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EXTENDED ABSTRACT 

The state of the atmosphere and ocean can be 
characterized by climate indices. One of the well 
known indices is the Southern Oscillation Index 
(SOI).  SOI measures the sea level pressure 
difference between Tahiti and Darwin, indicating 
the occurrence of the El Niño phenomenon in the 
Central Pacific region. The Pacific Decadal 
Oscillation Index (PDOI) represents decadal scale 
atmosphere-ocean oscillation in the Pacific Ocean 
while the North Pacific Index (NPI) measures the 
intensity of the Aleutian low pressure cell 
( Kawamura et al. 2003). 

A number of researchers have studied the 
possibility of forecasting rainfall several months in 
advance using climate indices such as SOI, PDOI 
and NPI (e.g. Silverman and Dracup, 2000). 
Furthermore, the existence of substantial databases 
of sea surface temperature anomalies (SST) opens 
the possibility of using these data to forecast 
rainfall several months in advance. Most of the 
research carried out in this area has used traditional 
statistical methods such as linear correlation or 
time series methods to identify the significant 
variables. These methods test for a linear 
relationship between the independent variables and 
rainfall, whereas the relationships are more likely 
to be non-linear as the underlying processes are 
themselves non-linear. 

This paper describes the use of partial mutual 
information (PMI) to identify the significant inputs 
for medium term rainfall forecasting in Japan. In 
particular, a study is made of monthly rainfall in 
the City of Fukuoka. Fukuoka, which is located in 
the northern part of Kyushu Island, is vulnerable to 
drought. In fact, the city was affected by 
devastating droughts in 1978 and 1996 (Kawamura 
and Jinno, 1996). Therefore a more successful 
rainfall prediction model would be of great benefit 
to the city. 

 

The possible inputs considered include the SOI, 
NPI and PDOI as well as SST in selected locations 
from a 5°x 5° grid in the Pacific Ocean. The 
selected inputs are used to develop artificial neural 
network models (ANNs) to forecast rainfall in 
Fukuoka several months in advance.  

Six distinctive scenarios are considered in this 
study. Three of the scenarios use input data with 
lags between 1 month and 12 months and the other 
three scenarios use data with lags between 3 
months and 12 months in order to investigate the 
possibility of forecasting more than 3 months in 
advance.  The three scenarios considered for the 
two different ranges of lags are as follows: 
(1) use only SST as candidate predictors 
(2) use only climate indices as candidate predictors 
(3) use both SST and climate indices as candidate 

predictors 
One of the objectives of this study is the 
identification of a possible relationship between 
rainfall in Fukuoka and hydro-climatic variables 
such as SST and climate indices, using partial 
mutual information. The other objective is to 
verify the forecasts produced using the predictors 
identified with partial mutual information and 
investigate whether the inclusion of SST in 
addition to climate indices improves the prediction 
accuracy. 
It is found that the North Pacific Index (NPI) 
lagged by 6 months has a strong relationship with 
August rainfall in Fukuoka. Some improvement in 
forecasts can be achieved by including sea surface 
temperature anomalies as additional inputs. 
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1. INTRODUCTION 

 Climatic variability and its effect on human 
activity have been discussed many times in the 
literature. One of the most crucial issues of global 
climatic variability is its effect on water resources. 
If more accurate predictions of rainfall were 
possible, this would enable more efficient 
utilization of water resources. However, long-term 
rainfall prediction models are still unsatisfactory, 
whereas short-term rainfall prediction models have 
undergone significant development. The probable 
reasons for the difficulties in conducting long-term 
rainfall prediction are the complexity of 
atmosphere-ocean interactions and the uncertainty 
of the relationship between rainfall and hydro-
meteorological variables.  

