WATER RESOURCES RESEARCH, VOL. 29, NO. 5, PAGES 1489-1504, MAY 1993

Real-Time Rainfall Prediction at Small Space-Time Scales
Using a Two-Dimensional Stochastic
Advection-Diffusion Model
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A model based on the two-dimensional stochastic advection-diffusion equation is developed to
forecast properties of individual rain cells in urban areas such as speed and spatial rainfall intensity.
Two different modeling approaches are employed, and examples of the results are given. The first
approach involves a Gaussian distribution as an analytic solution to the advection-diffusion equation,
whereas the second one entails a double Fourier series-expansion of the rainfall intensity field. Both
modeling approaches are used to predict the rainfall intensity field over a small 12-gage urban
catchment in southern Sweden. The model parameters are continuously updated by extended Kalman
filtering. The Fourier series approach is shown to be the most flexible for practical applications and to
give the most accurate forecasts. This model approach gives acceptable forecasts for a lead time of 1-5
min. It gives consistently smaller prediction errors compared to both the Gaussian solution and simple
extrapolation calculations. The effect of system noise level on the forecast accuracy and model
performance is discussed. The model can be used not only to predict in real time the spatial rainfall,
but also to parameterize the variability pattern of small-scale spatial rainfall into a set of physically
based parameters, thus separating the effects of advective velocity, turbulent diffusion, and develop-

ment/decay.

1. INTRODUCTION

Real-time prediction of the space-time rainfall field in
urban areas is motivated for on-line decision making to
optimize the operation of urban hydrological systems, thus
minimizing pollutant discharge from drainage systems,
avoiding flooding, and making maximum use of the available
storage volume in sewers. Prediction of the space-time
rainfall field and its dynamic behavior is required as input to
runoff simulation models. The requirements of the temporal
and spatial resolution of the rainfall input are especially high
for urban catchments [e.g., Berndtsson and Niemczynowicz,
1988]. Small catchment areas, dense building structure, and
thus a high degree of impermeable areas with a resulting
rapid runoff, imply that the smallest spatial units of the
rainfall field (individual cells) are of primary importance.

Most of the existing models for real-time control of
hydrological systems use a stochastic description of the
rainfall field [Georgakakos and Hudlow, 1984; Georgakakos
and Bras, 1984; Georgakakos, 1986]. Models for short-term
rainfall forecasting or nowcasting have in most cases used
radar data as input [Browning and Collier, 1989; Bellon and
Austin, 1984; Einfalt and Denoeux, 1987]. However, most
urban catchments are still not equipped with radar; instead
urban rainfall is usually observed by rain gages. Thus in
order to extend the use of measurements from rain gages
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there is a need to develop methods for rainfall forecasting
with respect to the specific requirements of urban hydrolog-
ical management. If radar data also are at hand, the radar can
provide information on a larger scale embedding the rain
gage system (e.g., by specifying boundary conditions for the
forecasting area).

Real-time prediction of urban-scale rainfall relies on two
fundamentals: (1) an understanding of the small-scale space-
time characteristics of the rainfall field, and (2) an effective
technique to determine the rainfall intensities in time and
space. The former has been elaborated on in a related paper
(R. Berndtsson et al., Some Eulerian and Lagrangian statis-
tical properties of rainfall at small space-time scales, submit-
ted to Journal of Hydrology, 1992; hereinafter Berndtsson et
al., submitted manuscript, 1992), and the latter will be dealt
with in this paper.

There are several features that a useful forecasting model
must exhibit due to the special characteristics of small-scale
rainfall variability and the requirements of the urban hydro-
logical management system. First, the model should be
capable of reconstructing the irregular shape of the small-
scale rainfall field from a set of physically meaningful math-
ematical parameters. Second, the model should be flexible
enough to allow for a dynamic behavior of the rainfall field in
both time and space. Third, the model should be able to
predict the rainfall field trend in time. Fourth, the model
should permit a high degree of automation allowing for use in
an interactive urban management system [e.g., Browning
and Collier, 1989].

Kumar and Foufoula-Georgiou [1990] described whole
contour methods as one of the most promising future tech-
niques for extrapolative short-time forecasting (see also
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Bohne [1988]). One type of whole contour method is Fourier
domain shape representation, which is computationally in-
tensive but amenable for use in automatic systems [e.g.,
Kawamura et al., 1991]. Consequently, one of the model
approaches evaluated in this paper involves a Fourier do-
main shape representation of the rainfall field. Since the
rainfall intensity field may change quickly both in time and
space a model is needed that continuously tracks the behav-
ior of the rainfall field in real time and recursively updates
the parameters of the model. Thus, using the latest estimate
of the model parameters a prediction is made for the next
time period. In the present study the theory of Kalman
filtering has been employed for the recursive estimation
procedure [Kalman, 1960; Kalman and Bucy, 1961; Athans
et al., 1968). Finally, a model is also needed for a convenient
mathematical description of the physical characteristics of
individual rain cells. Here, a stochastic advection-diffusion
equation has been chosen to describe the temporal evolution
of a rain cell in two spatial dimensions at ground level. The
primary factor limiting the period of valid extrapolation is
the development or decay of the rainfall [Browning and
Collier, 1989]. Therefore the ability of the model to consider
these phenomena is crucial for reliable forecasting. In the
present model the development or decay of rainfall intensity
was considered by adding a source-sink term to the advec-
tion-diffusion equation. To summarize, the physical proper-
ties of the rain cell are described by an advection-diffusion
equation. This equation is solved by two methods, namely,
analytically by a Gaussian-shaped solution and by a double
Fourier series expansion. The parameter estimation tech-
nique relies on extended Kalman filtering.

2. METHODOLOGY AND MODEL FORMULATION

This section describes the two approaches to modeling the
temporal and spatial distribution of rainfall intensities. The
basic equations of the two approaches for characterizing an
individual rain cell are described in section 2.1. Section 2.2
gives an overview of the Kalman filter formulation. Section
2.2.1 gives the formulation of the first model approach, the
analytic solution involving a Gaussian distribution to the
basic equation, and section 2.2.2 gives the formulation of the
second model approach, i.e., the Fourier series solution.

