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Abstract A method based on the extended Kalman filter is
developed to identify the parameters of a one-dimensional
constant coefficient stochastic convective-dispersive equation and
to predict the concentration distribution of groundwater
pollutants. To study the various characteristics of this method, it
is applied to a synthetically generated  concentration
distribution. The effects on the accuracy of predictions of the
number of observation stations for the physical parameters, the

sampling time interval, the number of terms in the Fourier

series expansion and the local changes in physical parameters are
investigated. This method identifies the physical parameters
effectively and  predicts  the concentration  distribution
accurately

Prévision de la distribution des concentrations des polluants de
'eau souterraine :

Résumé Une méthode fondée sur le filtre étendu de Kalman a
été mise au point pour identifier le paramétre de ’équation de
dispersion de convection stochastique du coefficient cornstant a
une dimension et pour prévoir la distribution des concentrations
des polluants de l'eau souterraine. Pour étudier les diverses
ceractéristiques de cette méthode, elle est appliquée a une
distribution des concentrations qui est générée -synthétiquement.
L’influence sur l'exactitude des prévisions du nombre de stations
d’observations des paramétres physiques, de Iintervalle temporel
des échantillons, du nombre de termes dans I'expansion en séries
de Fourier, et des changements locaux dans les parametres
physiques fait l'objet de recherches. Cette méthode = identifie
efficacement les parameétres physiques et prévoit correctement la
distribution. des concentrations.
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-prediction value of concentration (g m7)
longitudinal dispersion coefficient (m? day™*)

(2M + 4) x 1 system state vector function
known N x (2M + 4) observation matrix
observation time interval (day)

(2M + 4) x (2M + 4) identity matrix

(2M + 4) x (2M + 4) Jacobian matrix

accuracy standards of prediction

time instant

(2M + 4) x N Kalman gain matrix

basic wave length (m)

maximum number of terms in the Fourier series expansion
number of terms in the Fourier Series expansion
number of observation stations

number of evaluation time instants

number of evaluation stations

(2M + 4) x (2M + 4) system state estimate error covariance
matrix

known (2M + 4) x 1 time variant vector

time (day)

discrete time interval (day) -

velocity (m day™*) '

(2M -+ 4) x 1 system noise vector

(2M + 4) x (2M + 4) covariance matrix of system noise
(N x 1) observation noise vector

(N x N) covariance matrix of observation noise
distance (m) ~

(2M + 4) x 1system state vector

(2M + 4) x 1system state estimate vector

#(N x 1) observation vector

coefficient of adsorption (day™*)

zero-mean Gaussian white noise (g rn'3)

(N x 1) innovation vector

known (2M + 4) x (2M + 4) state transition matrix
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INTRODUCTION

When a convective-dispersive phenomenon of groundwater pollutants is ana-
lysed, its mechanism should be regarded as stochastic (Kawamura et al., 1989;
Jinno et al., 1986a). Even though numerical simulations by a finite difference
method (FDM) or a finite element method (FEM) are commonly employed
to predict the concentration distribution of pollutants, these methods require
that parameters of the convective-dispersive differential equation and
deterministic initial and boundary conditions should be known beforehand.
These assumptions are ambiguous for natural groundwater flow systems. The
phenomenon should be considered as stochastic because of many uncertainties
in the interaction between pollutant and flow (Jinno et al., 1986b).
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A method based on the extended Kalman filter is developed in
which the concentration at each observation station can be effectively used
for both prediction of the transport of pollutants and identification of
parameters of the one-dimensional, constant coefficient stochastic
convective-dispersive  differential  equation. To study the various
characteristics of this method, it is applied to synthetically generated
. concentration distributions. The effects on the accuracy of identification of
physical parameters and prediction of concentration distribution of the
number of observation stations, the sampling time interval, the number of
terms in the Fourier series expansion and the .spatial changes in physical
parameters are investigated. '

KALMAN FILTER FORMULATION

The Kalman filter formulation considers the following system and observation
- equations (Athans et al., 1968; Kawamura et al., 1984a, 1984b, 1989):

Xk + 1) = &k) X(k) + s(k) + v(k) (1)
y(k + i) = H(k + 1) X(k + 1) + w(k + i) (2)

