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PREDICTION OF MONTHLY TEMPERATURE TIME SERIES USING
RECONSTRUCTED CHAOTIC SYSTEM EQUATIONS
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abstract

Prediction of long-term changes in temperature is of vital importance for estimation
of future available water resources. We investigate an observed 238-year monthly time
series of temperature by dynamical systems theory and use results from the analysis to make
short-term predictions in real-time. The methodology for this is (1) based on the time series
behavior in phase-space and dimension of attractor, determine a reference system of
equations, (2) assume a general structure of governing system equations by Taylor series
expansion, (3) use the reference system of equations as initial state for the chaotic system,
and (4) identify parameters and structure of governing system equations by a parameter
updating procedure. We use the Lorenz equations as a reference system of equations and the
extended kalman filter to identify the structure of the governing system and to make updated
predictions of the chaotic monthly temperature. We show that predictions can be made for
filtered monthly temperature time series if the prediction lead time is short. The results
indicate that parts of monthly temperature variation at a point may follow a chaotic time
trajectory as influenced by large-scale atmospheric flow.

1. INTRODUCTION

Prediction of climatic variables such as temperature is important since variation of these has
profound impacts on the availability of water resources. However, temperature is highly variable
and unpredictable in the long-term. This is due to complex interactions between large-scale
atmospheric flow and local physiographical conditions with many independent and irreducible
degrees of freedom. A common procedure, however, is to reduce this complex reality into a set of
partial differential equations for atmospheric mass and heat transport, €.g., in general circulation
models (GCMs). During recent years, an alternative approach has emerged, namely, to analyze and
build models directly from available observations (Farmer and Sidorowitch, 1987; Sugihara and
May, 1990; Mundt et al., 1991; Jinno et al., 1995). The general idea for this is the application of
dynamical systems theory to geophysical processes.

The first and most basic step when analyzing a time series within the framework of
dynamical systems theory, is to perform a phase space reconstruction. The assumption behind a
phase space reconstruction is that the past and future of the time series contain information about
unobserved variables that may be used to define a state of the process at the present time (Casdagli
etal., 1991). The procedure of a phase space reconstruction is motivated due to unknown properties
of the dynamical system such as relevant variables and their total number. Their total number may
be determined by estimating the dimension of the time series (dimension of the attractor).

We use observed long-term time series (238 years; 1753-1990) of monthly temperature to
investigate if they can be predicted by the use of dynamical systems theory. The methodology for
this is: (1) based on the time series behavior in phase space and dimension of attractor, determine
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a reference system of equations, (2) assume a general structure of governing system equations by
Taylor series expansion, (3) use the reference system of equations as initial state for the chaotic
system, and (4) identify parameters and structure of governing system equations by a parameter
updating procedure.

We investigate two types of temperature variation, nonlinear long-term trends and short-term
variations. Dimension estimates are calculated using both these types of temperature variability.
After this, the Lorenz equations are assumed as a reference system of equations as initial state for
short-term monthly temperature prediction. By applying the extended kalman filter technique and
a general structure of governing system equations by Taylor series expansion, parameters are
updated in real-time and identified. We close with a summary and discussion on how the results
may be practically used for climate predictions. '

2. THEORY

We use the methodology of Jinno et al. (1995) to reconstruct the chaotic system for monthly
temperature and use this system of equations to predict the future behavior of temperature. The
methodology for this is (1) based on the time series behavior in phase-space and dimension of
attractor, determine a reference system of equations, (2) assume a general structure of governing
system equations by Taylor series expansion, (3) use the reference system of equations as initial
state for the chaotic system, and (4) identify parameters and structure of governing system equations
by a parameter updating procedure. Figure 1 gives an outline of this methodology. The figure shows
the hidden original system and the true time series (area within broken line in Fig. 1) which will
never be known. Instead, we are forced to deal with distorted and noisy observations.
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Figure 1. Outline of the methodology to predict monthly temperature (Matsumoto, 1996).
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The first step in our analysis is to reduce the noise without changing the underlying
deterministic chaotic signal and to perform a dimension calculation. The dimension calculation is
started with a phase space reconstruction (e.g., Henderson and Wells, 1988; Tsonis and Elsner,
1990). This simply means that the time series is plotted against itself with a proper time lag. By
performing this analysis properties of the attractor can be investigated. Occurrence of an attractor
means that the future time behavior is not random but instead settles on a pattern close to that of the
attractor. This in turn, indicates the type of nonlinearity and if it is possible to make predictions into
the future for the time series. By determining the dimension of the attractor it is possible to evaluate
if a low-dimensional equation system can be used to describe the nonlinear time behavior for use
in simple forecasting schemes (e.g., Grassberger and Procaccia, 1983a; 1983b). The correlation
integral C(r) of the attractor defines the density of points around a specific coordinate with radius
r of the time series and can be used to determine the dimension. The correlation integral C(r) is used
to describe the dimension 4 of the attractor, i.e., if the attractor is a line, surface or volume. In this
paper, the algorithm according to Grassberger (1990) was used to estimate correlation integrals.
Values of d that are not integers indicate a fractal and thus a chaotic attractor. The dimension 4 of
the attractor is given by the slope of log C(r) for the slope of log r. For deriving the dimension d of
the attractor from observations x(7) it is sufficient to embed it in an m-dimensional space (d < m):