2.1. Basic Model Formulation ,

Rainfall from individual cells as observed at ground level
is described in the model by a two-dimensional stochastic
advection-diffusion equation. Several simplifying assump-
tions are necessary in order to employ such a description of
the rain cell. The main concern in this study is rainfall at
small space-time scales. It is therefore assumed that during
short periods (minutes), the main processes acting on the
raindrops within an individual rain cell are advection and
diffusion (Berndtsson et al., submitted manuscript, 1992).
Thus the raindrops are considered a passive constituent
advected by a turbulent flow field. Furthermore, it is as-
sumed that the change in the vertical direction of the
three-dimensional field of raindrops is negligible, i.e., it is
assumed that the two-dimensional Gaussian-shaped rainfall
intensity field on a horizontal plane in space is reflected as a
two-dimensional Gaussian-shaped intensity field at ground
level. Under this assumption we may regard a two-
dimensional advection-diffusion equation in the horizontal
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Fig. 1.

Schematic of a space-time rain cell evolution as predicted
by the advection-diffusion equation used in the modeling approach.

plane as an analogy of the flux of rainfall at ground level. The
aptness of this assumption is indicated by the often found
Gaussian-shaped spatial intensity pattern of individual rain
cells [Sharon, 1972; Zawadzki, 1973; Marshall, 1980]. The
Gaussian function constitutes a particular solution to the
advection-diffusion equation.

If the x axis is taken along the main direction of movement
of the advective rain cell (note the difference between our
definition of advection and meteorological convection), the
two-dimensional stochastic advection-diffusion equation
may be expressed as (assuming spatial homogeneity regard-
ing rainfall speed, diffusion, and development/decay):

dR(x,y, )  3R(x,y, 1) 3’R(x, y, 1)
+.u =D, 3
at ax ax
’R(x, y, 1)
y =7~ YR(x, y, ) +telx,y, 1) (1)
ay
where
R(x, y, t) rainfall intensity in space (x, y) and time (z),

m/min;
u advective speed of the rainfall cell in the
direction of movement, m/min;

D,, D, diffusion coefficients in the x and y direction,
respectively, m?/min;
vy development/decay coefficient of the rainfall
intensity, min~';
e(x, y, 1) stochastic component with zero-mean

Gaussian white noise in time and space, m/
02
min®.

Equation (1) has frequently been used to describe turbu-
lent diffusion of a conservative property in a fluid medium
[e.g., Calder, 1965]. It should be stressed, however, that the
use of the advection-diffusion equation in this paper is based
on the validity of the assumptions made above and should
not be considered as an attempt to physically describe the
properties of the turbulent and thermodynamic behavior of
convective air resulting in individual rain cells. Instead, (1) is
used to conveniently describe in mathematical terms the
speed and spatial intensity of a rain cell as observed at
ground level. Accepting this, (1) embodies the foremost
properties of an individual rain cell as observed at ground
level and a set of functional parameters with a physical
interpretation in terms of the overall cell behavior (Figure 1).
The diffusion coefficients D, and D, describe the rate at
which the cell expands horizontally. The development/decay
coefficient y describes the development (cumulus stage) and
decay (dissipating stage) of the cell in terms of change in
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strength. Negative values of yrepresent a situation when the
cell develops or expands (cumulus stage), i.e., the rainfall
intensity increases. Similarly, positive values of vy represent
a decaying situation (dissipating stage) when the rainfall
intensity decreases. The last term in (1) is a stochastic
component that is added to consider a certain degree of error
and uncertainty inherent in modeling of the rainfall. In the
following this term is assumed to be completely random in
both time and space. However, at locations where a trend
may be present, such as the case of a marked topographical
gradient inducing orography, this term can be separated into
a deterministic and a stochastic component.

The x axis in (1) is taken along the direction of movement
of the cell. This is done in order to eliminate advection in the
y direction and off-diagonal diffusion and consequently to
reduce the number of parameters to estimate. In a related
paper (Berndtsson et al., submitted manuscript, 1992) it was
shown that the speed of individual cells is important to
consider in small catchments. The initial values of advective
speed and direction of movement, however, may be difficult
to estimate in a real-time forecasting situation. If information
on wind. speed and direction is known beforehand [e.g.,
Niemczynowicz, 1984], these data may be used as initial
values, which significantly reduces the time for parameter
identification in the model. Radar observations and cell-
tracking algorithms can also provide velocity and direction
estimates. This kind of information may be provided by
nearby meteorological stations.

Two modeling approaches are exemplified and discussed
in the paper within the framework of the general methodol-
ogy. The first approach involves an analytic solution to (1)
under certain initial and boundary conditions and by exclud-
ing the stochastic component, whereas the second approach
encompasses an expansion of the rainfall field R(x, y, #) and
the stochastic component &(x, y, t) in terms of Fourier
series. In the first case, a Gaussian-shaped solution is
employed to predict the rainfall intensity distribution in time
and space. In the second case, the Fourier series expansion
is used to predict the temporal and spatial rainfall field. In
both cases, simulated and measured rain gage data are used
to study the model performance. Also in both cases, we
compare with simple extrapolation calculations in order to
interpret the practical value of the models.

The two modeling approaches represent two sophistica-
tion levels of the rain cell description. In the first case,
individual cells are assumed to be described by a Gaussian-
shaped intensity pattern in space. In the second case, the
spatial intensity pattern is allowed to vary freely as de-
scribed by the Fourier series expansion. Only as initial
conditions, a Gaussian-shaped distribution is assumed. Con-
sequently, the results of the modeling will show the sophis-
tication level for the cell description that is necessary for
realistic real-time forecasting of rainfall in small urban catch-
ments.

There are several reasons why a Fourier series represen-
tation was chosen instead of a numerical scheme, e.g., a
finite-difference approach. Many studies during the recent
years have shown that a finite-difference approach gives
large numerical error, especially if the advective term in the
advection-diffusion equation dominates the transport [e.g.,
Jinno et al., 1989]. A highly dominant advection term may be
expected for small-scale advective rainfall (e.g., Berndtsson
et al., submitted manuscript, 1992). A major disadvantage of
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using a numerical scheme is also that the grid points need to
match the rain gage locations. Since rain gages are usually
not installed at regular grid points a rather detailed and
complicated grid scheme would have been required. Besides
this, every time a rain gage location is changed or when a
rain gage is malfunctioning, the grid scheme has to be
changed. Another problem is how to treat the boundaries
along the rain gage network. Data for the boundaries are
usually not at hand or trivially estimated for rain gage
networks. Also, the computational load is much larger for a
numerical scheme as compared to a Fourier series approach.
The Fourier series approach assumes a uniform velocity field
and uniform parameter values. In summary, a Fourier series
approach is superior in many ways compared to a numerical
scheme for the special characteristics of the advection-
diffusion equation and the model domain which a rain gage
network represents.

