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EXTENDED ABSTRACT 

A number of studies have discussed connections 
between El Niño phenomenon and unusual 
weather. Although El Niño phenomenon has 
obvious impacts on weather of the low-latitude 
area surrounding the Pacific, the connections 
between El ñino and unusual weather in mid-
latitude area are not fully understood. The distance 
between mid-latitude and the area where the El 
Niño happens would be crucial reason why their 
relationships are rather obscure. Moreover, the 
weather in mid-latitude is not only affected by El 
Niño but also by several other kinds of climate 
factors such as intensity of Aleutian low pressure 
system. These complexities also obscure the 
influence of El Niño on the weather in mid-latitude 
and impose the need of considering several kinds 
of climate phenomena simultaneously in order to 
understand the unusual weather in mid-latitude. 
 
This study has two objectives. The first objective 
is to classify climate patterns in the past using non-
linear classification method, which is Self-
Organizing Maps. The Self-Organizing Maps 
(SOM) algorithm is utilized as a classification 
method, because the SOM is capable of classifying 
high dimensional data on low dimensional arrays, 
enabling us to recognize hidden patterns in high 
dimensional data. The second objective of this 
study is to investigate the possible relationships 
between the classified climate patterns and rainfall 
and temperature in the city of Fukuoka, Japan. 
 
In order to classify climate patterns, we use several 
kinds of climate indicators, namely the Southern 
Oscillation Index (SOI), Pacific Decadal 
Oscillation Index (PDOI), North Pacific Index 
(NPI), and Dipole Mode Index (DMI) for the 
period 1901 to 2002. The application of SOM for 
these indices detects climate patterns which 
occurred during the first two decades of the 

twentieth century and also detects the patterns 
which have been observed since the 1960s. 
 
Investigation of the relationships between the 
identified climate pattern and rainfall and 
temperature in Fukuoka reveals that when La Niña 
phenomenon happens, PDO is in strong negative 
phase, the development of Aleutian low is weak 
and dipole mode in the Indian Ocean is in strong 
negative mode, AMJ (April, May and June) and 
JAS (July, August and September) temperature of 
Fukuoka in the next year tend to become extremely 
low. 
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1. INTRODUCTION 
 
A number of studies have investigated the impacts 
of climate change on weather in various locations 
over the world (Beniston et al, 1994; Qian et al, 
2001). One of the most prominent climate 
phenomena is ENSO (El Niño Southern 
Oscillation), of which extensive studies have been 
done in order to reveal the mechanism of its 
occurrence and to investigate relationships 
between the occurrence of El Niño (or La Niña) 
and unusual weather in various places (Rolelewski 
and Halpert, 1987). Although the impacts of El 
Niño on regional weather is reasonably clear in the 
low latitudes surrounding the Pacific, the impacts 
on mid latitudes is rather obscure. One of the 
principal reasons for this difficulty in mid latitudes 
would be the distance from the tropical zone where 
ENSO event occurs. The facts that weather in mid 
latitudes is not only affected by ENSO but also by 
various kinds of atmospheric-oceanic factors, such 
as the development of Aleutian low, would be also 
crucial reasons why impacts of El Niño for mid 
latitudes have indistinctness. For these reasons, if 
we considered the state of various climate factors 
simultaneously, it would be very helpful in 
evaluating the relationships between climate 
factors and their impacts on mid latitudes.   
 
One of the objectives of this study is to identify 
climate patterns represented by four different kinds 
of atmospheric-oceanic indices: SOI (Southern 
Oscillation Index), PDOI (Pacific Decadal 
Oscillation Index), NPI (North Pacific Index) and 
DMI (Dipole Mode Index) for the period 1901 to 
2002. We employ Self-Organizing Maps (SOM) in 
order to classify climate patterns that appeared 
during the period from 1901 to 2002. Another 
objective of this study is to investigate the possible 
relationships between the classified climate 
patterns and rainfall and temperature in the city of 
Fukuoka, Japan.  
 
2. DATA  
 
The Southern Oscillation Index (SOI), Pacific 
Decadal Oscillation Index (PDOI), North Pacific 
Index (NPI) and Dipole Mode Index (DMI) are 
used to investigate the relationship between large 
scale climate factors and the precipitation and 
temperature in the city of Fukuoka. The original 
data are at the monthly scale. However, we 
compute annual averaged time series for each of 
the climate indices, and then transform each of the 
annual averaged time series into the non-
exceedance probability time series. The non-
exceedance probability time series are used for the 
analysis in this study. The data period used in the 
analysis is from 1901 to 2002.  

