 variab-
les. It is, however, difficult to estimate the structure
of the equation system. This is subject to intensive
research [e.g., Rdssler, 1976; Gousbet, 1991a; 1991b;
Xu et al., 1993]. Generally, one may assume a com-
mon structure of a third-order equation system (after
Taylor series expansion):

Ay YARX+ QY A T A XY H AT
a,yz+ax*+a,y*+a, z2
17Y2 + gk " +AygY” + a2
Ggy +0yX + 03 + o T +ApgXY + Ay XT + (10)
2 2 2
YT+ ApgX™ +AygY " + 8y T
A3 +A3X +A33Y + Ay L+ Ay XY + X2+
2 2 2
A37Y2 ¥A3gX ™ + Aagy” + 83,2

L}

&8 & 88

After assuming initial conditions, the parameters (a-

terms) in Eq. (10) can be determined by a parameter
identification technique, e.g., Kalman filtering. At the
same time, forecasting of the system can be made
[e.g., Xu et al., 1993].

It should be mentioned, that there are many
difficulties involved in the above procedure and that
all parts of the referred technique are object of
intensive research. One major difficulty is involved in
the fact that empirically observed geophysical time
series contain noise. The technique to determine the
attractor dimension according to above is very noise
sensitive. Therefore, time series need firstly to be
cleaned by a noise reduction algorithm. Schreiber
[1993] gives a simple method for noise reduction
especially developed for dimension estimations. The
idea of the method is to replace each coordinate in
x; by an average value over a suitable neighborhood
in the phase space. A radius n is chosen and for each
coordinate in x; the set Q7; for all neighbors x; so
that:

= Xl W - xl) = 1 - xl,,
(11)

supp{|x;

where k and / denote past and future coordinates.
Consequently, coordinates in x; are replaced by mean
values in Q7;

corr 1
xi = le (12)
|Q? I a}

The question whether time varying climatological
phenomena have low-dimensional properties or not
is a much discussed issue at present. In fact, the
complexity of climatological systems and the large
number of degrees of freedom makes it unlikely that,
e.g., precipitation is governed by a system of few
variables [e.g., Lorenz, 1991). However, if elements of
observed time series can be shown to obey determin-
istic chaos, e.g., underlying trends, then a more
complete understanding of the system and possibly
better prediction techniques can be achieved.

Data base

The time series used in this paper consist of monthly
sunspots, temperature, and precipitation observa-
tions. The temperature and precipitation data are in
many respects unique and they merit some further.
description. Observations of temperature and precipi-
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tation have been done regularly at the city of Lund
in the south of Sweden since 1741 [Tidblom, 1876].
Because of some gaps in the observations during the
early years of measurements we use monthly series
from 1753-1990 (238 years). The location for obser-
vations has changed over this period about four
times for the rain gage and three times for the
temperature gage. Also the type of gage has varied
and the use of wind shield. The largest horizontal
distance change for the gages has been about two
kilometers. Simultaneous observations over a 15
years period for precipitation and a 6 years period
for temperature at these locations indicated an
absolute average difference of about 23 mm/year for
precipitation and 0.16 °C for temperature. Uncertain-
ties and errors are inherent in such long records.
However, changes in location of the observations are
expected to mainly result in an abrupt change in the
mean value of the time series and not affecting other
statistical properties.

RESULTS AND DISCUSSION
Trend removal and noise reduction

Figure 1 shows monthly mean Wolf sunspot data
published by Chernosky and Hagan [1958) and con-
secutive issues of J. Geophys. Res. Monthly sunspot
numbers were used in this paper to give reference
values to other studies for the noise reduction
techniques and correlation integral estimations used
in this paper. The figure shows raw and smoothed
sunspot numbers after five iterations in the noise
reduction algorithm (Eq. (11) and (12)). It is seen
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Figure 1. Raw and smoothed sunspot time series.

that the algorithm keeps the main features of the
time series even after several iterations. Figure 2
shows the spectral density of the two graphs in
Figure 1. It is clearly seen that the noise algorithm
mainly affects the high frequencies (short-term
properties) of the time series and leave low frequen-
cies more or less unaffected.

Figures 3 and 4 show corresponding time series
for temperature and precipitation [see also
Kawamura et al., 1993]. Spectral analyses showed
that temperature exhibited a 1-year and 6-month and
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Figure 2. Fft spectral density for raw and smoothed
sunspot time series in Figure 1.

~

Smoothed

1750 1800 1850 1900 1950 2000

Trends removed

1750 1800 1850 1900 1950 2000

Temp. (degr. Cels.),

1750 1800 1850 1300 1950 2000
Time (year)

Figure 3. Time series of temperature (raw, after
removal of cyclic trends, and smoothed; note dif-
ferent y-axis scales).
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Figure 4. Time series of precipitation (raw, after
removal of cyclic trend, and smoothed; note different
y-axis scales).

precipitation a 1-year cyclic component that was
statistically significant. Thus, these cyclic components
were regarded as trend and therefore removed from

- the respective time series (the graphs labelled "Tre-
nds removed" in Figures 3 and 4). Figure S shows an

" example of autocorrelation for the temperature time
series and it is seen that the correlation is close to
zero already after 2-3 months.

