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Abstract: 

Problems with efficient dewatering following heavy rainfall events are not 

uncommon already today because of urbanization beyond the sewer system capacity. 

Sewer drainage system evaluation are required in many cities and a key issue in this 

situation is whether to take climate change into account. In this study a simulation 

model for rainfall-runoff and flood inundation model with a vector-based catchment 

delineation are used. The set-up of this model is based on so-called “urban landscape 

GIS delineation” that faithfully describes the complicated urban land use features in 

detail. Modelling was performed using as inputs design storm with 3 year return 

periods of 180 minutes duration for climate change scenarios. These future design 

storms were increased by factors of 10%, 20%, 30%, and 40% and the impacts of 

incremented rainfall events on the urban drainage system were assessed. It was 

indicated that the surface runoff would increase at higher percentages than infiltration 

loss and final surface storage. 

INTRODUCTION 

A general expected consequence of climate change is an increase of extreme 

rainfall intensities in short time based on theoretical reasoning. Climate change is 

expected to an increase in frequency and intensity of heavy rain fall events (Maihot et 

al. 2010). Problems with efficient dewatering following heavy rainfall events are not 

uncommon already today because of urbanization beyond the sewer system capacity.  

Olsson et al. (2012) assessed the climate change impacts on urban storm water at 

Arvika, Sweden. They indicated an increase in today’s short-term extreme rainfall of 

10-30 % by the end of the century. The urban drainage system upgrade to accomplish 

full performance for the future design storm would cost around twice. 

 The Japan weather association (2012) reported a 1.15°C increase in average 

temperature in Japan since 1900. Based on the report, the overall precipitation has 

increased across Japan during the period 1900-2010. The global climate models point 

out that global mean rainfall will increase with global warming, even though spatial 

distribution and seasonal variations are exist.  
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Urban sewer drainage system is expected to deal with flood infrastructure 

designs on the base of appropriate amenity level. Current infrastructure design is 

principally based on rainfall Intensity-Duration-Frequency (IDF) curves with the 

stationary assumption. Due to change in the frequency of extreme rainfall, for the 

capability of urban drainage systems, the current IDF curves will no longer be valid, 

requiring an adjustment for climate change (Arnbjerg, 2006). There is more concern 

how to deal with the future climate change in the urban local municipalities. The 

stakeholders should make their mitigation measure based on the reliable and accurate 

evaluation tool. 

The aim of this study is to assess the impact of climate change on the drainage 

system for an urban catchment in Tokyo, Japan. In this study, a simulation model for 

rainfall-runoff and flood inundation model with a vector-based catchment delineation 

are used (Amaguchi et al. 2012). The set-up of this model is based on so-called “urban 

landscape GIS delineation” that faithfully describes the complicated urban land use 

features in detail. Modelling was performed using as inputs design storm with a return 

period of 3 years.  

THE TOKYO STORM RUNOFF (TSR) MODEL 

The hydrologic characteristic of an urban surface depends on its land use. The 

types of surfaces present ranges from the relatively impervious character of streets, 

parking lots and roofs, to the more pervious character of gardens, bare soil and parks. 

The geometric composition of these different types of surfaces that forms a block is 

usually complicated. This complicated and inhomogeneous nature of urban catchments 

makes it very difficult to model the runoff process with accuracy. However, by the use 

of what will be denoted “urban landscape GIS delineation”, which is described in detail 

below, the complex configuration of urban catchments can be faithfully reproduced in a 

runoff model. The model is thus designed to be a tool which makes it possible to 

simulate the flooding process in an urban catchment in a comprehensive, detailed and 

accurate way.  

Figure 1a shows a schematic of the rainfall-runoff process as represented in the 

TSR model. When rainfall begins, water falling on a land use element inside a block or 

a road forms pools, where water falling on a river adds to the river discharge. Rainfall 

excess from blocks flows out directly or indirectly through different types of surfaces 

and finally out into the nearest road. When a manhole exists inside the road, water 

flows through it to the rainwater sewer pipe conduit. When no manhole exists, water 

flows down the road to an adjacent road element. In a manhole, the water level is 

obtained considering the inflow from the road together with the upstream inflow from 
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connected pipe conduits. In a pipe conduit, the water flow is obtained considering the 

water levels in the manholes located upstream and downstream, respectively. When the 

water level in a manhole exceeds ground level, water flows out and inundates the 

associated road. The inundated water either flows to adjacent road elements until a 

manhole that has not reached full inflow capacity is found. It may also flow into and 

flood a block, if the water level in the road is higher than that in the block. The water in 

the sewer pipe conduits eventually reaches the river channel, which finally drains in the 

catchment outlet. Infiltrated water from pervious land use elements inside blocks 

finally drains out into the river as long-term groundwater runoff, which is however at 

present not considered in the TSR model. 

Figure 1b shows an example of a detailed map of an urban catchment obtained 

by urban landscape GIS delineation. An urban watershed is split into homogeneous 

elements such as roads, rivers and different land use components. Surface is classified 

into pervious area and impervious area. Rivers, roads, paved area and buildings are 

included in the impervious area. Pervious areas comprise grove, grass, playgrounds 

and others. In addition, urban landscape GIS delineation data also contains the sewer 

network system component that consists of pipe and manhole elements. For the runoff 

modeling, roads and rivers have to be divided into elements. Inside residential blocks, 

detailed land use information has to be added. This may include manual processing, in 

which map-based information is transferred to GIS format by appropriate GIS 

software. 

(a) 

(b) 
 

Figure 1: Schematic of the rainfall-runoff process (a) and Map representing the 
spatial elements considered in urban landscape GIS delineation (b) 
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conditions. Water levels in blocks and roads were set to zero as the simulation starts 

well before the start of the rainfall. 

