COUNTERMEASURES AGAINST ENVIRONMENTAL LOAD AT HIGHWAY SERVICE AREAS IN JAPAN

Naoko NAKAGAWA¹, Akira KAWAMURA¹ and Hideo AMAGUCHI¹

¹Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

ABSTRACT

In this study, the reduction on the environmental load by the replacement of conventional toilets with low environmental load toilets at highway service areas in Japan was quantified and a cost-benefit analysis concerning introducing low environmental load toilet such as waterless urinals and urine diversion toilets were performed. Moriya service area which is one of the large–scale service areas and Minori service area which is the middle–scale one were selected for the case study. As for the results, the environmental loads from the service area were reduced by introducing waterless urinals and urine-diverting toilets as urine was removed and water use was reduced. Concerning the cost, reduction of 210.9 and 16.5 thousand dollars, respectively, in Moriya and Minori service area was estimated by reducing the amount of water use. In order to consider the advantage of introducing the low environmental load toilets, a cost-benefit analysis was performed. Consequently, it was demonstrated that the payback period of the low environmental load toilets introduction are valuable for considering the cost of treatment for removed urine in this system. Concerning the treatment for removed urine, so far, utilization as a fertilizer in the rape blossoms field in the vicinity is considered, as little cost and energy as possible, for recycling nutrients back into the environment.

1 INTRODUCTION

The effect of climate change appears mostly through "water" such as rainfall patterns and it has a strong influence on water resources. Therefore the efficient water use has been becoming indispensable even in Japan.

Japanese highway service areas that have the basic facilities, such as: car service lots, toilets, and restaurants are required that those be comfortable, clean, safe, and environmental friendly. The Japanese highway management and maintenance company NEXCO owns about 300 of these service areas, where, on average a total of 50-80 toilets are present. They are considering replacing some of these conventional toilets with low environmental load ones in the near future not only to contribute to ecological conservation but also to save on water usage costs.

Flush toilets have been widely accepted by the public including the highway service because of their comfort and good sanitation. That being said, they have the following drawbacks (Nakagawa *et. al.*, 2001):

- 1. They consume a large share of water resources. Water consumed by flush toilets equals between 20 and 25% of domestic water use per person per day.
- 2. Substances discharged from flush toilets cause the eutrophication of rivers, seas, and lakes. It is said that the 80% of nitrogen and 60% of phosphorus contained in domestic sewage come from flush toilets.

Therefore the newly low environmental load toilets have been developed toilets instead of the existed toilets. The aim of this paper is that the reduction on the environmental load by the replacement of conventional toilets with low environmental load toilets at highway service areas in Japan was quantified and a cost-benefit analysis concerning introducing low environmental load toilet such as waterless urinals and urine diversion toilets were performed. Moriya service area which is one of the large–scale service areas and Minori service area which is one of the middle–scale one in Ibaraki prefecture was selected for the case study.

2 MATERIALS AND METHODS

2.1 Low environmental load toilets

Low environmental load toilets to be installed in the highway service area require the following conditions to be fulfilled:

① Having no unpleasant smells

- 2 Comfortable
- ③ Easy to maintain

Therefore, we considered the following low environmental load toilets as candidates to be installed in the highway service area.

Figure 1 shows a waterless urinal. This urinal requires no water at all. Urine is trapped in the storage area without the smell coming out by an oily liquid with a small relative density. The shape is easy to clean; however, regular maintenance is necessary. Figure 2 shows water recycling type urine-diverting toilet newly developed. It is newly developed in 2010 by combining existed urine-diverting toilets and water recycling toilet. The exterior view is same as the existed water recycling toilet (Nakagawa *et. al.*, 2009) but it has newly additional function of the urine diversion. Figure 3 shows the schematic of it. Urine can be trapped under the toilet bowl by a weight and time sensitive switch. The disposed flushing water was reduced up to 0.6 L per use by the sensitive switch made of electromagnet which controls the flushing water for the black water or it for washing the toilet bowl. The 2.2 L of the flushing water for the toilet bowl isn't mixed with the black water and recycled many times. The captured urine is sent down a separate pipe into a container where it can be collected and stored for further use. As long as it is not contaminated with feces, it can serve as an excellent fertilizer after a simple dilution treatment.

Figure 1. Waterless Urinal (INAX,2009)

Figure 5. Scnematic of water recycling urine-diverting toilet (Reinforce, 2010).

Figure 5. Schematic of Minori Service Area

Figure 2. Water recycling urine-diverting toilet (Reinforce,2010)

Figure 4. Minori Service Area in Ibaraki prefecture

Figure 6. Domestic wastewater treatment facility in Minori Service Area

Figure 7. Restroom for women at Minori Service Area.