So far, long-term climate prediction using 
numerical models has not demonstrated useful 
performance, and statistical models have shown  
better performance than numerical models (Zwiers 
and Von Storch, 2004). Consequently, in this study 
Artificial Neural Networks and linear regression 
models have been applied to nonlinear and linear 
statistical rainfall prediction. Moreover, Partial 
Mutual Information (PMI) is used to identify 
nonlinear relationships between rainfall and hydro-
climatic variables. The PMI method was first 
applied to water resources variables by Sharma 
(2000) and Sharma et al. (2000) in order to detect 
nonlinear relationships between them. In this 
study, the hydro-climatic variables considered are 
sea surface temperatures (SST) and climatic 
variability indices such as Southern Oscillation 
index (SOI), Pacific Decadal Oscillation Index 
(PDOI) and North Pacific Index (NPI). 

Monthly rainfall data for Fukuoka, which is 
located in the northern part of Kyushu Island, is 
predicted in this study. Fukuoka is vulnerable to 
drought having been affected by devastating 
droughts in 1978 and 1996 (Kawamura and Jinno, 
1996). Therefore, a better rainfall prediction model 
would be beneficial for the city. 

This paper consists of two sections. Firstly, the 
partial mutual information between August 
Rainfall in Fukuoka and hydro-climatic variables 
were computed in order to identify the predictors. 
Secondly, forecasting of August rainfall using the 
identified inputs was conducted using Artificial 
Neural Networks. 

2. DATA 

The Southern Oscillation Index (SOI), Pacific 
Decadal Oscillation Index (PDOI) and North 
Pacific Index (NPI) were used to investigate the 
relationship between global scale climatic 

variability and the precipitation in Fukuoka. 
Similarly, data from a 5°×5° grid of Sea Surface 
Temperature anomalies in the Pacific ocean were 
used in order to detect the possible effect of 
regional SST on precipitation. All of the data used 
in this study are monthly values. 

2.1 Precipitation in Fukuoka 

Precipitation in Fukuoka has been recorded 
since January 1890. Figure 1 shows the average, 
standard deviation, maximum, and minimum 
monthly precipitation (January – December) for 
this period. From Figure 1, it can seen that June, 
July, August and September have high average 
precipitation. Precipitation from June to September 
is therefore of critical importance in order to 
maintain a reliable water supply. Preliminary 
analyses indicated that August rainfall has 
comparatively high correlation with the three 
climatic indices (SOI, PDOI, NPI), therefore 
August rainfall has been selected as the predicted 
variable in this study.  

Monthly precipitation in Fukuoka is not 
normally distributed but is positively skewed. 
Consequently, a cubic root transformation was 
carried out in order to normalize the data. The 
normalized monthly precipitation data were 
standardized to a mean of zero and a standard 
deviation of one, by subtracting the normalized 
monthly mean and dividing by the normalized 
standard deviation for the base period 1901 – 
2002. These normalized and standardized 
precipitation data are used in this study. 

2.2 SOI 

A well-known atmospheric phenomenon is the 
Southern Oscillation (SO). The SO is an 
atmospheric see-saw process in the tropical Pacific 
sea level pressure between the eastern and western 
hemispheres associated with the El Niño and La 
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Figure 1. Mean, standard deviation, maximum, and 
minimum monthly precipitation in Fukuoka, Japan 
(1=January, 12=December). 
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Niña oceanographic features. The oscillation can 
be characterized by a simple index, the Southern 
Oscillation Index (SOI). (Kawamura et al., 1998). 
This index was used by NOAA (The National 
Oceanic and Atmospheric Administration) to 
evaluate when El Niño and La Niña are occurring 
(Japanese Study Group for Climate Impact & 
Application, 1999). The feature is known as the El 
Niño Southern Oscillation (ENSO) phenomenon. 

The SOI was derived from monthly mean sea 
level pressure differences between Papeete, Tahiti 
(149.6°W, 17.5°S) and Darwin, Australia 
(130.9°E, 12.4°S). The database for the calculation 
of the SOI in the present study consists of 137 
years of monthly mean sea level pressure data at 
Tahiti and Darwin from January 1866 to December 
2002. The data were obtained from Ropelewski 
and Jones (1987) and Allan et al. (1991), who 
carefully infilled all missing values by correlation 
with data from other observation stations. The data 
from before 1920 are somewhat less reliable than 
the later values (Kawamura et al., 1998). For the 
details of statistical and long-term characteristics 
of SO, SOI and their barometric pressure data refer 
to Kawamura et al. (2002) and Jin et al. (2003). 