The estimate of the state vector at time step k + i, calculated using the

observation obtained at time step k, is denoted as X(k + ilk) and at time step

k + i as X(k + ik + i). If X(k|k) is known after the observation is obtained at

time step k, X(k + i|k) and X(k + ilk + i) are computed at time step K + i as
follows:

Xk +il)y =0k +i - 1) Xk+i-1k) +stk+i-1) (3)
Xk + ik + 1) = Xk + ilk) + K(k + 1) vk + 1) (4)
- where

Kk +1) = Pl + i) HTe + ) [H(k + ) Pk + 1{R) HT0e + ) + Wk + DT (5)

vk + 1) =y(k +1) =y (k +i]k) (6)
Yk + 1) = H(k + i) X(k + i|k) A (7

Similarly, the state estimate error covariance matrix at time step k + I,

calculated using the observation obtained at time step &, is denoted as P(k +

ilk) and at time step k + i as P(k + ik + i). They are calculated as follows:
Plk+ilk)=0(k+i-1)Pk+i-1k) Tk +i-1)+V(k+i-1) (®)

Pk + ilk + i) = [I - K(k + i) HE + )] P(k + ilk) (9)
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PREDICTION MODELLING FOR CONSTANT PARAMETERS

In this paper, the following 'one-dimeyn‘sional, constant coefficient stochastic
convective-dispersive equation is considered:

2 .
8Ck) | BCan)  &C Can s e 10

or & ax?

The physical parameters u, D and 7 are assumed to be constant in time and
space. The last term in equation (10) is added to take into account the
uncertainties which are inherent in modelling the phenomenon.
The stochastic partial differential equation is transformed into an
- ordinary differential equation using a Fourier series expansion. Specifically,
C(x,t) and e(x;) are expanded as:

Cxt) = By(®) + ):M_l [4,,@) sin2numx/l) + B, (1) cos(2nmx/)] (11)

€@t = zf;l (E, (1) sin@mmx/l) + F_(1) cos2nmx/i)] (12)

When a filtering approach is used for spatial systems, one is faced with
discretizing a partial differential equation. FDM and FEM are two
discretization methods commonly used. However, they require imposed
boundary conditions even if these boundary conditions are difficult to specify
and randomly disturbed. Moreover, the accuracy of numerical calculation will
be lost if an improper mesh size is used in either FDM or FEM simulation.
On the other hand, the Fourier series expansion assumes a periodic boundary
condition which can be altered easily to accommodate any situations (Jinno er
al., 1986b). :

Substituting equations (11) and (12) into equation (10), a set of
homogeneous ordinary differential equations for the Fourier coefficients of the
frequency component m is obtained:

dd ) _|-R,, 0, ||4,0]  [E0

T S Y Pl o
where:

R, =D@um/l)? + 7y (14)

Qm = u(2nm/i) . _ (15)

The system state vector X is modelled as follows:

},((’) =Dy Byt) 4,®) By(t) .. A,f0) B,(0]7 (16)
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Here, the physical parameters u, D and 7 are assumed constant in time and
space such that:

du/dt =0, dD/dr=0, dy/dt=0 ' an

Combining equations (13) and (17), the system equation is obtained as
follows:

dx/dr = f(X(0) + v(t) ‘ (18)
[ 0 0
0 0
0 0
~By(1)Y 0
-RA;(1) + Q;B4(1) E@)

= | -04,0-RB,0) | + | F®O (19)

R, A, 0+0,B, 0| |E0
"QM M(t) -R BM(t) _FM(I) i

Equation (19) is a set of nonlinear functions of u, D, 7, By, A, and B .
Here, the Taylor series expansion of f(X(f)) about X(f) = X*(t) is carried out
to first order terms, and f(f) is linearized as:

fX@) = f&X*@) +J&X*@) X)) - X*(0)] (20) -
where »
V@O = [&/8X(0]x -z | @1

Substxtutmg equation (20) into equation (18) and arranging, equation (22) is
obtained as:

dx/de = J(X*(@1)) X(?) + fIX*(@)) - J&X*(@®) X*(@) + v(@) (22)
The left-hand side of equation (22) is discretized as follows:
dx/dt = [X(t + Af) — X(0))/r (23)

Substituting equation (23) into equation (22) and denoting ¢ and 7 + Af
by k and k£ + 1, equation (24) is obtained:

Xk +1) = J(XK)a + NX@O + [fX*0)