Figure 9. Schematic of Moriya Service Area.

Figure 8. Moriya Service Area in Ibaraki prefecture.

Figure 10. Restroom for woman at Minori Service Area.

2.2	The Minori and Moriya Service Area in Ibarakı pretecture
-----	--

Table 1. Feature of Minori and Moriya Service Area

Case Study			Moriya SA	Minori SA
	Size of service area		Large	Medium
	Wastewater treatmen	ıt	Sewage	*DWTF
Num	ber of Users	/ Year	8,080,000	560,000
	Men	/ Year	4,202,000	351,000
	Women	/ Year	3,878,000	214,000
Number of	For Men		*U 64/ R 28	U 30/ R 10
Toilets	For Women		For kids 5/ R 80	For kids 0/ R 30
Tonets	For Handicapped		2	2
	Total Amount	m ³ /Year	132,670	16,138
	Total Cost	Dollar/Year	320,200	37,200
Amount of	For toilets	m ³ /Year	70,794	7,063
Water Use	Cost for toilets	Dollar/Year	170,862	16,281
water ese	Ratio of toilet			
	water use for entire	%	53.4%	43.8%
	facility			
Amount of Effluent		m ³ /Year	134,249	16,548
Cost for	sewage system	Dollar/Year	219,800	
	Total	kWh/Year	3,250,368	233,681
	Total Cost	Dollar/Year	426,900	35,200
	For water	kWh/Year	39,192	93,641
	treatment	K WH/ T Car		
Electricity	Cost for water	Dollar/Year	5,200	14 100
	treatment	Donar		11,100
	Ratio of water			
	treatment for entire	%	1.2%	40.1%
	facility			1

* DWTF : Domestic Wastewater Treatment Facility

*U 64/ R 28 : Number of Urinals is 64, Number of Regular Toilets is 28.

The Minori service area (Figure 4, Figure 5) is located about 100 km northeast of Tokyo, Japan and one of the middle–scale service areas. The feature of the Minori service area and Moriya service area are shown in Table 1. The effluent from this service is treated by the domestic wastewater treatment system (Figure 6). Figure 7 shows the restroom for woman at the Minori Service Area. The toilets are 10 L-type flush toilets with a bidet and a fountain of warm water. The Moriya service area (Figure 8, Figure 9) is located about 30 km northeast of Tokyo, Japan and one of the large–scale service areas. The effluent from this service is treated by the sewage treatment system. Figure 10 shows the restroom at the Moriya Service Area. The toilets are 8 L-type flush toilets with a bidet and a fountain of warm water. The feature of the Moriya service area is also shown in Table 1.

2.3 Estimation of environmental load reduction

In order to consider the advantage of introducing the low environmental load toilets, the water consumption, the energy consumption, and the cost that occurred when the old-type toilets were replaced with the low environmental load ones, were calculated. In this case, we assumed replacing all old-type toilets with the waterless urinals and the water recycling urine-diverting toilets newly developed as written in sections 2.1. The basic data required for the calculation were obtained from NEXCO LTD, INAX LTD, and Reinforce LTD as shown in Tables 1. The flush volumes of the toilets in the case of introducing waterless toilets and urine-diverting toilets are shown in Table 2.

	Existing toilets				I and an elizabeth and tailete		
	Mi	nori PA	Moriya SA		Low environmental load tollets		
L/flush	Men	Women	Men	Women	Men	Women	
For feces	10	10	8	0	0.6	0.6	
For Urine	6	10	4	0	0	0	0.0

 Table 2.
 Flush volume of the toilets

3 RESULTS AND DISCUSSION

In both Minori and Moriya cases, the black water removed by the low environmental load toilets was assumed to be used effectively as fertilizer. The results of the estimation concerning the environmental loads by assuming the installation of waterless urinals and water recycling urinediverting toilets are shown in Table 3. The amount of water use was reduced 30-40 % by introducing low environmental load toilets with low flush. Especially the reduction of water consumption is significant in the Moriya service area which is large-scale service area. Besides the influent to the sewage pipe and domestic wastewater facility is reduced by reduction of flush water volume, and along with it, the sewage cost and the cost of electricity concerning the domestic water treatment facility are also reduced in Moriya and Minori service area respectively. Concerning the energy consumption, in Moriya service area, it was increased because of the electric power to make the flushing water circulate and introducing many water recycling urine-diversion toilets. Considering the reduction of sewage cost mentioned above, the reduction of 210.9 thousand dollar per year was estimated in Moriya service area. Regarding Minori service area, reduction of 16.5 thousand dollar was estimated by reducing the energy consumption at the domestic wastewater treatment in spite of increasing the electricity concerning the water recycling urine-diversion toilets.