 
2.1. Precipitation and temperature in Fukuoka 
 
Precipitation and temperature in Fukuoka have 
been recorded since January 1890. As the 
temperature in Fukuoka has remarkably increasing 
trend, we estimate the linear trend after the year of 
1937 against annual mean temperature using least 
square method, and remove the estimated linear 
trend from the original time series (Figure 1).  The 
detrended temperature is used throughout this 
study. 
 
2.2. SOI 
 
A well-known atmospheric phenomenon is the 
Southern Oscillation (SO). The SO is an 
atmospheric see-saw process in the tropical Pacific 
sea level pressure between the eastern and western 
hemispheres associated with the El Niño and La 
Niña oceanographic features. The oscillation can 
be characterized by a simple index, the Southern 
Oscillation Index (SOI). (Kawamura et al. 1998). 
This index is used by NOAA (The National 
Oceanic and Atmospheric Administration) to 
evaluate when El Niño and La Niña occur 
(Japanese Study Group for Climate Impact & 
Application 1999). The feature is known as the El 
Niño Southern Oscillation (ENSO) phenomenon. 
The SOI is derived from monthly mean sea level 
pressure differences between Papeete, Tahiti 
(149.6°W, 17.5°S) and Darwin, Australia (130.9°E, 
12.4°S). The database for the calculation of the 
SOI in the present study consists of 137 years of 
monthly mean sea level pressure data at Tahiti and 
Darwin from January 1866 to December 2002. The 
data are from Ropelewski and Jones (1987) and 
Allan et al. (1991), who carefully infilled all 
missing values by correlation with data from other 
observation stations. The data before 1920 are 
somewhat less reliable than the latter ones 
(Kawamura et al. 1998). For details of statistical 

Figure 1. annual mean temperature (blue line) and 
detrended annual mean temperature (red line) in 

Fukuoka. Horizontal axis shows year and  vertical 
axis shows temperatures in degree C. 

1534



and long-term characteristics of SO, SOI and their 
barometric pressure data, refer to Kawamura et al. 
(2002) and Jin et al. (2003). 
 
2.2. PDOI 
 
The Pacific Decadal Oscillation (PDO) is 
described as a long-lived pattern of Pacific climate 
variability, somewhat like El Niño. PDO has two 
phases (the warm and cool phases), and each phase 
persisted for 20 to 30 years in the 20th century. 
The fingerprints of PDO are most visible in the 
North Pacific/North American region. Several 
studies found evidence for just two full PDO 
cycles in the past century: cool phases occurred 
during the periods 1890-1924 and 1947-1976, 
while warm phases prevailed during the periods of 
1925-1946 and 1977 through the mid-1990s 
(Mantua et al. 1997). 
 
PDOI is the leading principal component of 
monthly sea surface temperature (SST) anomalies 
in the North Pacific Ocean north of 20°N (Zhang 
et al. 1997; Mantua et al. 1997). The PDOI data 
since 1900, which are used in this study, are from 
the website of the Joint Institute for the Study of 
the Atmosphere and Ocean [http://tao.atmos. 
washington.edu/main.html]. 
 
2.3. NPI 
 
Trenberth and Hurrell (1994) have defined the 
North Pacific Index (NPI) as the area-weighted sea 
level pressure over the region 30°N to 65°N, 
160°E to 140°W to measure the decadal variations 
of atmosphere and ocean in the north Pacific. They 
found that this index is highly correlated with the 
leading principal component of the 500 hPa 
geopotential height. NPI is also a good index for 
the intensity of the Aleutian Low pressure cell. 
NPI data since 1899 are from the website of the 
University Corporation for Atmospheric Research 
[http://www.ucar. edu/ucar/index.html]. 
 
2.4. DMI 
 
Saji et al (1999) have reported a dipole mode in 
the Indian Ocean, a pattern of internal variability 
with anomalously low sea surface temperatures off 
Sumatra and high sea surface temperatures in the 
western Indian Ocean, with accompanying wind 
and precipitation anomalies. The intensity of the 
dipole mode can be defined using the Dipole Mode 
Index, which describes the difference in the sea 
surface temperature  anomaly between the tropical 
Indian Ocean (50°E-70°E, 10°S-10°N) and the 
tropical south-eastern Indian Ocean (90°E-110°E, 
10°S-Equator). 
 

 
3. METHODS 
 
3.1. Self-Organizing Maps 
 
In this study, the Self-Organizing Maps (SOM) 
algorithm is employed in order to classify the 
climate patterns represented by the above four 
kinds of climate indices, because the SOM is 
capable of classifying high-dimensional data on 
low-dimensional arrays, enabling us to compare 
patterns in high-dimensional data (e.g. climate 
patterns represented by the four kinds of climate 
indices).  
 