Excluding the stochastic term and assuming instantaneous
occurrence of rainfall at time 7, at location (xq, y¢) on the
infinite plane, the analytic solution of (1) is given by a
Gaussian distribution as [e.g., Brutsaert, 1974]

R(x,y, 1)

[x — xo — u(t — t9)]?
4D (¢ — ty)

1
T 4mD,D) 1) T {'

(y =)’

-1 ¢ "’)] @
where I is the strength of the cell (cubic meters per minute),
1y is the occurrence time of the cell (minutes), and xy, y are
the coordinates for the initial location of the cell (meters).
Hereafter, we refer to (2) subject to the above initial and
boundary conditions as the Gaussian solution. The rainfall
intensity may be predicted at any time and location once the
parameters I, u, D,, D,, v, X, yo, and t, have been
identified. By use of a filtering technique these unknown
parameters are estimated and updated at each time step. In
this case the solution of (2) is nonlinear, and the extended
Kalman filter needs to be applied [e.g., Bras and Rodriguez-
Iturbe, 1985; Jinno et al., 1989, 1990].

In the second modeling approach, the second-order partial
differential equation (equation (1)) is transformed into a set
of ordinary differential equations by applying a double
Fourier series expansion. The rainfall field R(x, y, ) and the
coupled Gaussian white noisc &(x, y, t) are expanded as

R(x, y, 1) = Ago(t)/2

M N
+ >0 > [Apalt) cos Fy(x, y, m, n)
tn=0

m

"

+ By a(t) sin Fi(x, y, m, n)]

M=

N
+ > [Conn(t) cos Fa(x, y, m, n)
On=1

]

m

+ Dm,n(l) sin FZ(-x7 y, m, n)] (3)
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M N
S(Xa ¥, t) = z E [Em,n(t) cos F[(X, y, m, I’l)
m=1n=1

+ Fm,n(t) Sin Fl(x, y, m, n)

+ Gp,n(t) cos Fy(x, y, m, n)

+ H,, (1) sin Fy(x, y, m, n)] @

where
Fyx,y, m, n) = 2amx/Ay + 2wnyl/), )
Fy(x,y, m, n) =2wmx/X, — 2mwnylA, (6)

In G)H6), Apmn(), B p(0), Cpn(8), Dy n(t), Epy n(2),
Fpun(8), G n(t), and H,, ,(¢) are Fourier coefficients, M
and N are the number of terms in the expansion procedure,
and A, and A, are wavelengths for the x and y directions,
respectively, that cover the entire area where rain gages are
installed. Substitution of (3)-(6) into (1) yields a set of
ordinary differential homogeneous equations with respect to
the wave numbers m and n according to

dA,,(1)/dt
dB,, ,(1)/dt
dC,, ,(t)/dt
dD,, .(t)/dt
—Pun —Om 0 0 A (D)
_ On —Pun 0 0 Bm’"(t)
B 0 0 P'""‘ _Qm Cm,n(t)
0 0 Q’” _Pm,n Dm,n(t)
E (1)
FI" n(t)
' 7
G o (1) N
Hp, (8)
where
Pm,,, = Dx(27rm/,\x)2 + Dy(217n/)ly)2 +y (8)
Op=uRamlA,) ©)

2.2. Kalman Filter Formulation

The system and the observation equation of the Kalman
filter are expressed in discrete form as

X(k + 1) = ®(k)X (k) + a(k) + v(k) (10)

Yk +i)=T(k+)X(k+i) +Bk+id)+wk+i  (11)

where

X(k + 1)
D(k)
a(k)
v(k)

Yk + i)

Itk + 0)

system vector to be estimated;

known state transition matrix;

known constant vector;

white Gaussian system noise vector;

observation vector;

known observation matrix;

B(k + i) known constant vector;

w(k + i) white Gaussian observation noise vector;
k time step;
i time interval of observations.
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As seen above in (10) and (11), the model errors are
considered by treating the advection and diffusion parame-
ters as random variables. The estimate of the state vector at
time step k& + I, calculated using the observation obtained at
time step k, is denoted X(k + i|k) and at time step k + i, X(k
+ ilk + i). If X(k|k) is known after the observation is
obtained at time step k, X(k + ilk) and X(k + ilk + i) are
calculated at time step k + i as

Xk + ilk) = ®(k + i — DXk +i— 1]k) + a(k +i—1)

(12)
Xk + ik + i) = X(k + i|k) + K(k + Dv(k + i)  (13)
where
K(k + i) = P(k + ijl)T T(k + i)
(Ol + DPGk + T Tk + i) + Wk + D] (14)
vk +i) = Y(k + i) — Y(k + ilk) (15)
Y(k + ilk) =Tk + DX(k + ilk) + Bk + i)  (16)

in which W(k + i) is the covariance matrix of the observa-
tion noise w(k + i) and T denotes transposed.

Similarly, the state estimate error covariance matrix at
time step k + i, calculated using the observation obtained at
time step k, is denoted P(k + i|k) and at time step k + i, P(k
+ ilk + i). They are calculated as

Pk +ilk) =Dk +i— DPk+i—1®T(k+i~1)

+Vk+i—1) (17

Pk + ilk + i) = [Ty — K(k + DTk + )Pk + ilk) (18)
where V(k + i — 1) is the covariance matrix of the system
noise v(k + i — 1) and I is a unit matrix. Details on this
procedure can be found in the works by Athans et al. [1968],
Bras and Rodriguez-Iturbe [1985], or Kawamura et al. [1984,
1989].

