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Introduction

The Southern Oscillation (SO) is a phenomenon which affects broadscale atmospheric and
oceanographic features of the tropical Pacific Ocean. The state of the oscillation can be
characterized by indices based on variations in either sea surface temperatures, or differences in
barometric pressures. Its best-known extremes are El Nifio events. Analyses of the Southern
Oscillation Index (SOI) and its relationships with hydrological phenomena have been presented
by many researchers in recent decades [e.g., Trenberth, 1984; Gordon, 1985; Opoku-Ankomah
and Cordery, 1993; Moss et al., 1994; Mullan, 1995]. ’

Recent studies that consider the chaotic behaviour of a time series, such as sunspots, have '
indicated that better predictions can be made using developments in dynamical systems theory
[Mundt et al., 1991; Jinno et at., 1995]. Chaotic dynamics arise in nonlinear deterministic
systems very sensitive to initial conditions (so-called "butterfly effect") which yield outputs that
are indistinguishable by standard techniques from a stochastic process [Rodriguez-Iturbe and de
Power, 1989]. A chaotic time series originates from a nonlinear system with a small number of
degrees of freedom, whereas a stochastic time series arises from a system with many degrees of
freedom [Jeong and Rao, 1996). There is now considerable interest in identifying chaos in
natural or experimentally observed time series.

In this study, the SOI time series is analysed to determine its chaotic characteristics. We try to
identify the essential features of the SOI when viewed as a dynamic system. If a time series can
be identified as deterministic chaos, then the knowledge of these underlying characteristics will
make possible to make short-term predictions (in this case of the SOI) by setting the system on a
fractal trajectory (strange attractor), although chaotic systems are unpredictable in the long term.

Data

Several indices have been used to monitor the SO. One commonly used SOI is derived from
values of monthly Mean Sea Level Pressure (MSLP) difference between Papeete, Tahiti
(149.6°W, 17.5°S.) and Darwin, Australia (130.9°E, 12.4°S). The SOI data used in this study are
the monthly series from January 1866 to December 1995, normalised to mean zero and a
standard deviation of one. The method of calculation for the SOI is given by Ropelewski and
Jones [1987] and Allan et al.[1991], who carefully infilled the all missing data by correlation

Joint New Zealand Hydrological Society Symposium and 10th Australasian Hydrographic Workshop
Hydrology ’96: From Inputs to Outputs



Meteorology

with other observation stations. In order to extract the chaotic characteristics form a time series,
a long continuous series is essential.

Methods

Various definitions have been proposed for deterministic chaos. According to Otf's definition, 1)
it is aperiodic, 2) its autocorrelation function converges to zero with the increase of lag time, 3)
it shows extremely sensitive dependence to initial conditions. In this study, the following
methods are used to identify the chaotic characteristics of SOI time series.

Noise Reduction

Observed hydro-meteorological time series generally contain noise. Methods for estimation of
fractal dimension are extremely noise sensitive. Therefore, time series need firstly to be cleaned
by a noise reduction scheme. Berndtsson et al. [1994] indicate that raw time series of sunspots,
temperature and precipitation variables do not show any chaotic deterministic properties, but
after noise reduction, all three variables display a low-dimensional chaotic behaviour. In this
study, we use the algorithm by Schreiber [1993] for the above purpose. This is a simple
nonlinear noise reduction method especially developed for dimension estimation. ’

~ Autocorrelation Function

The autocorrelation function of SOI time series is calculated to see whether it converges to zero
with increasing lag time.

Spectral Analysis

Spectral analysis is carried out to check on periodicity and to see if the time series has the
broadband spectra necessary for chaos. We use Maximum Entropy Method (MEM) for this
purpose because it has a higher frequency resolution ability than other spectral analyses like Fast
Fourier Transform (FFT).

| Lyapunov Exponents

In order for a system to be chaotic it must possess at least one positive Lyapunov exponent,
which results in sensitive dependence on initial conditions. We calculate the Largest Lyapunov
Exponent (LLE) using the method of Wolf et al. [1985). This algorithm is robust over a large
range of input parameters and relatively accurate for small, noisy data sets. :

Fractal Dimension

There are several ways to define the fractal dimension. In this paper we use the correlation
dimension introduced by Grassberger and Procaccia [1983]. The dimension d of the strange
attractor indicates how many variables are necessary to describe evolution in time. For example,
d=2.5, indicates that a time series can be described by a system equation containing three
independent variables. In this paper, firstly the algorithm according to Grassberger [1990] is
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used to estimate correlation dimension. The Grassberger-Procaccia (G-P) method is popular and
commonly used for fractal dimension estimation, but some shortcomings are also pointed out. In
this paper, an improved method by Judd [1992] is also used to estimate the fractal dimension.

Results

The results will be shown in the presentation at the symposium.
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