The Self-Organizing Map (SOM) is an 
unsupervised learning algorithm, which was 
proposed by T. Kohonen (1992). The SOM has its 
advantages in visualization and abstraction of 
complex nonlinear statistical relationships in a set 
of data. The SOM enables the visualization and 
abstraction by compressing the information in 
high-dimensional data onto low-dimensional 
regular grids. 
 
The following explains a basic version of the SOM 
algorithm, although many versions of the SOM 
exist. Suppose we have s samples and each of the 
samples consists of d dimensions. Each of the 
samples is denoted as input vector x, and thus 
every input vector has d dimension. The 
application of SOM on a given data set creates 
two-dimensional map that is composed of a 
number of nodes. Every node i on the map 
contains a reference vector ri, which has d 
dimensions.  
 
The following procedures describe how reference 
vectors learn the representative patterns in input 
vectors. The first step is to detect winner node mw. 
A randomly selected input vector x is compared 
with every reference vectors. Although this 
comparison can be done using any metric, Euclid 
distance is usually used. By comparing the 
distance between the input vector x and every ri 
using the metric, the winner node mw is identified. 

The second step updates reference vector in the 
node i. After the identification of winner node mw, 
the following equation updates the reference vector 
ri:  

[ ])()()()()1( tirtxtwihtirtir −+=+                       (1) 

where t refers to the regression step, and hwi(t) is a 
neighborhood function. In this study, the Gaussian 
function is employed as the neighborhood 
function: 
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where pi is the distance of vector position between 
the node i and winner node mw, α(t) is some 
monotonic decreasing function with t, σ(t) is also 
some monotonic decreasing function and defines 
the width of the kernel. In this study, α(t) and σ(t) 
are given by 
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The final step is classification of input vectors onto 
the two-dimentional map. Every input vector is 
compared with all the reference vectors, and each 
of the input vectors is classified in the node to 
which the best much reference vector belongs. 

 
3.2. Quantization Error (QE) 

SOM composes nodes and reference vectors on 
two-dimentional map, assigning every input 
vectors to the node in which most similar reference 
vector exists. In this study, classification 
accuracies for each of the nodes are evaluated by 
QE, which for the ith node on the map is given by 
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where subscript i indicates the ith node on the map, 
m is number of input vectors assigned into the 
node i, d is the dimension of input vector. Low 
value of QE in the ith node indicates that input 
vectors in the ith node shows good similarities for 
their reference vector. 
 
3.3. Non-Exceedance probability 
 
The non-exceedance probability time series of 
climate indices are computed using the following 
plotting position formula. 
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where N is the number of samples, i is the ordered 
rank of a sample value. In this study, the rank is 
given from the smallest to the largest to obtain 
non-exceedance probabilities. The parameter α is 
set as 0.  
 
4. RESULTS & DISCUSSION 
 

4.1. Classification of annual averaged climate 
indices 
 
In this section, we classify the four kinds of 
climate indices, which are SOI, PDOI, NPI and 
DMI, in order to identify the climate patterns 
represented by them. 
 
As the first step, we compute annual averages for 
each of the four indices and then transform each of 
the time series into non-exceedance probability 
time series. As a result, we obtain 102 inputs, each 
of which shows climate pattern of the nth year (see 
below). 
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Subscript on each indices shows the year. Notice 
that each of the indices is transformed into non-
exceedance probability; all components of input 
vectors are in the range between 0 and 1. Figure 2 
illustrates the result of applying SOM for these 
102 inputs. The SOM classifies the 102 years of 
climate patterns represented by the four indices 
onto the 25 nodes, as shown in the figure. For the 
rest of this paper, the map shown in Figure 2 will 
be referred to as CI-map (i.e. Climate Indices-map). 
Furthermore, sequence of numbers, which starts 
from top left of CI-map and end in bottom right on 
the map, is given for each node. For instance, the 
node number 1 is given for the node on the top left, 
5 for the top right, 21 for the left bottom and node 

Figure 2. The map obtained by applying SOM for 
the 102 inputs. The number written in each node 

indicates the number of data classified in the 
node. QE of each node is shown in red colour.
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number 25 for the node on the bottom right on the 
CI-map. 
 
As the next step, we examine the shift of climate 
patterns during the 102 years considered. Figure 3 
(a) and (b) shows that climate patterns in node 5 
and 6 occurred before 1921 and these patterns have 
not occurred since 1921, suggesting possible 
changing of frequency of the appearance in the 
climate Figure 3(c) indicates that climate pattern in 
the node 21 has appeared only since the 1950s. 
 