2.2.1. Formulation of the Gaussian solution. For the
Gaussian solution, (2), the eight-element system vector
X () to be estimated is

XG(t) = [I’ u, Dx’ Dy’ Ys X0s Yo» t()]T (19)

The true values of the parameters 1, u, D, Dy, v, X9, Yo,
and ¢, are assumed constant in time (and in space) for the
Kalman filter procedure so that

dI(t)/dt =0 (20)
du(t)ldt =0 @n
dD (t)/dt = 0 (22)
dD(1)/dt =0 (23)
dy(t)idt =0 (24)
dxo(t)ldt =0 (25)
dyo(t)ldt =0 (26)
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dto(t)ldt =0 27)

However, note that this does not mean that the estimated
parameter values do not change in time throughout the
process of the extended Kalman filter [e.g., Kawamura et
al., 1986].

By adding system noise v(t), (20)—(27) lead to the follow-
ing system equation:

dXs(0)/dt = 0 + v(¢) (28)

Discretization of (28) by difference leads to [e.g., Bras and
Rodriguez-Iturbe, 1985]

Xo(t + A1) = Xg(0) + V(DAL (29)

where At is the discrete time interval. In (10) (compare (29)
and (10)) r = k, t + At = k + 1, ® is a unit matrix, a = 0,
and v(£)Ar = v(k).

The observation vector Y(k) of the extended Kalman filter
is the rainfall intensity distribution observed at the 12 rain
gage locations in Lund with a sampling interval of 1 min.
With unknown initial and boundary conditions, the rainfall
distribution is predicted using the extended Kalman filter on
the basis of the information given by the rain gages.

For the Gaussian solution each element of the observation
vector Y(k) corresponds to the observed rainfall at each rain
gage located at point (x, y) and is derived for time step k
from (2). By adding the observation noise w(x, y, f) it

becomes
Y(k) = R[X (k)] + w(k) (30)

where R[X (k)] is the vector function whose elements equal
the right-hand side of (2) and w(k) is the observation noise

Swed
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Fig. 2. The experimental catchment in Lund [Niemczynowicz,
1984].
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Fig. 3. Synthetic rain cell used for model evaluation moving over
the rain gage network in Lund.

vector whose elements are composed of w(x, y, #).

In this case R[Xg(k)] is a nonlinear vector function in
X (k), and a Taylor series expansion is applied with X% (k)
as the estimated parameter yielding

Rain Inteasity (mm/min)

0.54 1-minute ahead prediction x
g 5-minute ahead prediction o

: No.1
0.ohBE By AL 28
1.51

4" No.5

TIME (min)

Fig. 4. Resulting 1- and 5-min-ahead real-time predictions of
rainfall intensity for three gages (the solid line shows the synthetic
rainfall with 0.05 mm/min observation noise).
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9.0 \ oA ,J\A/\'\,J\ AN
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Fig. 5. The S-min-ahead prediction error for three gages.

Y (k) = JIXG(K) X glk) + R[X (k)]

(€3]

where J[X%] is the Jacobian matrix for the vector function
R(X() in terms of the vector X defined as

— X6 IXGk) + w(k)

dR 4R 4R 4R 4R 4R 4R 4R

* 7 —
Xl al’ au’ oD’ aDy’ ay’ axy ayy ate S
G G
(32)
Thus the observation matrix I" and the constant vector B in
the observation equation (11) for the Gaussian solution are
(compare (11) and (31))

10000 JA 1 (m3/min )
5000 '\.
0 T T T T T T T
208 A\ U(m/min)
B
100.0
K} -
40008 4 Bx(m/min)
20000
0 -
joggy alrimmin)
0 -
0.0 7 (17min)
-0.005
0 '/\5‘&
-5000
-10000 T
2o =
1000 A
0

5.0 F to(min)
-30.0 +————
0 10 20 30 1] 50 60
TIME (min)
Fig. 6. Results of the identification procedure for estimating

unknown model parameter values (the horizontal lines depict the
true values).
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L(k) = J[XG(K)]
B(k) = R[XG(K)] — JIXG()IXG(k)

The term X%;(k) is replaced by Xg(k|k — j), which is the
estimate of the state vector X at time step k& based on the
observation at time step k — j.

2.2.2. Formulation of the Fourier series expansion.
When employing the Fourier series expansion ((3)~(6)), the
system vector Xp(#) to be estimated by the extended Kalman
filter is

XF(’) = [u’ Dx» Dy7 ‘Y’ A(),()(t)’ R Am,n(t)a

Bm,n(t)» Cm,n(z)v Dm,n(t)’ o ']T (335)

The number of elements in Xg(¢) is 4MN + 2M + 2N + 5.
The true values of the parameters #, D,, D,, and y are
assumed to be constant in time and space in the extended
Kalman filter so that

(33)
(34)

Rainfall (mm/min)

1.2 No.1
0.8 (] Observed
—— 1-min ahead

0.41 —— 5-min ahead

0 V""""‘:llllJIIIVTYI'F"’"'$'f‘
1.2+ No.9
0.81
0.4

o“"“l"""‘:l|llgll7 @‘?G
1.27 No. 12
0.8
0.4

o Veeeet L-G"u'"‘f FPH e

0 5 10 15 20
Time (min)

Fig. 7. Time series of 1- and 5-min-ahead real-time predictions

for the event of June 25, 1979, 0101-0122 using simple extrapolation
calculations.
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Fig. 8. Time series of 1- and 5-min-ahead real-time predictions
for the event of June 25, 1979, 0101-0122 using the Gaussian
solution.
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1 observed
—— 1-min ahead

—e— 5-min ahead

Fig. 9. Time series of 1- and 5-min-ahead real-time predictions
for the event of June 25, 1979, 0101-0122 using the Fourier series

TABLE 1. Comparison of Model Performance for a Single-Cell Event Using Simple
Extrapolation, the Gaussian Solution, and the Fourier Series Approach

Identified Final Parameters

Prediction Error, mm/min

System Noise u, D,, x 10° Dy, x 103 v, x 1073 - -

‘Level (v), % m/min mzlmin m?2/min min ™! J \min J5_min
Simple Extrapolation v
0.18 0.38
Gaussian Solution
0 1030 5.0 2.5 -5.8 0.23 0.26
2 1333 4.2 2.5 1.6 0.14 0.20
5 993 =5.1 4.9 2.3 0.31 0.43
Fourier Series Expansion

0 1155 5.6 2.8 1.1 0.12 0.22
2 1694 6.7 3.6 0.3 0.13 0.26
5 1522 11.7 5.0 0.0 0.13 0.27

Data are for the event of June 25, 1979, 0101-0122 (Figures 7-9).
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Fig. 10. Time series of 1- and 5-min-ahead real-time prcdnctlons
for the event of July 13 1980, 1047-1133 using the Fourier series
approach.

du(t)/dt =0 (36)
dD ()/dt = (37
dD (1)ldt = (38)

dy(t)ldt =0 (39)
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As pointed out before, however, this does not mean that the
parameter values do not change during the estimation pro-
cedure of the extended Kalman filter.

