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Abstract. In Tokyo metropolitan area, flood risk is increasing due to social and
environmental conditions including concentration of population and industry
etc. Small urban watersheds are at a high risk of inundation by river flooding
and/or inner water induced by heavy rainfall in a short time. To estimate river
water level accurately in urban small rivers, it is critically important to conduct
precise runoff analysis by using spatiotemporally distributed rainfall data. In this
study, a runoff analysis was conducted with spatiotemporally densely distributed
X-band MP Radar (X-band multi-parameter radar) data as input for storm events
occurred in upper Kanda River, a typical urban small river in Tokyo. Then,
SCE-UA method, one of global optimization methodologies, was applied to
identify the parameters of the storm runoff model. The results revealed that
urban storm runoff was predicted accurately using X-band MP radar map sup-
ported by optimized runoff model.
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1 Introduction

In recent years, locally concentrated heavy rainfall, known as guerrilla-type rainstorms,
has frequently brought about flood damages in Japan. Especially, Tokyo Metropolis is
at an increasing risk of flooding due to its social and environmental conditions such as
population and industry concentration, and urbanization or climate change which
increase storm runoff. Small urban watersheds are prone to be caused inundation by
river flooding or inner water because heavy rainfall even for a short while can bring
about a sudden increase in storm runoff volume. Based on these backgrounds, it is
expected to conduct precise runoff analysis by using detailed spatiotemporally dis-
tributed rainfall data.

X-band MP radar network (XRAIN), deployed by the Ministry of Land, Infras-
tructure, Transportation, and Tourism of Japan (MLIT), was started its full operation in
March 2014 after the trial operation since 2010. The system provides detailed spa-
tiotemporally distributed rainfall data. Earlier studies on the X-band MP radar data
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include; characteristics of the data and precise estimation methods of radar rainfall [1],
and the precision evaluation of X-band MP radar rainfall [2].

However, storm runoff prediction using X-band MP radar data has not been carried
out for small urban watershed. In addition, there is no method for calibrating urban
runoff models. X-band MP Radar data, having sixteen times higher resolution and five
times higher frequency compared to conventional radar data, are a large set of rainfall
data, so-called big data. To make the best use of these detailed data, it is expected that
runoff analysis models convert rainfall into precise storm runoff.

Thus, in this study, the authors built a storm runoff model using X-band MP radar
data, and applied a global optimization method, the Shuffled Complex Evolution
University of Arizona, SCE-UA, [3] for optimization of the runoff model. With the
model, the authors evaluated the hydrograph reproducibility. Storm events in upper
Kanda River, one of representing urban small rivers in Tokyo, were selected as the
target.

2 Target Watershed and Storm Events

2.1 Target Watershed

The Kanda River, an urban watershed in western Tokyo, Japan, was selected as the
target watershed. It originates in Inokashira Pond in Mitaka City and flows into Nakano
Ward, then, into Shinjuku Ward after merging with the Zenpukuji River. With the basin
area of 105.0 km2 and the length of 25.48 km, it is one of typical small rivers in Tokyo
and is designated as one of Japanese first-class rivers. In this study, Koyo Bridge,
shown in Fig. 1, was selected as the site to determine the reproducibility of the model,
and upper Kanda River basin, having a catchment area of 7.7 km2 at Koyo Bridge, was
selected as the target basin.

(a)

(b)

(c)

Fig. 1. Index map of (a) Japan, (b) Kanda river basin in Tokyo and (c) target area upper Kanda
basin at Koyo Bridge.
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2.2 Target Storm Events

Five target events were selected from the ones occurred in 2013. Since heavy rainfalls
during a short period are capable of rising water level in small rivers, rainfall over
25 mm in 30 min were selected as the target events [4].

Storm events were defined as sequential rainfalls with no longer than 1 h intervals.
Table 1 shows the five target events. In the table, 30 min maximum rainfall, the period
of rainfall data used in runoff analysis, and rainfall causes are also listed.

2.3 Overview of the Rainfall Data

X-band MP Radar provides detailed rainfall data in every 250 m � 250 m mesh in
every 1 min. The target area is only 7.7 km2 and consisted of as much as 138 mesh
data (see Fig. 2). The basin average rainfall applied to the runoff analysis was created
from X-band MP Radar data.