- J(X*(k) X*E)] At + v(k) or (24)
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Comparing with equation (1):

oK) = J(X*(R)) of + I : (25)
s@) = [fX*K) - J(X* (k) X*E)] o , (26)
@) = v(k) &t @7

X*(k) is replaced by X(k|k - j), the estimate of the state vector at time step

k based on the observation at time step & — j. ,
The observation vector y is the concentration distribution measured at

the randomly, spatially arranged observation stations at sampling time interval
i. The concentration distribution given by equation (11) is writien as:

C(xk) = [0 0 0 1sin(2mx/l) cos(2mx/l) ... sin(2nMx/I) cos(2nMx/l)]
- [uD 7 By(k)A (k) By(k) .. A,[k)B MU‘HT + wixk) (28)

representing the observation matrix H in equation (2). The observation
matrix H is:

0001 .. sin(2nMx,/l)  cos(2mMx, /I)
: ' (29)

T
0

0' 0 0.1 .. sin@nMx,/I) cos(ZﬁJtLt,\/I)

The concentration distribution is predicted using the extended Kalman
filter on the basis of information from the observation stations. The
unknown physical parameters and Fourier coefficients are identified in the
prediction process.

EXAMPLE 1

In order to study the various characteristics of the proposed method, it was
applied to a synthetically generated concentration distribution. Figure 1 shows
the generated concentration distribution (solid lines) of a one-dimensional
constant coefficient stochastic convective-dispersive equation (10).

The following values were used for the synthetic generation: u = 1.0
m day’!, D = 05 m? day’!, ¥ = 001 day’!, ar = 0.1 day®, / = 100 m,
M = 20 and the Gaussian random noises E  and F_ were assumed to
be zero-mean with standard deviation equal to 0.0005 g m™3. Equation
(13) was solved numerically using the Runge-Kutta-Gill method (Kawamura
et al, 1989). Here, the initial concentration distribution for the simulation
study was the analytical solution of the deterministic equation - (10)
(excluding the term e(x?) at ¢ = 10 days, given the following initial
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Fig. 1 Prediction of the concentration distribution (Example 1).

condition:
Cx,00=1(0 <x<5)
Cx0)=0(-=<x<05<x< @)

When the generated concentration distribution was assumed observable,
an -observation roise with zero-mean and standard deviation equal to 0.01
g m-3 was added as shown in equation (28). Likewise, when the physical
-parameters u, D and 7y were observable at a certain station, an observation
Hoise with zero-mean and standard deviation equal to 10% of the true value
was added. - , :

An extended Kalman filter was used to predict the concentration
distribution and to identify the parameters. The following initial conditions
required for the recursive applications of the extended Kalman filter were
used in this example. The initial values of the physical parameters and the
Fourier coefficients were assumed to be 50% of the true values. The diagonal
elements of P, for u, D were taken as 0.01, for ¥ and Fourier coefficients as
0.001 and off-diagonal as 0.0001. The diagonal elements of ¥ were all taken
as 0.00052 and off-diagonal as, zero. Downward-arrows in Fig. 1 indicate the
20 observation stations which were located -randomly in space. Observed
values of the concentration distribution were :obtained every 10 time steps of
one day. Figure 1 show the predicted concentration distribution.

Figure 2 shows some of the identified parameters. The accuracy of the
prediction of concentration distribution was quantitatively expressed as
follows: ‘

R AT | (30)
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Fig. 2 Identification of the physical parameters and Fourier
coefficients (Example 1):

A1 (e/ m)

T = L [Celc - i) = CoRP}IN, (30)

where C(xklk - i) was evaluated for every one metre at time step k N,
101). Figure 3 shows the variation of J, as a function of N when
the physical parameters were observable. Flgurc 4 shows the effect of the
different sampling time intervals on the accuracy of prediction.

EXAMPLE 2

- The proposed prediction method was applied to the case where the physical
parameters u, D and 7 changed at x = 30 m as follows:

u; =10mday’, D, =05m?day’, 7, =001 day? (0 ¢ x <30)

u

, =15mday?!, D, =01 m?day?, 7, =00 day! (30 < x < 100)

Since the parameters change spatially in this example, the method of
characteristics was used in generating the synthetic concentration distribution
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Fig. 4 Variation of J;as a function -of N for various sampling
time intervals (Example 1).