Table 1 shows the model parameters required. In this study, no attempt to 

calibrate or adjust parameter values is made but standard values are used. The initial 

loss parameters of impervious and pervious surfaces are obtained from Van de Ven 

(1992). The value of roughness coefficient used for building flow is 0.035 (Yen, 1991). 

The values of n used for surface flow are obtained from Inoue et al. (1998). The 

values were estimated based on model simulations of flooding in a similar type of 

urban catchment in Japan. The values of n used for sewer pipes and river channels are 

assigned as the standard roughness coefficient of concrete pipe (Mays, 2001). 

 
Table 1. List of required input data and parameters of the model 

Parameter Value 
Initial loss 

 
Final infiltration capacity  

 
 

 
Building roughness coefficient  

Impermeable area 
Permeable area 

Grove 
Grass 

Athletic field 
Others 

 

0.5 
1.0 

100.0 
20.0 
5.0 
5.0 

0.030   

Surface roughness  
coefficient  

Roads 
Other 

           
0.043 

           
0.067 

Pipe roughness  
coefficient 

  0.013   

 

Observed and simulated river discharge at gauge locations L1 and L2 are 

shown in Figure 4, together with the observed rainfall during the event. The simulated 

water river discharges in all two locations considered agree well with the observed 

levels throughout the event. The runoff peak at ~10:00 is well reproduced. The 

agreement appears at least reasonable considering the extreme nature of the event and 

the fact that no parameter calibration or other form of model tuning was used. 
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Figure 4. Observed and calculated discharge in gages L1 (a) and L2 (b) 

 
CLIMATE CHANGE SCENARIOS 
 
 In this study the available historical annual maxima rainfall series of duration 

10 and 60 minutes for the period from1940 to 2015 for the Tokyo rain gauge were 

provided by Japan weather association (see Figure 5a). For the IDF curve definition, 

the Generalized Extreme Value (GEV) distribution was used. The GEV is a 

continuous probability distribution which combines the Gumbel, Frechet, and Weibull 

distribution. It is often used to model extreme rainfall based on extreme value theory 

(Coles et. al., 2001). In this study GEV parameters were estimated using L-moment 

(Hosking and Wallis, 2009). For the historical dataset (1940-2015), 20 years 

continuous sub-dataset with different ending years were sampled and 10 and 60 

minutes rainfall for return period equal to 3 years was estimated (see Figure 5b). In 

regards to the 60 minutes rainfall, the value showed 32% increase, increasing from 

40.7mm (1980) to 53.8mm (2015). 

To evaluate the design rainfall for the 2100 projection, the result of future 

storm rainfall intensity which is analyzed using GCM20 model. Kashiwai et al. 

(2008) indicated the change of the maximum annual hourly rainfall would be -30% to 

40% (2100) for over the study area. In this study, a senility analysis of the urban 

drainage system for current IFDs by 10%, 20%, 30% and 40% is proposed for 

evaluation of the existing urban drainage system against climate change (see Figure 
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6). The 3 hours duration events having 3 years return period rainfall is extracted from 

IFD curve for Tokyo rainfall station. The 180minutes event was used as the base line 

for the methodology of implementation of climate change scenarios.  

 

 
Figure 5. Annual maximum 10 and 60 minutes rainfall (a) and their values for 

return period equal to 3 years estimated by GEV distribution (b). 

 

Figure 6. Current IDF curve for T=3 years (1995-2015) and increase in current 
IDF by 10, 20, 30 and 40 %. 

 

Table 2 shows the results of the TSR model assessment for the climate change 

scenarios. For the event having 3 years return period and a 40% increase in the 

volume of rainfall, the infiltration would increase by about 10%, while the surface 
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direct runoff would increase by around 47%. The increase in final surface storage is 

substantially less than the surface direct runoff, with an increase of around 30%. The 

increase in number of flooded manholes would reach approximately 200%. The 

results of the TSR model analysis showed above indicate that the increase in the 

surface direct runoff is quite larger than the increase in infiltration and storage 

capacity.  

 

DISCUSSION AND CONCLUSION 
 
 In this study, TSR model was used for the case study urban catchment and 

several scenario of future climate change were implemented to evaluate its impact on 

the urban drainage system. The analysis presented in this study evaluated the urban 

drainage system by simple climate change scenarios with 180 minutes duration 

design rainfalls of 3 year return periods. These future design rainfalls were increased 

by factors of 10%, 20%, 30%, and 40% and the impacts of incremented rainfall 

events on the urban drainage system were assessed. It was indicated that the surface 

runoff would increase at higher percentages than infiltration loss and final surface 

storage. It may be conclude that future increased rainfall intensity due to climate 

change might have a substantial impact on the performance of the urban drainage 

system in the Upper-Kanda Catchment. 

 Another potential use of the model is detailed urban impact assessment of 

the higher rainfall extremes that are commonly expected in the future. We believe the 

methodology has a wide range of application for many practical problems such as 

evaluation of measures to improve flood protection facilities, which may include river 

channel improvements as well as installation of new runoff control facilities. The high 

level of detail used in the reproduction of the catchment is further very useful as it 

facilitates communication of the results, which is important in light of the recent trend 

towards increased stakeholder involvement in hydrological modeling. 

 

Table. 2 Results for the 3hrs design rainfall and the generated scenarios 

 

+ 0% + 10% + 20% + 30% + 40%

Total Precipitation (mm) 71.5 78.6 85.8 92.9 100.1
Infiltration Loss (mm) 13.5 13.9 14.3 14.6 14.8
Surface Runoff (mm) 58.0 64.7 71.5 78.3 85.3
Final Surface Storage (mm) 4.2 4.6 4.9 5.2 5.5
Flooded Manholes 570 828 1090 1389 1687
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