Figure 3 shows hyetographs and cumulative rainfall by X-band MP Radar. For
comparison, ground rainfall observation data, called AMEDAS data, is also shown in
Fig. 3. AMEDAS observation stations are deployed by the Japan Meteorological
Agency (JMA), and the nearest station from the target basin is located 5 km distant

Table 1. Target rainfall events

Rainfall
event

Rainfall
(mm/30 min)

Period of rainfall data used for
runoff analysis

Cause of rainfall

Ev.1 36 9/15 03:20–9/15 17:20 (841 min.) Typhoon No.18
Ev.2 35 8/12 17:14–8/12 23:39 (386 min.) Atmospheric

instability
Ev.3 31 6/25 11:38–6/25 18:10 (393 min.) Atmospheric

instability
Ev.4 26 9/04 22:51–9/05 14:27 (937 min.) Low pressure
Ev.5 25 4/06 14:48–4/07 04:53 (846 min.) Low pressure

Koyo Bridge
(water level station)

Mesh area of the target watershed (XRAIN)
Upper Kanda Watershed

Kanda River

Zenpukuji River

Fig. 2. Mesh area of the target watershed
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from the target watershed (see Fig. 1). Figure 3 shows the time series of rainfall for
events from 1 to 3 out of the five target events.

In Fig. 3(a), X-band MP Radar and AMEDAS show nearly the same hyetograph
and cumulative rainfall. In contrast, these hyetographs seem differences in Fig. 3(b)
and (c): cumulative rainfall by AMEDAS is far smaller than X-band MP Radar. The
data implies that the AMEDAS observation station, being placed in the distance, did
not detect the locally concentrated rainfall, because events 2 and 3 were locally con-
centrated rainfall due to the atmospheric instability. In addition, since X-band MP
Radar provides 1-min data, it seems to detect more detailed temporal variation of
rainfall than AMEDAS data.

3 Runoff Analysis Model and Calculated Hydrograph

3.1 Overview of the Runoff Model

The runoff model used in this study is called Urban Storage Function (USF) model (see
Fig. 4) with governing Eqs. (1)–(4) [5]. It is a lumped runoff analysis model in which
urban runoff mechanism is incorporated. In USF model, users do not have to separate
effective rainfall and runoff components, because runoff components are conceptually
expressed to incorporate urban-specific runoff mechanism such as outflow to other
basins through combined sewer system or leakage from water distribution pipes.

Fig. 3. Hyetographs and cumulative rainfall
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The Eq. (1) is the relation between runoff from the basin and the total storage
within the basin, whose continuous equation leads to the Eq. (2). The Eq. (3) is
groundwater-related loss. The Eq. (4) expresses the relation between river discharge
and storm drainage to other basins through the combined sewer system.

s ¼ k1ðQþ qRÞp1 þ k2
d
dt

ðQþ qRÞp2f g ð1Þ

ds
dt

¼ Rþ I � E � O� Q� qR � ql ð2Þ

ql ¼ k3ðs� zÞ ðs� zÞ
0 ðs\zÞ

�
ð3Þ

qR ¼ aðQþ qR � QoÞ ðaðQþ qR � QoÞ\qRmaxÞ
qRmax ðaðQþ qR � QoÞ� qRmaxÞ

�
ð4Þ

Where s: total stored height (mm), t: time (min), Q: river discharge (mm/min), qR:
storm drainage to other basins through the combined sewer system, qRmax: maximum
storm drainage, ql: groundwater-related loss (mm/min), R: rainfall intensity (mm/min),
I: urban-specific and ground water inflows from other basins (mm/min), E: evapo-
transpiration (mm/min), O: water intake (mm/min), z: infiltration hole height for

Fig. 4. Schematic diagram of urban storage function model
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ql (mm), Qo: initial river discharge (mm/min), a: sewage discharge constant, k1, k2, k3,
p1, and p2: model parameters.

The value of qRmax, I, E, O, Q0 were given by observed data.

3.2 Hydrograph Reproducibility by Standard Parameter Values

The USF model has seven-parameters: k1, k2, k3, p1, p2, z, and a. Based on the
parameter values used in existing studies [5], standard values shown in the Table 2
were used to predict storm runoff.

Figure 5 shows the observed and calculated hydrographs for the events 1 to 3.
Respective rainfall hyetographs given as the input are also shown. The time of peak
discharge were mostly reproduced in each event, but the calculated peak discharge is
greater than observed data. Especially in Fig. 5(b) and (c), calculated peak discharge is
greater by almost twice. The reproducibility of hydrographs is insufficient because
rainfall or runoff characteristics, which are different in each event, were not expressed
appropriately.

4 Optimization of the Storm Runoff Model by Global
Optimization Methodology

4.1 Procedure to Setting Parameters of Storm Runoff Analysis Model
by SCE-UA Method

In this section, SCE-UA method was applied to optimize USF model’s seven
parameters.

SCE-UA method is a global search method with an algorithm based on the syn-
thesis of four concepts: competitive evolution, controlled random search, simplex
method, and complex shuffling. It is an effective and efficient automated optimization
method for calibrating model parameters [3, 6–8].