In order to consider the advantage of introducing the low environmental load toilets, a costbenefit analysis was performed. In this analysis, all conventional toilets in the Moriya and Minori service area were assumed to be replaced with the waterless urinals and urine diversion toilets and the payback period was calculated. In other words, the required period for the cost generated by the introduction of those of low environmental load toilets to be paid back, by reduction of water and energy consumption, was calculated in cost aspect. Table 4 shows the cost for introducing the low environmental load toilets and cartridges which is part of the waterless urinals. These data are got from INAX LTD, Reinforce LTD.

Consequently, it was demonstrated that the payback period of the low environmental load toilets introduction was 4 and 19 years in case of Moriya and Minori service area respectively, in the cost aspect. This result of the estimation is valuable for considering the cost of treatment for removed urine in this system. Concerning the treatment for removed urine, so far, using it as a fertilizer in the rape

blossoms field in the vicinity is considered, without neither the cost nor energy as possible, for recycling nutrients back into the environment.

	Case Study	Moriya SA	Minori SA	
	Total amount	After introducing	81,186	11,482
	(m ³ /Year)	Amount of reduction	51,484	4,656
A	Total cost	After introducing	201,300	26,444
Amount of Water Use	(dollar/Year)	Amount of reduction	118,900	10,756
water Use	For toilets (m ³ /Year)	After introducing	19,310	2,407
	Reduction rate for to	ilet use (for total amount)	39% (27%)	34 % (29%)
	Amount of remov	ed urine (m ³ /Year)	1,616	112
	Amount of wastewater After introducing		81,149	11,780
Waste water	(m3/Year)	Amount of reduction	53,100	4,768
treatment	Cost for sewage system	After introducing	131,900	
	(Dollar/Year)	Amount of reduction	87,900	
	Reduction ra	te of wastewater	40 %	29 %
	Total amount	After introducing	3,219,780	195,448
	(kWh/Year)	Amount of reduction	30,588	38,233
	Total cost	After introducing	4,229	294
Electricity	(dollar/Year)	Amount of reduction	40	58
	For water treatment	After introducing	8,606	88,027
	(dollar/Year)	Amount of reduction	30,588	25,614
	Reduction rat	e for total amount	1 %	16 %

Table 3. Results of estimation assuming the installation of waterless urinals and urine-diverting toilets

Table 4. Cost for introducing the low environmental toilets

Case Stu	Moriya SA	Minori SA	
	Waterless Urinals	207,200	97,300
Cost for introducing the low	wateriess ormais	(64 units)	(30 units)
environmental toilets	Water recycling urine-	432,000	160,000
	diversion toilets	(108 units)	(40 units)
(dollar/Year)	Total	639,200	257,300
Cost of cartridge for waterle	31,200	2,600	
Amount of cost reduction b			
environmenta	210,900	16,500	
(dollar/Y			

4 CONCLUSIONS

In this study, the reduction on the environmental load by the replacement of conventional toilets with low environmental load toilets at highway service areas in Japan was quantified and a costbenefit analysis concerning introducing low environmental load toilet such as waterless urinals and urine diversion toilets were performed. Moriya service area which is one of the large–scale service areas and Minori service area which is the middle–scale one were selected for the case study. As for the results, the environmental loads from the service area were reduced by introducing waterless urinals and urine-diverting toilets as urine was removed and water use was reduced. Concerning the cost, reduction of 210.9 and 16.5 thousand dollars, respectively, in Moriya and Minori service area was estimated by reducing the amount of water use. In addition, it was demonstrated that the payback period of the low environmental load toilets introduction was 4 and 19 years in case of Moriya and Minori service area respectively.

ACKNOWLEDGEMENTS: This research presents the results of the research project "Solutions for the water-related problems in Asian metropolitan areas" supported by the Tokyo Metropolitan

Government. The authors are grateful to NEXCO LTD. ,INAX LTD, and Reinforce LTD for providing valuable data.

REFERENCES

Japan, INAX. August 1, 2008. *Water saving toilet for public facilities* (in Japanese). <u>http://www.departshinbun.com/cleanhit080801.htm</u> Accessed: July 21, 2009.

Japan, Reinforce. February 3, 2000. (in Japanese).

http://www.reinforce.co.jp Accessed: July 21, 2009.

- Nakagawa, N., M. Otaki, K. Ishizaki (2001), The technical trend at the low environmental load type toilets in Japan, Proceedings of IWA 2nd World Water Congress, 240-248.
- Nakagawa.N., A.Kawamura,H. Amaguchi (2009),Estimation of Environmental Load Reduction at Highway Service Area in Japan by Introducing Low Environmental Load Toilets,Proceedings of International Conference on Hydrology and Disaster Management, UNESCO-IHP, 198-203.