Figure 4 is a radar chart of the representative 
pattern (i.e. reference vector) in the node 5 and 6. 
Both of the patterns show neutral value for PDOI 
and high value for NPI, while the pattern in the 
node 6 shows high value for SOI and low value for 
DMI, indicating the occurrence of La Niña in the 
Pacific Ocean and negative mode of dipole mode 
phenomenon in the Indian Ocean. Figure 3(c) 

shows the representative pattern in node 21, which 
has appeared since around the 1960s. In particular, 
this pattern has increasingly occurred since the 
1980s. Climate pattern in Figure 5 shows strong 
negative modes (approximately 0.2 in non-
exceedance probability) for SOI, NPI and DMI in 
contrast with the strong positive mode of PDOI. 
 
4.2. Relationships between climate pattern and 
rainfall and temperature in Fukuoka 
 
In this section, we investigate the relationships 
between the identified climate patterns and rainfall 
and temperature in Fukuoka, Japan. For each node 
of the CI-map, we create histograms, each of 
which shows the distribution of annual rainfall (or 
annual averaged temperature) in the same year 
when the climate pattern in the node occurs. We 
also draw histograms of annual rainfall and 
temperature for the next year against the 

Figure 4. Radar chart of reference vector for the 
node 5 (drawn in red) and for the node 6 (drawn in 
green).  Each of the 4 axes shows non-exceedance 

probalilities of SOI (top), PDOI (right), NPI 
(bottom) and DMI (left)  

Figure 5. Radar chart of reference vector in node 21 
(axes are the same as figure 5) 

Figure 3. Histograms which shows the years of data classified in each node. Histogram (a) is drawn 
for the node 5, (b) is for the node 6 and (c) is for the node 21. Horizontal axis shows each of 10 years 
starts from 1901 and end in 2002. For instance, 1901 in the horizontal axis means the 10 years from 

1901 to 1910 and vertical axis shows how many data in the node are in the 10 years. 

(a) node  5          (b) node 6                                          (c) node 21 
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Figure 6. Histogram of non-exceedance 
probabilities in Fukuoka for the next year of the 

appearance of pattern in the node 1 
Horizontal axis shows the temperature in 

Fukuoka transformed into the non-exceedance 
probabilities and vertical axis shows  frequency. 

appearance of the climate pattern in each node, in 
order to examine possible time lags between the 
presence of a climate pattern and the response of 
weather in regional scale. 
 
As a result, remarkable tendency between climate 
pattern in the node 1 and unusual low temperature 
of Fukuoka in the next year is detected (Figure 6). 
Notice that the 1 year lagged annual mean 
temperature is transformed into non-exceedance 
probability. Figure 7 gives a radar chart of the 
representative climate pattern (i.e. reference 
vector) in node 1. Considerable feature on Figure 7 
is the remarkable high values of SOI and NPI, 
while extremely low values for PDOI and DMI. 
The climate patterns in node 1 occurred in the 
years 1916, 1950, 1964, 1971 and 1975 (during the 
past 102 years), and Figure 6 indicates when a year 
shows climate pattern in node 1, the annual 
averaged temperature in Fukuoka for the next year 
is lower than that in normal years. 
 
As a next step, we divide each year into quarter 
terms which are JFM (January, February and 
March), AMJ (April, May and June), JAS (July, 
August and September) and OND (October, 
November and December), in order to evaluate the 
impacts of the climate pattern in the node 1 on 
variation of temperature in quarterly time scale. 
Quarterly variation of temperature in the next year 
for the appearance of climate pattern in node 1 is 
shown in Figure 8. As can be seen, when climate 
pattern in a year is in node 1, most of quarterly 
term temperature in the next year tends to show 
lower values than usual. In particular, quarterly 
terms of AMJ and JAS manifest remarkably low 
temperatures. 

 
5. CONCLUSION 
 
This study conducted classification of climate 
indices on yearly basis and examined the response 
of rainfall and temperature in Fukuoka for the 
identified climate patterns. 
 
The classification of climate indices identified 
climate patterns which appeared in the first two 
decades of twentieth century and also detected the 
patterns which have been observed since the 1960s. 
 

Figure 7. Radar chart of reference vector in node 1 
(axes are the same as figure 5) 

Figure 8. Linear plot of three months averaged  
(JFM; January, February, March, AMJ; April, 

May, June, JAS; June, August, September, 
OND; October, November, December) non-

exceedance probabilities in Fukuoka for the next 
year of the appearance of climate pattern in node 

1. Horizontal axis shows the three month 
averaged season (i.e. JFM, AMJ, JAS and OND) 

and vertical axis shows corresponding non-
exceedance probabilities. 
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Investigation of the relationships between the 
identified climate pattern and rainfall and 
temperature in Fukuoka revealed that when La 
Niña phenomenon happened, PDO was in strong 
negative phase, the development of Aleutian low 
was weak and dipole mode in the Indian Ocean 
was in strong negative mode, AMJ and JAS 
temperature of Fukuoka in the next year tended to 
become extremely low. 
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