Combining (7) and (36)—(39), and adding a system noise
v(2), the system equation is obtained as

dX ((1)/dt = £[Xp(1)] + v(£) (40)

where f[Xg(z)] is the vector function which elements are
equal to the right-hand side of (36)—(39) and the first term of
the right-hand side of (7). The term f [X(#)] in (40) is a set of
nonlinear functions of u(t), D.(2), D,(t), ¥(t), Ago(t),
Apn(), By (), Cpa(t), and D, ,(¢). Here, a Taylor
series expansion of f [X(#)] is carried out, and second-order
terms or higher are neglected in order to linearize for the
extended Kalman filter to yield

dXp(t)/dt = J[X FHOIX () + £[XR1)]
= JIXHOIXE(E) + v(t)

where J[X%- (#)] is the Jacobian matrix for the vector function
f[Xp(2)] taken at Xp(f) = X%(r). The ijth component of
JIXE(D] is defined as

(41)

a{f [Xp(N)]}:
UIXEO Ty = ——{8 {;PL)}J, o @
Discretization of (41) by difference gives
Xp(t + Af) = {JIXHDOIAL + LIXp() + {£[X ()]
= JIXHOIXFOIAL + v(1)Ar (43)

Comparing (43) and (10), and lettingt = k, t + At = k + 1,
one finds that

@ (k) = {JIXEN]AL + 1y} (44)
a(k) = {f[XF(N] = IXFHOIXF@)} A (45)
v(k) = v(t)At (46)

The vector X%(k) is replaced by f(p(k[k — J), which is the
estimate of the state vector X (k) at time step k based on the
observation at time step k — j.

The unknown parameters and the coefficients in the dou-
ble Fourier series expansion are identified in the prediction
process by the extended Kalman filter [Athans et al., 1968;
Kawamura et al., 1986]. The observation vector Y(k) is the
rainfall distribution given by the measurements at each rain
gage. The observation equation for rain gage i, located at
point (x;, y;), is derived for time step & from (3), and by
adding the observation noise w(x;, y;, k) it becomes

R(x;, y;, k) =10,0,0,0, 1/2,---,

cos Fi(x;, y;, m, n), sin F{(x;, y;, m, n),

cos Fy(x;, y;, m, n), sin Fay(x;, y;, m, n), -+
-[u, Dy, Dy, v, Agolk), -+, mon(K),

Cm,n(k)) Dm,n(k), .

Consequently, the ith row component of the observation
matrix I'(k) in (11) corresponds to

Amn(k), B

1"+ wixg, i, k) (47)
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Fig. 11. Time series of the spatial rainfall distribution for the event in Figure 10.

{F(k)}1 = [09 0, 0, 07 1/27 t, COS Fl(xi’ Yi» m, n)v

sin Fy(x;, y;, m, n), cos Fy(x;, yi, m, n),

sin Fo(x;, yis m, n), * ] (48)

and

B(K)=0 (49)

Further details on applications of the extended Kalman filter
can be found in the works by Bras and Rodriguez-Iturbe
[1985], Kawamura et al. [1986), Jinno et al. [1989], and
Kawamura and Jinno [1991].

3. REAL-TIME PrREDICTION USING
GENERATED RAINFALL

The previously discussed Gaussian solution was employed
for real-time prediction of rainfall from a synthetic rain cell
with an elliptic shape moving over the Qbservation network

in the city of Lund (Figure 2). These calculations constituted
the first test of the applicability of the proposed methodology
for rainfall prediction. Figure 3 shows the rain cell moving
over the rain gage network. The parameter values in (2) for
the rain cell generation were set to I = 10,000 (m3/min), u
= 200 (m/min), D, = 30,000 (m?/min), D, = 10,000
(m?%/min), y=0 (min*l), xg = —5000 (m), yo = 2000 (m),
and ¢, = —15 (min). The Gaussian solution was used
together with the corresponding initial values for the predic-
tion of the eight unknown model parameters I, 4, D, D, v,
X¢» Yo, and fg. These were set to 70% (the seven first
parameters) and ¢, to 90% of their true values, respectively.
An observation noise of 0.05 mm/min was also added to the
generated rainfall intensities. The Gaussian solution proved
to be rather sensitive to the initial parameter values. Conse-
quently, the initial values had to be chosen fairly close to the
true parameter values (70-90% as seen above).

Both 1- and 5-min-ahead real-time predictions of the
rainfall intensity were carried out together with the corre-
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Fig. 12. Parameter identification for the event in Figures 10 and

11.

sponding estimation of the eight unknown parameters. Fig-
ure 4 displays the results of the prediction for three different
gages (1, 3, and 5). It appears that the model is capable of
predicting both 1- and 5-min-ahead intensities well. For gage
1, however, there is some discrepancy in the 5-min-ahead
prediction during the rising stage of the hyetograph. As seen
in Figure 5, which shows the corresponding 5-min-ahead
prediction error for the same three gages, it takes the model
about 10 min to correctly identify the parameters at gage 1.

Figure 6 illustrates the results of the parameter estimation,
and the identified parameter values at the end of the calcu-
lation are very close to their true values.