2.2. PDOI 

The Pacific Decadal Oscillation (PDO) is 
described as a long-lived pattern of Pacific 
climatic variability somewhat like El Niño. PDO 
has two phases (the warm and cool phases), and 
each phase persisted for 20 to 30 years in the 20th 
century. The fingerprints of PDO are most visible 
in the North Pacific/North American region. 
Several studies found evidence for just two full 
PDO cycles in the past century: cool phases 
occurred during the periods 1890-1924 and 1947-
1976, while warm phases prevailed during the 
periods of 1925-1946 and 1977 through the mid-
1990s (Mantua et al., 1997). 

PDOI is the leading principal component of 
monthly sea surface temperature (SST) anomalies 
in the North Pacific Ocean north of 20°N (Zhang 
et al., 1997; Mantua et al., 1997). The PDOI data 
since 1900, which are used in this study, were 
obtained from the website of the Joint Institute for 
the Study of the Atmosphere and Ocean 
[http://tao.atmos. washington.edu/main.html]. 

2.3. NPI 

Trenberth and Hurrell (1994) have defined the 
North Pacific Index (NPI) as the area-weighted sea 
level pressure over the region 30°N to 65°N, 
160°E to 140°W to measure the decadal variations 
of atmosphere and ocean in the north Pacific. They 
found that this index is highly correlated with the 

leading principal component of the 500 hPa 
geopotential height. NPI is also a good index for 
the intensity of the Aleutian Low pressure cell. 
NPI data since 1899 were obtained from the 
website of the University Corporation for 
Atmospheric Research [http://www.ucar. 
edu/ucar/index.html]. 

2.4 Sea Surface Temperature Anomalies 

In this study, Kaplan sea surface temperature 
anomalies were used. These are global sea surface 
temperature anomalies using monthly data on a 5°
×5° grid (Kaplan et al. 1998; Parker et al. 1994; 
Reynolds et al. 1994). The data were provided on 
the website of the International Research Institute 
for climate prediction [http://iri.columbia.edu/]. 
The available sea surface temperature anomalies in 
the Pacific Ocean (42.5S-32.5S, 117.5E-242.5E, 
27.5S-7.5N, 117.5E-287.5E and 12.5N-62.5N, 
117.5E-242.5E) for the period of January 1856 to 
December 2002 were used for computation in this 
study.  

3. METHODS 

The procedures crucial for developing the 
prediction model are the identification of 
predictors and the determination of which 
prediction model to employ. As the first step of 
this study, PMI scores between candidate inputs 
and the desired output (i.e. the August rainfall 
which is transformed and standardized as 
described above) were computed for six different 
scenarios in order to detect suitable inputs for 
forecasting. After the input identification process, 
the selected inputs were utilised for forecasting 
using Artificial Neural Networks models. It is 
expected that the non-linear relationships captured 
by the PMI algorithm will best be represented in 
the predictions using ANNs.  

3.1 Partial Mutual Information 

Determination of the inputs for forecasting is 
one of the most important steps in the model 
development process. Cross-correlation is widely 
used for selecting appropriate predictors, however 
it is only able to detect linear relationships between 
predictors and outputs. Hence, non-linear 
relationships between potential inputs and the 
output might not be detected. Therefore, in 
identifying suitable inputs for the prediction, the 
stepwise Partial Mutual Information (PMI) 
algorithm was used in this study. This algorithm 
was proposed by Sharma (2000) as a method to 
capture both linear and non-linear relationships 
between model inputs and output and modified by 
Bowden et al. (2005).  
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The PMI algorithm applied in this study is as 
follows: 

1. Identify the set of variables that are likely to 
be useful predictors of the system being 
modelled. Denote this variable set as the 
vector zin. Denote the vector that will store the 
final predictors of the system as z. This is a 
null vector at the start of the algorithm. 