(Jinno & Ueda, 1978). Figure 5 shows the synthetic concentration distribution
(solid 'lines) generated under the following conditions: 47 = 0.1 day and the
Gaussian random noise € (see equation (1)) was assumed to be zero-mean
with standard deviation equal to 0.02. The extended Kalman filter was used
with the same initial conditions as in example 1, except for the matrix V. The
diagonal elements of V for u, D and 7 were set equal to 0.00001 times the

square of the amount of change.
Figure 5 shows the results. Figure 6 shows the identified parameters u,
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Fig. 5 Prediction of the concentration distribution (Example 2).
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Fig. 6 Identification of the physical parameters (Example 2).

D and 7, and Fig. 7 the variation of J; as-a function of N for different
.sampling time intervals. '

DISCUSSION

“Figure 1 shows the synthetically generated concentration distribution disturbed
by noise €. This disturbance became dominant as time passed. The 10-step
ahead predicted values were shown to be accurate, except the contributions by
the high frequency components. , '

Figure 2 shows the changes in the parameters and some Fourier
coefficients.  They converged to the true values after 150 time _steps.
The power spectrum of the identified Fourier coefficient for the wave
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Fig. 7 Varation of J, as a function of N for various sampling
fime intervals (Example 2).

number m = 10 became less than that of the system noise e (Kawamura ef
al., 1989) as time passed. This means that the contribution of the high wave
numbers (more than m = 10) to the concentration distribution is small.

As shown in Fig. 3, the accuracy of the prediction became high and J;
converged to 0.008 independent of the observation of the physical parameters
when N was more than 15. On the other hand, the accuracy depended on the
observation of the physical parameters when N was less than 15. If all the
‘parameters were observed, the accuracy was still reasonable even if the number of
observation stations was less than 15. The observation of u gave the highest
accuracy for the prediction when one of the three physical parameters was to be
measured. In order to predict the concentration distribution accurately with fewer
observation stations, it would be necessary to get a reliable observaticn for u.

Figure 4 shows that, when N was more than 15, J; became independent of
the number of observation stations for any sampling time interval. The higher
accuracy was obtained for the shorter sampling time interval. This means that
more information was obtained when the sampling time interval was shorter. Nor
N less than 15, the prediction was poor for any sampling time interval. J, became
smaller than 0.01 (g m™3) for any number of observation stations if sampling was
made at a frequency less than 10 time steps, being independent of the number of
terms in the Fourier series expansion. o

The accuracy of the prediction of concentration distribution with 10
terms in the Fourier series expansion did.not differ so much from that with
15 terms. : -

Figure 5 shows the prediction of the concentraticn distribution when the
physical parameters ‘u, D and 7 changed at x = 30 (m). Accurate predictions
were still obtained even though the parameters changed locally. This means
that the present method would be robust for such a case.

As shown in Fig. 6, the parameter u was identified very accurately. When
the peak of the concentration distribution still remained before x = 30 m where
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the physical parameters change (j.e. around time step 100), u seemed to converge
to u,. On the other hand, u converged to U, after the peak passed by x = 30 m (i.e.
around time step 300). The parameter Y converged to 7, after the peak of the
concentration distribution passed by x = 30 m. It seems, however, that y could
not converge to 7, before the peak passed by x = 30 m. The identification pf D
seemed to be difficult in this example because D did not converge to D, within
500 time steps. However, an accurate concentration distribution was obtained
compensating for the inaccurate D by the Fourier coefficients.

Figure 7 shows that J; as a function of N with different sampling time
intervals was similar to that in Fig. 4 if N was more than 15. The present
method still predicted the concentration distribution accurately even though
the physical parameters changed spatially. The accuracy of prediction and
identification for different values of ¥ was also studied. The results showed
that ¥ was more effective to the accuracy of the identificaticn of physical
parameters than that of the prediction of concentration distribution.

CONCLUSIONS

In this paper, a method that uses the Fourier series expansion and the
extended Kalman filter is proposed for the identification of the parameters of
a one-dimensional constant coefficient stochastic = convective-dispersive
equation and the on-line prediction of the concentration distribution of
groundwater pollutants. This method was compared with two synthetically
generated concentration distributions: one with constant physical parameters
and the other with spatial change in the physical parameters. The results
obtained herein thwed that the proposed method would be able to predict
the concentration distribution and identify the parameters accurately.
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