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Many hydro-meteorological time series possess chaotic characteristics. In
order to study models which can represent this chaotic behavior and their
predictability, chaotic time series were generated by the Rossler equations
and the parameters of given system models were evaluated by using the
Extended Kalman Filter. First, in order to verify the proposed approach, the
original structure of the Rossler equations was used as system model. Second,
the possibility of reconstructing the system was studied. The results indicate
that when a proper system model is given, the Extended Kalman Filter can
efficiently evaluate the system parameters from a numerical time series, even
when the time series is chaotic.
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1L INTRODUCTION

Research in the field of hydro-meteorology relies mainly on observed time series of parameters such as sunspots,
temperature, and rainfall. Although resulting from continuous physical processes, these phenomena are very difficult to
model, chiefly due to the problem of correctly describing their considerable variability on basis of only short observed parts
of the theoretically infinite time series. Traditionally, a stochastic approach has been regarded as the only way to deal with
this problem, but recent findings indicate that by using the theory of chaos, more efficient ways to characterize these
natural phenomena are opened (e.g., Kurths and Herzel, 1987; Rodriguez-Iturbe et al., 1989; Tsonis and Elsner, 1989).

The theory of chaos originates from the work of Réssler and Lorenz, where it was found that certain mathematical
models without any explicit random component are able to produce a behavior characterized by some highly specific
features, e.g., the appearance is very irregular, the process never exactly repeats itself, the future development is highly
sensitive to the initial conditions appearance - a chaotic behavior. These models can be described by a system of purely
deterministic but nonlinear equations. When investigating hydro-meteorological processes these equations are beforehand
unknown, but by analyzing a time series of a certain observed variable (which is the outcome of all interacting variables
in fact), information about the system as a whole may be obtained. By studying the so-called phase space attractor, i.e.,
a trajectory in space representing the time-evolution of the variables, the requisite number of equations may be estimated.
Much work has been devoted to this subject (e.g., Grassberger and Procaccia, 1983), but the following step of identifying
these equations is still very little investigated.

The aim of this preliminary study was to test the applicability of the Extended Kalman Filter for identifying the
governing equations from a chaotic numerical time series, i.e., reconstructing the system.

2. APPLICATION OF THE EXTENDED KALMAN FILTER FOR CHAOTIC ANALYSIS

2.1 Extended Kalman Filter

* Dr.Eng,, Associate Professor of Dalian University of Technology, Dept. of Civil Eng,
Visiting Researcher of Kyushu University, Dept. of Civil Eng. (SUIKO)
( 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812 Japan)
o Member, Dr.Eng., Professor of Kyushu University, Dept. of Civil Eng, (SUIKO)
b Member, Dr.Eng., Research Associate of Kyushu University, Dept. of Civil Eng. (SUIKO)
****  Dr.Eng, Associate Professor of University of Lund, Dept. of Water Resources Eng,
( Box 118, S-221 00, Lund, Sweden)
***xx M.Sc., Research Associate of University of Lund, Dept. of Water Resources Eng,

—853—



The Kalman Filter algorithm is expressed as differential equations in its original form. By using a difference
method, the system equation and its observation equation can be expressed in discrete form (Ueda et al., 1984):

X(k +1) =D(K)X(k) + (k) +u(k) @
Y(k+1) =H(k+1)X(k +1)+ Bk +1) +w(k+1) V)

where X: system vector to be estimated; ®: known state transition matrix; o:: known constant vector; u: white system noise
vector; Y: observation vector; H: known observation matrix; B: known constant vector; w: white observation noise vector;
k: time step.

22 The Rassler equations
To study the applicability of the Extended Kalman Filter to analysis of chaotic numerical time series, the Rossler
equations, a set of differential equations, is used:

{)k=-y-z
y=x+ay (€)
2=b+1z(x-c)

where %, ¥, Z are the parametric derivatives of x, y and z with respect to t which is regarded as time. The parameters a,
b and ¢ are constant. The behavior of the equation system is very sensitive to the parameter values. The system obtained
when a=0.398, b=2.0, and c¢=4.0, is often used as an example of a chaotic phenomenon (e.g., Gouesbet, 1991). If the time
interval At=0.1, the initial values of x, y, and z are 2.55, -2.4, and 0.7 respectively, and the equations are solved by the
Runge-Kutta method, the state space portrait of the system exhibits the appearance shown in Figure 1. This is a typical
example of a chaotic (or strange) attractor acting on the system.

23 Original system

By using a numerical calculation method to solve the 1
Rossler equations, three time series may be obtained, x(t), y(t), Z 2
and z(t), which all contain information about the chaotic system.
However, when studying hydro-meteorological processes, usually
only one time series is available. Therefore, emphasis is put on
the possibility to use the Extended Kalman Filter to evaluate
system parameters based on only one of the three time series.