2. Estimate the PMI between the dependent 
variable y and each of the plausible new 
predictors in zin, conditional on the pre-
existing predictor set z. 

3. Identify the variable in zin having the highest 
PMI score in step 2. 

4. Use the bootstrapping method to estimate the 
99th percentile sample PMI score for the 
variable identified in step 3. 

5. If the PMI score for the identified variable is 
higher than 99th percentile randomised sample 
PMI score of step 4, include the variable in the 
predictor set z, and remove it from zin. If the 
dependence is not significant, go to step 7. 

6. Repeat steps 2-5 as many times as are needed. 
7. This step will be reached only when all the 

significant predictors have been identified. 
 
PMI scores between August rainfall and the 
following 6 sets of inputs were computed:  

(a) SSTa for lag 1 to 12 months 

(b) Four climate indices (SOI, PDOI, NPI) for lags 
1 to 12 months 

(c) The data which showed significant PMI score 
in the PMI computation for (a) and (b),  

(d) SSTa for lags 3 to 12 months 

(e) Four climate indices (SOI, PDOI, NPI) for lags 
3 to 12 months 

(f) The data which showed significant PMI score 
in the PMI computation for (d) and (e) 

After the computation of PMI scores, Artificial 
Neural Networks models were developed for each 
of the above cases. 

3.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are used as 
prediction models in this study. Although several 
dynamic models have been developed for 
prediction of meteorological variables, statistical 
models such as ANNs have played a significant 
role. Since ANNs have the ability to represent non-
linear relationships between inputs and output, it is 
expected that the non-linear relationships captured 
by the PMI algorithm will be well represented 
using ANNs.  

4. RESULTS AND DISCUSSION 

4.1 Input Identification by PMI Scores 

The results of the PMI computations for the input 
sets  given in (a) to (f) above are summarised in 
Table 1. It can be seen that when SSTa in the 
Pacific Ocean is included as an input for PMI 
calculation, January (i.e. lag 7) SSTa at the grid 
location of 27.5°N 132.5°W has the highest PMI 
score among all inputs. However, when SSTa are 
used exclusively as candidate inputs, which 
corresponds to cases (a) and (d), the PMI score for 
the second predictor and its 99 percentile value 
were nearly the same. The results in Table 1 
suggest NPI in February is one of the best 
predictors for August rainfall.  

4.2 Development of ANN Models 

The identified inputs shown in Table 1 were used 
to develop a prediction model using artificial 
neural networks with 15 inputs for model (a), 1 
input for model (b), 7 inputs for model (c), 10 
inputs for model (d), 1 input for model (e) (This 
model is the same as the model (b)) and 2 inputs 
for model (f). August rainfall in Fukuoka city is 
the dependent variable for all models. 

The data from 1901 to 1997 (97 years) were used 
for testing, training and validation. The SOM data 
division method (Bowden et al., 2002) was used to 
divide the data for model (c) into training, testing 
and validation sets of sizes 64, 22 and 11 
(respectively). This model contains the most 
detailed information on the atmosphere and ocean 
and is expected to have the best performance of the 
5 models (models (b) and (e) are the same). The 
data for the other 4 models were also divided in the 
same way, namely, 64 observations for training, 22 
data for testing and 11 for validation. 
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A constructive approach is employed in order to 
determine the structure of ANNs used in this 
study. The approach begins from an ANN structure 
with no hidden nodes (Maier and Dandy, 2000), 
and calculates the root mean square error (RMSE) 
for the training set. After computation of the 
RMSE for the structure with no hidden nodes, the 
number of hidden layers is fixed at one and the  

 

 

 

number of hidden nodes increased by one at a time 
while computing the RMSE for each structure. 
When the reduction in the training RMSE becomes 
reasonably small, the number of hidden nodes is 
not increased any further and the structure is 
assumed to be optimal. 