x(t) = [x(0),x (1), ...,x "(1)] . 1)

Consequently, it is not necessary to know the original system's dimension » or state variables as
long as m is chosen large enough (m = 2d + 1; Takens, 1981; Ruelle, 1981). According to this and
introducing a time lag t one gets (e.g., Grassberger and Procaccia, 1983a, 1983b):

x(1), x(t+7), x(1+27),...,x(t+(m-1)7) 2)

However, known methods for dimension calculations are noise sensitive and, therefore, a
noise-reduction scheme has to be employed. In this paper, we use the algorithm of Schreiber (1993)
which was especially developed for dimension estimations. The idea of the method is to replace
each coordinate in x; by an average value over a suitable neighborhood in the phase space.

Preliminary investigations have shown that the Lorenz equations (Lorenz, 1963) may be
used as a reference system of equations to be used as initial state for the predictions (Matsumoto,
1996). These equations are physically relevant and simplification of large-scale atmospheric flow.
The Lorenz equations are (Lorenz, 1963):

X = 0y-x
{}’ = RJ(ry -y sz 3
Z=xy-bz

where the parameters o, R, and b are constants. In order to use the Lorenz system as an initial state
for the system to be identified, a linear transformation x” = yx and 1° = Tt is necessary. This is done
to adjust the amplitude of x(r) and to synchronize the time series. Consequently, the modified
Lorenz system becomes:
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As in Jinno et al. (1995) we assume that the system dynamics can be expressed by a general

first-order simultaneous nonlinear differential equation system. The nonlinear differential equations

* fix,y,z) are expanded into Taylor series and terms up to second order are included. The system
equation then becomes:

: = = 2 2 2
x = f;(xJ’Z) - alo+allx*alzy‘*allz"aﬂy*aﬁu*’aldyz+al7x *ally +al9z

1

5 = = 2 2 2
y = 'f;(x‘y’z) a10+azlx+azzy+anz+a24:0’+a15xz+a26}q +a27x +a2fy +a29z (S)

z = f(xy.2)

2 2 2
+ + + + + +a yz+a x‘+a +a z
aptaxrayra zra, xyra,xzra, yzra,, W Ty

where a; (i=1,2,3,7=0, 1, ..., 9) are parameters. Then, x, y, z, and g; in Eq. (5) are used in the
system vector X according to:

r .
X = [x,, Xpr s Xy Xa3 ]T =[xz Qypr s Bygr Gago ™3 Bag0 T30 ™5 a”] (6)

Accordingly, the system equation becomes:

% = [ = x4+x,x.+x,,t2+x,,x,+x,x,x2+x9x,x,+x,,,x,x,+x,,x,’+x,zxzz+x,,x,z

. 2 2 2

X = j;(X) T XXX X XXX X XX X G Xy F XKy F Xy Xy XKy XKy (7)
. 2 2

R A R R R R R R T A T R e 25

X =fX) =0 (4<i<33)

In the extended kalman filter (EKF), the nonlinear function f{X) is expanded into a Taylor
series at a point X. The observation equation in the EKF is a vector function according to:

Y = gx) ’ ®

It is further assumed that only one of the three variables, x, is observed, and the observation vector
Y becomes scalar with element y, according to:

¥ =8 =x | )

The EKF is consequently used to identify the structure of the governing system and to make
updated predictions of monthly temperature.