Also, the Fourier series approach was applied to a syn-
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thetic rain cell. For a detailed description of the outcome of
these calculations and the relation between the number of
observation points, observation time interval, number of
expansion terms, and prediction error, see Kawamura et al.
[1990]. In brief, however, the number and distribution of
gages appeared to be sufficient for single-cell evolutions. The
number of terms in the Fourier series expansion was set to M
= N = 5 which was found to be sufficient (cases up to M =
N = 10 were tested). The Fourier series approach appeared
more flexible and less sensitive to choice of initial values as
compared to the Gaussian solution. When comparing the
computational time, however, the Fourier series approach
requires about 30 times the computational time than that of
the Gaussian solution. This is mainly due to the larger
‘number of parameters to estimate in the Fourier series
approach. Even so, the total computational time for the
Fourier series approach does not pose any serious restric-
tions for practical applications as shown below.

Generally, the number of terms required in the Fourier
series expansion depends on the spatial rainfall variability
and the density of the rain gage network (the smaller-scale
features to be monitored, the more terms). This will also
increase the computational load. In the present example with
12 gages, M = N = 5 were found to be sufficient. The CPU
time required for 5-min-ahead prediction in this case (includ-
ing interpolation over the model domain) was about 0.5 s
using a supercomputer (Facom VP2600). Calculations on a
more ordinary computer (Facom M1800) required about 2.5
s for a similar calculation. Thus the computational load does
not pose any limitations for practical applications. It also
needs to be pointed out that actual rain gage networks in field
applications usually are less dense than in the present
example. Therefore the number of terms needed in the
Fourier series approach that was used in the present paper
may be regarded as an upper value.

4. REAL-TIME PREDICTION USING OBSERVED
RAIN GAGE DATA

In order to elaborate on the choice of the two model
approaches described in section 2, several modeling analy-
ses were performed by use of 10 high-intensive rainfall
events described by Niemczynowicz and Jonsson [1981]. In
this paper selected results from the calculations are pre-
sented that have been chosen to reflect the typical features of
these two approaches. These modeling approaches were also

TABLE 2. Comparison of Model Performance for Two Multiple-Cell Events (Shown in Figures
10-16) Using the Fourier Series Approach

Identified Final Parameters

Prediction Error, mm/min

System Noise u, D,, X 10° D, x 10° ¥, x 1073
Level (v), %  m/min m?/min m?/min min ! J tomin Jsmin
Event of July 13, 1980, 1047-1133 Hours
0 304 1.6 0.8 -2.2 0.20 0.26
2 368 0.4 1.3 9.5 0.21 0.43
5 404 2.4 1.2 0.2 0.22 127
Event of August 23, 1980, 1004-1103 Hours

0 564 6.9 3.5 3.8 0.17 0.29
2 101 0.2 2.5 9.8 0.17 0.47
5 -18 4.8 -1.9 62.2 0.17 1.06
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Fig. 13. Time series of 1- and 5-min-ahead real-time predictions
for the event of August 23, 1980, 1004—1103 using the Fourier series
approach.

compared with simple extrapolation calculations as outlined
below.

In the related paper by Berndtsson et al. (submitted
manuscript, 1992, Figure 6) it was shown that simple extrap-
olation of the rainfall field in the direction of movement for
the studied space-time scales may generally be expected to
behave unsatisfactorily for lead times exceeding about 2 min
(correlation level of 0.9). The general performance of extrap-

1499

olation calculations should be seen in relation to the space
and time scales dealt with. For larger spatial scales, it is
probable that good forecasts for 1 to 5 min ahead can be
obtained by extrapolation of a frozen rainfall field. For
spatial scales of a few square kilometers this is often not the
case. In order to further evaluate the developed model,
however, extrapolation calculations were done in order to
compare with model results.

Figure 7 shows an example of results from an extrapola-
tion calculation applied to an event with a rather clear
single-cell evolution (event of June 25, 1979, 0101-0122). A
constant rain cell speed and direction of movement were
chosen based on observations at the 700-mbar altitude [see
Niemczynowicz, 1984]. Interpolations were done by general
kriging procedures, and extrapolations were performed by
assuming that the rain cell will continue to travel without
change in the general direction of movement.

Figure 7 shows that for 1 min ahead the predictions agree
rather well with observations even if small-scale variations
are not reproduced. The prediction error for a lead time of 1
min was 0.18 mm/min as an average for the 12 gages (Table
1). For 5-min-ahead predictions the agreement does not
appear to be very good. This stems from the difficulty in
extrapolating something outside the observation network
that has not yet been observed. The prediction error for this
lead time was 0.38 mm/min (Table 1). If applied to events
with abrupt changes in rainfall intensity, the method may be
expected to behave worse, especially for larger lead times.

4.1. Prediction of a Single-Cell Event Using
the Gaussian Solution

The first model approach involved the Gaussian solution,
and (2) was applied to the same event as for the extrapolation
calculations (Figure 7). This approach proved generally to
work well for events with rather low rainfall intensity and no
abrupt changes in that variable. Rainfall evolutions involving
high-peaked intensities during short periods were especially
difficult to reproduce since the initial guess for the physical
parameters becomes crucial. The rainfall event, however,
shows a rather smooth rainfall evolution with no abrupt
intensity changes, and consequently the prediction by the
Gaussian solution agrees well with the observations (mini-
mum prediction error averaged over all 12 gages was 0.14
mm/min; Table 1). The 5-min prediction is less accurate
(minimum average prediction error of 0.20 mm/min; Table
1). Even so, it appears better than simple extrapolation
calculations as seen above.

The initial parameter values are, however, difficult to
estimate in the Gaussian solution. This proved to be espe-
cially true for the rather small catchment area in Lund.
Initial parameter values for the direction and speed of the
rain cell « were taken from meteorological information at the
700-mbar altitude. The initial location x4 and yg4, and occur-
rence time of the cell ¢y, proved to be especially sensitive for
the model performance and difficult to assess in the Lund
catchment. The parameter values for the case in Figure 8
were setto [ = 5 X 10* (m3/min), u = 1036 (m/min), D, =
5 x 10° (m%/min), D, = 2.5 x 10° (m?/min), y = 0 (min "),
x9 = —15,000 (m), yo = —2000 (m), and t, = —10 (min).
Generally, the initial values for these parameters had to be
chosen as 70-80% of their true values in order to get a
reasonable model performance. This, in turn, limits the
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Fig. 14. Time series of the spatial rainfall distribution for the event in Figure 13.

application of the model approach in real forecasting situa-
tions, and especially in gaged catchments that are small in
relation to the size of the rain cells. A further factor that
limits the application of the Gaussian approach is the occur-
rence of multiple cells. In theory, it is possible to include
multiple cells in the modeling scheme by superposition of
several Gaussian solutions. In practice, however, this will
become tedious, and parameter values will be complicated to
estimate.