After the determination of the optimal ANN 
model, cross-validation with the validation set is 

Variable Lead time 
(months) 

Location PMI 99th  percentile PMI 

(a) SSTa in the Pacific ocean for lead times 1 to 12 months ( total of 6816 possible inputs) 
SSTa 7 27.5°N, 132,5°W 0.18454 0.13741 
SSTa 1 17.5°N, 117.5°W 0.14791 0.13566 
SSTa 3 7.5°N, 77.5°W 0.16217 0.13406 
SSTa 6 12.5°S, 157.5°E 0.17563 0.13380 
SSTa 11 42.5°S, 157.5°E 0.14809 0.13236 
SSTa 2 22.5°N, 112.5°W 0.16867 0.13236 

Total number of identified inputs 15 inputs  
(b) SOI, PDOI, NPI for lead times 1 to 12 months ( total of 36 possible inputs) 

NPI 6   0.17075 0.12412 
Total number of identified inputs 1 input  

(c) the identified inputs in (a) and (b) combined together ( total of 16 possible inputs) 
SSTa 7 27.5°N, 132.5°W 0.18454 0.13741 
NPI 6   0.19192 0.13002 

SSTa 8 22.5°N, 137.5E 0.15564 0.13124 
SSTa 6 12.5°S, 157.5E 0.16343 0.13238 
SSTa 2 27.5°N, 107.5°W 0.15173 0.13080 
SSTa 1 12.5°N, 117.5°W 0.16504 0.13080 

Total number of identified inputs 7 inputs  
(d) SSTa in the Pacific ocean for lead times 3 to 12 months ( total of 5860 possible inputs) 

SSTa 7 27.5°N, 132.5°W 0.18454 0.13741 
SSTa 7 22.5°N, 157.5°E 0.14113 0.13428 
SSTa 7 32.5°N, 127.5°W 0.15747 0.13752 
SSTa 9 57.5°N, 142.5°W 0.15954 0.13632 
SSTa 11 42.5°S, 157.5°E 0.14863 0.13682 
SSTa 6 12.5°S, 157.5E 0.14992 0.13682 

Total number of identified inputs 6 inputs  
(e) SOI, PDOI, NPI for lead times 3 to 12 months ( total of 30 possible inputs) 

NPI 6   0.17075 0.12412 
Total number of identified inputs 1 input  

(f) the identified inputs in (d) and (e) combined together ( total of 7 possible inputs) 
SSTa 7 27.5°N, 132.5°W 0.18454 0.13741 
NPI 6   0.19192 0.13002 

Total number of identified inputs 2 inputs  

Table 1. PMI scores and the locations of identified inputs.  (When the total number of identified inputs is
greater than six, the six variables with the highest PMI are shown) 
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employed for each model in order to assess their 
generalization ability.  

The RMSE and coefficient of determination 
(denoted as R2) between the observed and the 
predicted rainfall data for the training, testing and 
validation sets for models (a), (b), (c), (d) and (f) 
are given in Table 2. From this table, it can be seen 
that model (c) showed the best performance of the 
5 models, although this was only slightly better 
than models (b) and (d) for the validation data. The 
lower RMSE for model (c) compared to models 
(b) and (d) indicates the value of using both SSTa 
data and NPI as predictors of August rainfall.  

The results for model (f) are not as conclusive as it 
has a lower RMSE than models (d) and (e) for the 
training set but a higher value for the validation 
set.  Overall, model (b) that uses a single value of 
NPI with a lag of 6 months as the input variable 
gives reasonable results. 

This approach needs to be applied to forecasting 
rainfall in other parts of the world in order to 
validate its generality. 

5. CONCLUSIONS 

The medium term forecasting of August rainfall in 
Fukuoka city was conducted in this study. In order 
to identify the adequate predictors, the partial 
mutual information was used for the candidate 
predictors, which are sea surface temperature 
anomalies in the Pacific Ocean and three climate 
indices.  

When data with lead times between 1 and 12 
months were used to forecast August rainfall, it 
was found that a model with the North Pacific 
index and selected SSTa as inputs performed 
reasonably well. 

If lead times of greater than 3 months are required, 
the North pacific Index for February gave the best 
results. 
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