495

2. CHAOTIC CHARACTERISTICS OF TEMPERATURE

Figure 2 shows an example of long-term temperature trends for the data used. The monthly
temperature data were averaged over approximately 11-year periods (see Berndtsson et al., 1996)
after a linear trend corresponding to an increase of 0.84°C per 100 years was removed (see further
Kawamura et al., 1993). Spline functions were then used to interpolate between these averaged
values. Figure 2, consequently, shows how temperature may vary on an approximately decade scale.
Figure 3 shows the corresponding phase space portrait with a time lag  of 2 years. As seen from
the figure, the behavior of long-term temperature in time appears not to be random. Instead, it seems
as if a type of attractor with both smaller and larger excursions from the mean emerges. A possible
explanation for this type of attractor may be the correlation with sunspot cycle length as shown by
Berndtsson et al. (1996).
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Figure 2. Monthly temperature averaged over approximately 11-year periods after removal of
linear trend and interpolated by spline functions.
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Figure 3. Attractor for interpolated mean temperature (data as in Fig. 2). Time lag is 2 years.
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The occurrence of an attractor means that the future time behavior is not random but instead
settles on a pattern close to that of the attractor. This in turn, may indicate the type and degree of
nonlinearity and if it is possible to make predictions into the future for the time series. Of course,
interpolated data like this have to be interpreted cautiously and may only indicate properties of the
actual process. Even so, it is believed that the phase-space portrait in Fig.3 embraces some of the
general and long-term behavior of temperature.

A similar analysis was made for short-term (monthly) temperature variation. F]guxe 4 shows
the attractors for raw (annual cyclic component removed) and noise-reduced using the algorithm of
Schreiber (1993). As seen from the figure, an attractor with similarity to the well-known Lorenz
attractor emerges for the noise-reduced data. Because of this similarity, the Lorenz equations were
chosen as a reference system for initial conditions in the below prediction scheme of temperature.
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Figure 4. Comparison of attractors for raw (annual cyclic component removed) and noise-
reduced monthly temperature.
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Figure 5. Slopes dlog C(r)/dlog r versus log r for temperature attractors in Figs. 3 and 4.
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Figure 5 shows the resulting dlog C(r)/dlog r vs. log r for the long- and short-term
temperature attractors of Figs. 3 and 4. The m-embedding was chosen between 2<m<40. As seen
from the figure, there is a clear scaling region for -1.5<log <0 for both types of temperature
variation. Both types of temperature variation display saturation at a correlation dimension d <2.5
in this range. Consequently, a nonlinear equation system with three independent variables seems
appropriate to describe the evolution in time for both types of temperature variation (Takens, 1981;
Ruelle,1981).

3. REAL-TIME PREDICTION OF MONTHLY TEMPERATURE

Following the above analysis, a prediction system with three independent variables was’
assumed as system equation. Because of the similarity between the empirical temperature attractor
and Lorenz' well known attractor, the Lorenz model was chosen as reference system for the initial
state. Consequently, initial parameter values in Eq. (6) were chosen as: a,, =-0/T=-10/0.13, q,, =
o"y/T=10-0.20/0.13, a,, = R/(y'T) = 28/(0.20 - 0.13), a5, = -1/T = -1/0.13, ays = -1/(y'T) = -1/(0.20
- 0.13), a;; = -b/T = (-8/3)/0.13, a3, = 1/(y"T) = 1/(0.20 - 0.13), and all other terms were set to 0.

Figure 6 shows an example of one- and three-month ahead predictions for the temperature
time series. It is seen that one-month ahead predictions can be made with small errors while three-
month ahead predictions generate quite large errors. A possible explanation for this may be that the
chaotic trajectories in time lose their original information content in a very rapid way.
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Figure 6. One- and three-month ahead predictions of monthly temperature with errors.
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4. SUMMARY AND CONCLUSIONS

We have outlined a methodology to use dynamical systems theory to make updated
predictions of monthly temperature in real-time. It was shown that good predictions could be made
at least for one-month ahead predictions. Three-month ahead predictions were less successful. A
possible way to improve the predictions may be to include more observables in the system equation.
For example, if a physical cause-effect relationship could be included in Eq. (5) for the y and/or z
terms, this may improve the predictions significantly. An example of such a relationship is the
significant dependence between sunspot cycle length and long-term temperature trends.
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