4.2. Prediction of a Single-Cell Event Using
the Fourier Series Expansion

Figure 9 shows real-time prediction for the same event as
discussed above for the extrapolation and the Gaussian
solution (Figures 7 and 8), using the Fourier series approach.
The discrete time interval was set to At = 0.1 min, and the
figure shows that the 1-min-ahead predictions agree well
with the observations (minimum average prediction error of
0.12 mm/min; Table 1). Deviations from a Gaussian-shaped
cell structure is rapidly compensated for by the Fourier
series. Because of the short duration of the rainfall, S-min-
ahead predictions are difficult to make, and the fit to the
observed data shows less agreement (minimum prediction

error of 0.22 mm/min; Table 1). Even so, the agreement is
generally better than for simple extrapolation and the Gaus-
sian approach.

In all modeling examples employing the Fourier series
approach, a Gaussian-shaped cell was used for estimating
initial parameter values for the Fourier coefficients. This
Gaussian-shaped cell was generated assuming an initial cell
strength I corresponding to 500 m/min over a square area of
100 m2. The initial location for this structure was chosen
according to observed speed and wind direction and the
initial values given above for the Gaussian solution (t, =
—10 min). Consequently, the initial values for the physical
parameters «, D,, D,, and y were set to be the same for
both the Gaussian and the Fourier series approach (Figures
8 and 9). The choice of initial parameter values proved to be
much less sensitive for the model performance in the Fourier
series approach compared to the Gaussian solution. Conse-
quently, the Fourier series approach appears to be more
flexible and more suitable for practical forecasting applica-
tions.

Prior to application of the Fourier series approach to real
rain gage data, test runs were made to check the sensitivity
of the choice of wavelengths A,, Ay, and .the number of
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terms in the Fourier series expansion. It was found that the
prediction performance is not significantly affected by the
choice of wavelengths. This is because the Fourier coeffi-
cients compensate each other and the variation in the
physical parameters tends to be more dependent on the
system noise level. In this case the wavelengths A, and A,
were set to 30,000 and 10,000 m, respectively. The number
of terms necessary in the Fourier series expansion can be
tested by monitoring the magnitude of higher-order Fourier
coefficients. If the magnitude is negligibly small, then higher-
order terms are not necessary. Thusin the present modeling
examples, both M and N were set to 5.

Table 1 shows a comparison between the extrapolation
technique, the Gaussian solution, and the Fourier series
approach, respectively, for the event displayed in Figures
7-9. The table shows the identified final parameter values as
a function of system noise level for the Gaussian solution
and the Fourier series approach, and the corresponding

prediction errors (the prediction error was calculated as the
root-mean-square error for all gages for the model period).
The system noise level is expressed as percent of the initial
value for the physical parameters (i.e., the eight parameters
in the Gaussian solution and the four physical parameters in
the Fourier series approach). The system noise level for all
Fourier coefficients (except Ag,o(2), Anp0(t), Bpo(?),
Cy..(1), and Dy ,(#) in the Fourier series approach was set
to a constant value of 5% of the initial power spectrum for
the most dominant wave numbers ((4;,;(0)% + By,(0)> +
C11(0)? + D;,(0)*)/4) and applied uniformly over the
power spectrum for the system noise.

It is seen that the Fourier series approach in general gives
the lowest prediction errors. An increase in the system noise
level, however, appears generally to induce a higher predic-
tion error for the Fourier series approach. A larger system
noise level implies a larger fluctuation of the physical param-
eters. In some cases this may induce unreasonable estimates
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Fig. 15. Parameter identification for the event in Figures 13 and 14.

of the parameters even for the Gaussian solution. This is
seen in Table 1 for a system noise level of 5% for the
Gaussian solution. In this case the parameter D, attained a
negative final value. When the system noise level is set to
zero or a small value, however, the parameters tend to
converge to physically rational values. For the Gaussian
solution, on the other hand, this means that the initial guess
of parameter values has to be very close to the true values.
When the system noise level is set to zero for the physical
parameters in the Fourier series approach, the Fourier
coefficients tend to adJust the changing behavior of the
rainfall cell.

Because of the higher flexibility of the Fourier series
approach it was decided to further investigate the model
behavior for this approach using observed multiple-cell
events as input. The results of this analysis is described in
section 4.3.

4.3. Prediction of Multiple-Cell Events Using
the Fourier Series Expansion

It should be noted that the Fourier series approach is not
limited to single-cell events only. Any spatial shape in the
rainfall intensity pattern may be represented by the Fourier
series. The parameters of the model, however, are assumed
uniform in space, which means that all cells in the modeling
domain are assumed to behave similarly.- This, however,
may not be justified if a larger area is considered.

Figure 10 shows the Fourier series approach applied to a
multiple-cell event (July 13, 1980, 1047-1133). The 1-min-
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ahead predictions in most cases give reasonable estimates.
Figure 11 shows the corresponding time series of the spatial
rainfall distribution during time 8-20 min (the time in Figure
11 corresponds to the time given in Figure 10). The observed
values in the figure were obtained by general kriging proce-
dures, implying that the values have been smoothed in
space. Even though this procedure makes individual ex-
treme peaks smooth, the general spatial cell evolution is
clearly displayed in Figure 11. Thus Figure 11 shows a single
cell as it moves across the catchment from southeast to
northwest. The general spatial cell behavior for 1-min-ahead
predictions is reproduced well by the model, whereas the

" 5-min-ahead predictions are less accurate. However, al-

though the model underestimates the cell intensity peaks for
5-min-ahead predlctlons it is seen that the general spatial
characteristics agree rather well. The same initial model
conditions as above (Figure 9) for the Fourier series coeffi-
cients were used assuming a Gaussian-shaped cell structure,
which is seen in the first two diagrams for the 5-min-ahead
predictions in Figure 11. It takes the model about 10 min to
change from this cell structure to the observed shape (time
8-14 min in Figure 11).