According to Kanazuka’s study [9], in which he compared the effectiveness of
parameter identification between USE-UA method, Particle Swarm Optimization
(PSO), and Cuckoo search, it was found that SCE-UA method was the most effective in
applying to USF models.

So, the authors applied SCE-UAmethod for parameter estimation of the USFmodels
for the five selected storm events in the target watershed. Root mean square error (RMSE)
was used as the objective function in evaluating the reproducibility of the model. The
model parameters are identified by calibration using the average watershed rainfall
compiled from X-band MP Radar and the observed river discharge. SCE-UA method
requires a number of runs and generations for optimizing parameters to be converged.

Table 2. Standard values for USF model’s parameters

Parameter k1 k2 k3 p1 p2 z a

Value 40 1000 0.02 0.4 0.2 10 0.5
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4.2 Reproducibility of Runoff Hydrographs by Optimal Parameters

Figure 6 shows runoff analysis results of events 1–3 from 1st generation to 40th gen-
eration by SCE-UA method. RMSE values for each generation and event are shown in
Table 3.

Calculated runoff hydrographs shown in Fig. 6 indicates that, for each event, the
calculated hydrographs reproduces the shape of the observed hydrograph more pre-
cisely as generation numbers increase. Also, as shown in Table 3, the RMSE values
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Fig. 5. Reproducibility of hydrograph by standard parameter values
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decrease with the increase of generation numbers. They converge mostly to the min-
imum value when the calibration was proceeding between 30th to 40th generations.

Percentage errors in peak discharge, PEP, are shown in Table 4. The data depicts a
similar trend as RMSE; PEP values become lower, closer to zero, as generation
numbers increases, and become the closest to zero at 40th generation.

In this section, USF model’s seven parameters were optimized by SCE-UA method
with X-band MP Radar data and observed river discharge. The result revealed that the
calculated discharge nearly reproduces the observed hydrograph, which implies that the
hydrograph reproducibility of USF model with optimal parameters is sufficiently high.

4.3 Comparing Best Parameters Between Events

In the last section, the optimal parameters of USF model were identified for each storm
event. As shown in Fig. 7, the parameter values in 40th generation fluctuates sub-
stantially among different events, for k1 ranges from 40 to 190, k2 from 300 to 2800, k3
from 0.007 to 0.022, p1 from 0.1 to 1.4, p2 from 0.2 to 1.5, z from 3 to 105, and a from
0.2 to 0.9. It implies that, by giving different parameter values to different events, the
model incorporates the event-based characteristics of observed X-band MP Radar and
river discharge. Thus, RMSE is minimized, and the reproducibility of USF model’s
runoff analysis is highly accurate.

Table 3. RMSE for each generation

Generation
No.01

Generation
No.05

Generation
No.10

Generation
No.20

Generation
No.30

Generation
No.40

Ev.1 0.029 0.028 0.019 0.012 0.011 0.011
Ev.2 0.013 0.010 0.006 0.005 0.004 0.004
Ev.3 0.013 0.012 0.008 0.005 0.004 0.004
Ev.4 0.020 0.018 0.013 0.010 0.008 0.008
Ev.5 0.033 0.032 0.026 0.024 0.024 0.024

Table 4. PEP for each generation

Generation
No.01

Generation
No.05

Generation
No.10

Generation
No.20

Generation
No.30

Generation
No.40

Ev.1 −32% −13% −18% −3% 2% 2%
Ev.2 4% −3% 6% 0% 1% 1%
Ev.3 −22% −9% −17% −8% −6% −5%
Ev.4 −46% −20% −20% −5% −6% −4%
Ev.5 −48% −57% −34% −37% −37% −37%
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5 Conclusion

X-band MP radar data, which has high spatiotemporal resolution, was used to predict
storm runoff in urban watershed in upper Kanda river basin, western Tokyo, Japan.
SCE-UA Global Optimization method was applied to optimize USF model parameters
for urban storm events. The results revealed that, although the hydrograph repro-
ducibility was not sufficient with standard parameter values, urban storm runoff was
predicted accurately with parameters optimized by SCE-UA method.

It implies that the SCE-UA method successfully identified the optimal values for
USF model’s seven parameters. In addition, it is concluded that, at least, 30 generations
of SCE-UA method were enough to identify parameters of required preciseness.

Fig. 7. Optimal parameter values of USF model for each storm event

516 Y. Yonese et al.



In runoff prediction in urban small watersheds, practical use of X-band MP Radar
data and USF model is one of a future challenge. It is important to improve repro-
ducibility of runoff analysis models by optimizing multiple parameters by global
optimization method such as SCE-UA with detailed rainfall information provided by
X-band MP Radar.
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