When the time series x(t) is used to evaluate parameters,
using the original structure of the Rdssler equations as model,
the number of system variables in the system vector X is six. The
components Xy, X,,....., Xg of X correspond to x,y, z, 3, b and ¢ ol

1.0 3.0 5.0

-1.0

in equations (3). The system equation for the vector X is eI T w0 e S
expressed as a vector function £ as follows: X
X=£(X) @ Figore 1. The state space portrait of the Rossler
In developed form: Ziu:gfms using the parameters: a=0.398, b=20,
% =5(X) =-x,%;
b =5X)=x +xx,
k3 =£(X) =X +%3(x,%)
2 =£,(X)=0 ®
k=£5(X)=0
% =£5(0 =0
The system state transition matrix ®(k) and constant vector o(k) in the system equation (1) are:
O(k)=JJX"(K)]At+I (I Unit Matrix) ©)
(k) =4E[X (KX (K)]X(k)tAt Y,
UAX @)= (X ®)Voxj| xy=xty (g Jacobian Matrix) ®)

The vector X' (k) is replaced by X(k{k-1), which is the estimation of the state vector X at time step k based on
the observation at time step k-1. In this case the observation equation (2) is a function of X as follows:

Y=9(X) 6))

If only one of the three time series is observed, the observation vector Y in the equation (2) becomes scalar, and
its element y, is expressed as:
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=X =x (10)

The observation matrix H(k +1) and constant vector B(k +1) in the observation equation (2) are:

HR=JX® (1)
B) = lX" GM,(X (01X () _ (12)
U,1X () =XV xgya sty @ Jacobian Matrix) 13)

The term X" (K).is replaced by X(k{k-1). :

During the calculation, predictions of x;(t), Xy(t),..., X¢(t), corresponding to the time series x(t), y(t), z(t) and the
constants a, b, ¢ in the original equations, are received. From the results shown in Figure 2, it is evident that by using one
time series and the Extended Kalman Filter, the exact original system can be identified because of the chaotic behavior
of the system. If y(t) or z(t) are used as observation time series, the results are similar. However, when z(t) is used as
observation time series, the convergence is somewhat slower than for x(t) and y(t). This is due to the smaller variation of
2(t), as compared to x(t) and y(t). If two or all of the time series are used to evaluate the parameters, the results are better
than in case when only one is used. ) -

2.4 Reconstructing system

According to the results of 2.3, when
the structure of the original Réssler equation
system is used as model, the parameters can be
efficiently evaluated using the Extended
Kalman Filter. In practice, however, the exact
mathematical description of the system is
unknown. In this casc a genen?l mogiel " foo” 200" 300 400" 500
framework must be used as a starting-point. TIKE sTEP
The first step is to calculate the number of
equations (or variables) required to describe Y
the system, the second is to determine the
form of the equation system, and the third is to
evaluate the model parameters - all three steps
based on observed time series. To complete
the first step, a fractal analysis of the time
series attractor may be used (e.g., Hense, 1987;
Mundt et al,, 1991), but for performing steps " 100’ 200" 3000 400" 800
two and three, no established methods exist at Tine stee
present. 2 c

As previously mentioned, when

studying  hydro-meteorological processes,
" foo 200 300" 400" 500
TIME STEP
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usually only one time series is available.
Besides, we do not know which other variables
are included in the system. All the available
information is contained in the time series at
hand, for example x(t). In this case, for three
dimensional systems, the following equation
system can be a suitable starting-point:

0,0 0,2 0.4 0.6,

6,0 -2,0 2,0 6,0

" foo' 200 300 400 500
TIME STEP
, Figure 2. Series (left) and parameters (right) of original system evaluated
=Y from the time series x(t) by use of Extended Kalman Filter
Y=2Z (14) :
Z=1(xY,Z)

where Y and Z may be real variables of system or complex variables based on real variables. Therefore the equations (14)
is a reconstructing system. When the function f(x,Y,Z) has a proper form and the parameters are correct, equations (14)
can be equivalent to the original ones. For both the original system and the reconstructing system, it is important that the
variable x in fact corresponds to the observed time series. )

‘When the time series x(t) of the Rossler equations is considered, one form of the function f(x,Y,Z) is derived from
the original equations (3) as follows (Gouesbet, 1991):

£(x,Y,Z) = ab-cx + x?-ax¥ +xZ+ (ac-1)Y + (a-c)Z-Y(x+b-aY +Z)/(a+c-x) (15)
From equations (14) and (15) and the time series x(t) obtained from the original Réssler equations, we can use
the Extended Kalman Filter to receive the time series x(t), Y(t), Z(t), and calculate the parameters a, b, and c. As shown

in Figure 3, the results indicate that although the convergence towards the true parameter values is slower than for the
previous case, the proposed technique can efficiently be used for reconstructing systems from chaotic numerical time series,
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on condition that a proper system structure is
given. —_ RAL
PREDICTED

ns'oa

3. SUMMARY, CONCLUSIONS AND
FUTURE PROSPECTS

)

Recent findings indicate that many
hydro-meteorological processes are
characterized by a chaotic behavior, which may
be generated by a system of deterministic non-
linear equations. Information about this system
can be obtained from observed time series of ¢ b
any system variable. The Extended Kalman -
Filter has been proven to be an efficient tool
for investigating time series, and in the present o
study this technique is applied to chaotic time
series from the Réssler equations in order to
reconstruct the original system.

As starting-point models, both the .
original system and a more general form were W - 100 200 390 400 s00 oo’ %?u?: s;oo 400" So0
used. The results indicate that the Extended
Kalman Filter can efficiently be used for 7 | c
reconstructing original (or equivalent) systems :
from chaotic numerical time series, provided a [/‘ﬂ\
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proper system structure is assumed and a
proper time series is available.

Regarding future research, the next
step will be to test the possibility of using a
generalized form of the function f(xY,Z), e.g, & " {00 300 300" 400" Zoo
based on a third order Taylor series expansion Tine ster :
(20 parameters). When this approach has been Figure 3. Series (left) and parameters (right) of reconstructing system
fully developed and tested on synthetic series, evaluated from the time series x(t) by use of Extended Kalman Filter
the main purpose of this study will start - to
apply this technique to real observed time
series of e.g. sunspots, temperature, and rainfall. This kind of researches might lead to the development of new methods
to describe and predict hydro-meteorological processes.
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