After trend removal according to above, the time
series were treated for noise in the same manner as
sunspots (Figures 3 and 4). Five iterations were used
for temperature and two for precipitation. The
degree of smoothing has by necessity to be done in
a subjective way since the true noise level is not
known beforehand. In general, however, the main
features of the time series (low frequency compo-
nents) were sought to be kept while high frequency
components, that can be considered as random noise
were as much as possible removed.

From Figures 3 and 4 it is seen that a large
portion of the variance is removed when using the
noise reduction algorithm. This depends probably on
a high degree of noise inherently buried in the time
series used, as in all geophysical data. However, even
if a significant portion of the variance is removed in
the noise reduction, it is worthwhile to analyze the
remaining low-frequency part of the time series. It is
possible that this part of the time series can explain
basic elements of the variation and thus contribute to
a greater knowledge of factors that govern time
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Figure 5. Autocorrelation of raw temperature
residuals.

variation and also to increase forecasting capabilities.
Correlation dimensions

Correlation dimensions were calculated according to
the algorithm given by Grassberger [1990]. Before
this, phase space portraits were investigated for the
different time series. Figures 6 and 7 show examples
of this for sunspots and temperature, respectively.
The figures display the effects of noise reduction in
a remarkable way. For the raw (cyclic trends re-
moved for temperature) time series no relationship
is discernible in phase space. However, after noise
reduction a very clear pattern can be seen. It there-
fore appears possible that strange attractors may be
hidden in noisy geophysical time series.

Figure 8 shows the corresponding plots of C(r)
versus r for raw and smoothed sunspot time series
(embedding dimensions m = 2, 40) and Figure 9 the
local slopes dlog C(r)/dlog r for the same data. A
general time lag 7 = 20 was used throughout the
analyses. This value appeared to be much larger than
the dynamic correlation of the time series as shown
in Figure S.

The effects of noise reduction is clear in Figures
8 and 9. The raw data do not display any clear
scaling region, while smoothed sunspots show satura-
tion at aboutd < 2 for 0 < log r < -1.5. Mundt et al.
[1991] found d =~ 2.3 for the same kind of sunspot
data. However, they used a different noise reduction
scheme for their study. Theiler et al. [1992] inves-
tigated sunspot data and similarly as in this study
found no underlying deterministic chaotic component
for the raw data. Consequently, it can be stated that
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Figure 6. Strange attractor for raw and smoothed
sunspots (note different scales).
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Figure 7. Strange attractor for raw (cyclic com-
ponents removed) and smoothed temperature (note

different scales).
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Figure 8. Plot of C(r) versus r for raw and smoothed
sunspot time series (embedding dimensions m = 2,
40). :

noise has a significant effect on the outcome of the
correlation dimension analyses.

In a similar way, Figure 10 shows local slopes
dlog C(r)/dlog r for raw (cyclic trends removed) and
smoothed temperature. Here, smoothed temperature
shows saturation at about d < 4 over the entire

Smoothed

smoothed sunspots as in Figure 7 (embedding dime-
‘nsions m = 2, 40).

Smoothed

dlog C/dlog r

35 e fi
log

Figure 10. Slopes dlog C(r)/dlog r for raw and
smoothed temperature time series (embedding
dimensions m = 2, 40).

Smoothed
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Figure 11. Slopes dlog C(r)/dlog r for raw and
smoothed precipitation time series (embedding
dimensions m = 2, 40).

range of r while raw data do not show any similar
characteristics.

In Figure 11, precipitation similarly, displays a
small scaling region of r. However, in this case, only
two iterations in the noise reduction were made.
Increasing number of iterations would lead to an
increasing scaling region.

SUMMARY

This study shows that low-dimensional chaotic com-
ponents appear to be present in monthly time series
of sunspots, temperature, and precipitation. Howev-
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er, the chaotic components can be distinguished only
after a noise reduction scheme. The noise reduction
scheme tends to reduce the original variance of the
data significantly. This was especially true for the rat-
her complex temperature and precipitation time
series. There are thus obvious needs to continue to
investigate effects of noise reduction on the estimat-
ed correlation dimension for geophysical time series.

Even if a large portion of the original variation
is lost due to noise reduction, studies like in this
paper may help to explain underlying low-frequency
deterministic components. If deterministic chaotic
components can be identified, it may help to explain
conspicuous jumps and other changes that cannot be
resolved by standard linear or autoregressive meth-
ods.

We prefer to view the results of this study as
indicative of chaos only. As Provenzale et al. [1992]
recently pointed out, there is still no unique method
to distinguish between low-dimensional chaos and
¢orrelated noise. Instead, several data analyses
techniques need to be combined to ascertain a
chaotic behavior. Anyhow, the dynamical systems
theory is a recent scientific progress which will
expand quickly in the future. We view this theory as
a new and promising way to characterize hydrolo-
gical and geophysical time series.
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