The results of the parameter identification for the event in
Figures 10 and 11 are illustrated in Figure 12. The major
changes in the estimated parameter values occur during the
passage of cell peaks (time 1-15, 20-30, and 3545 min). The
parameters u, D, and D,, however, attain rather constant
values compared to y and the Fourier series coefficients. In
the above example, the system noise level was set to zero,
which proved to give reasonable model results and rational
physical parameter values (see Table 2).

Figure 13 shows the observed and predicted time series for
a second multiple-cell event (August 23, 1980, 1004-1103).
Here the model also seems to be able to reasonably well
predict 1- and 5-min-ahead rainfall intensities. A time series
of the spatial distribution of the rainfall event in Figure 13,
showing how the model is able to adapt to a multiple-peaked
cell, is displayed in Figure 14. At least two cells seem to
occur almost simultaneously over the catchment area (time
40-45 min). The first cell moves over the catchment from
northwest to southeast (time 33—43 min). This cell is fol-
lowed by a smaller one moving in the same direction (time
44-45 min). For 1-min-ahead predictions the model manages
to reproduce these spatial changes. The 5-min-ahead predic-
tions underestimate the intensities but appear to be able to
reproduce the general spatial characteristics. The underesti-
mation is to a major extent caused by the rapid changes
which occur at time scales less than 5 min, which are difficult
to consider in the 5-min-ahead predictions.

Figure 15 illustrates the corresponding result of the param-
eter identification for the case displayed in Figures 13 and 14.
In this case the system noise was also set to zero, which
made the smallest prediction errors concur with ranonal
parameter values (Table 2).

Table 2 shows a summary of the two above multiple-cell
events considering the system noise levels, identifiéd final
parameter values, and the prediction error. The system noise
is defined as above for Table 1. As in Table 1 it can be seen
that a high system noise level (5%) may give large prediction
error and unreasonable physical parameter values. If the
system noise level is kept at a modest level of 0—1%, rather
small prediction errors are achieved.

Figure 16 shows the autocorrelation of the residuals be-
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tween observed and predicted values at representative rain
gage stations for the event given in Figures 10 and 11. The
higher correlations for some stations indicate that improve-
ments could be made regarding the state cstimator: How-
ever, since the number of rain gages used in the modeling is
small, it is difficult to calibrate the model efficiently in space
(for multiple-cell events). The high autocorrelations for the
5-min values indicate the presence of correlated residuals for
some gages that are mainly due to the lag between predic-
tions and observations. The autocorrelation indicates that
the rainfall area changes its properties rapidly, which is
difficuit for the model to consider.

Overall, the Fourier series approach demonstrated a high
degree of flexibility to rapidly varying cell shapes: The less
accurate S-min-ahead predictions should be considered in
relation to the choice of the rainfall events. The rainfall
events used for the model testing were the most extreme
observations during the 3-year measurement period: Théy
proved to be exceptionally variable with high peak intensi-
ties during a few minutes. If rainfall events with longer
duration and lower intensities had been chosen, the 5-min-
ahead predictions would have been more in agréement with
measurements. One of the main objectives of this paper was,
however, to investigate if predictions can be made for
short-term and extreme rainfall that are of major concern in
urban hydrology. The paper also shows the general applica-
bility of a Fourier domain shape method as a technique in
urban hydrology and urban management.

5. SUMMARY AND DISCUSSION

It was shown that the two-dimensional stochastic advec-
tion-diffusion equation may be used together with a Fourier
domain shape method and the extended Kalman filter to
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Fig. 16. Autocorrelation of the residuals between measured and
predicted rainfall intensity for the event in Figures 10 and 11.
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forecast small-scale space-time rainfall in real time. It is
argued that urban hydrological problems impose special
requirements regarding rainfall input to drainage and man-
agement models. In most urban areas, radar data are still not
available on a sufficiently small scale to model individual
cells. However, in areas where radar is installed these data
may provide valuable information on larger-scale movement
and thus be used as, e.g., boundary conditions for the
proposed methodology [e.g., Cluckie and Collier, 1991].

Simple extrapolation calculations proved to agree well
with observations for a lead time of 1 min. If the lead time
exceeds about 2 min, however, the approach using one of the
models presented may be expected generally to display
better agreement between prediction results and measure-
ments. The reason for this is that both model approaches
include a physically based description of major cell features.
A major difficulty, however, when using the Gaussian solu-
tion is the estimation of initial model parameters. Also, in
some cases the rapidly changing cell structures are inade-
quately described by the Gaussian solution. The Fourier
series approach on the other hand, represents a flexible tool
to predict rapidly changmg cell structures in time and space.
The choice of initial conditions is less sensitive for the model
performance than for the Gaussian solution. Also, the Fou-
rier series approach is not limited to single-cell events only.

It should be stressed that the Fourier series approach to
model small-scale rainfall that is presented in this paper has
several advantages. The small-scale rainfall over an urban
area may vary greatly depending on the speed of the rain
cells, development or decay of cells, and the number of
simultaneous cells. This makes initial and boundary condi-
tions very difficult to estimate in advance (if no radar
observations are at hand). In the present model an algorithm
is used in which the parameter values of the advection-
diffusion equation are identified simultaneously with updates
of predicted rainfall. This means that under unknown initial
and boundary conditions, the rainfall distribution may still
be predicted during the time when the parameters are being
identified. Also the Fourier series approach requires less
computational time compared to a numerical schéme.

The model is especially suitable for catchments with rain
gage systems but can be made more flexible if radar data are
available. Since a Fourier domain shape method is used to
represent the rainfall field and the Gaussian noise, the model
domain does not have to be discretized. This has special
advantages for irregularly spaced gaging systems. Further-
more, including or excluding individual gages in thé model-
sultable locatlons.for new gages, becomes trivial.

Since the model uses a recursive estimation prOcedure for
parameter identification it is suitable for inclusion in an
interactive urban management system. Further, the model
can be used effectively for runoff prediction allowing for
small-scale spatial variability and dynamic influence on
rurioff generation. If larger catchment areas can be used, the
lead time for prediction can be made longer and thus more
time can be spent on, e.g., managing valves, pumps, etc.

Upon request, the models presented can be received from
the authors.
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