VOLUME AND STRUCTURE OF HYPERBOLIC 3-MANIFOLDS

TERUHIKO SOMA

ABSTRACT. In this paper, we show that Gromov-Thurston’s principle holds
for hyperbolic 3-manifolds of infinite volume and with finitely generated fun-
damental group. As an application, we give a new proof of Ending Lamination
Theorem. Our proof essentially relies only on Maximum Volume Law for hy-
perbolic 3-simplices.
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Let f : M — M’ be a proper degree-one map between oriented hyperbolic
3-manifolds of finite volume. In [Thl, Theorem 6.4], Thurston proved by using
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results of Gromov [Gr] that f is properly homotopic to an isometry if and only
if Vol(M) = Vol(M'). This theorem suggests us Gromov-Thurston’s principle on
hyperbolic manifolds of dimension three (or more) that “Volume determines the
structure”. This principle is essentially supported by Maximum Volume Law, which
says that a hyperbolic 3-simplex has the maximum volume vz = 1.01494... if
and only if it is a regular ideal simplex, see [Thl, Chapter 7]. The main tool
for connecting the rigidity with the volume is the smearing 3-cycle zps(o) on M
associated with a straight 3-simplex o : A3 — H?, which is introduced in [Thl,
Chapter 6].

Now we consider the case when M is an oriented hyperbolic 3-manifold of infi-
nite volume and with finitely generated fundamental group. Then, instead of the
volume of M, we use the bounded 3-cocycle wps on M such that, for any singular 3-
simplex 7 : A% — M, wy(7) is the oriented volume of the straightened 3-simplex
straight(7) of 7. Suppose that any ends of M are incompressible and there exists
an orientation and parabolic cusp-preserving homeomorphism ¢ : M — M’ to
another oriented hyperbolic 3-manifold M’. Let Y be any infinite volume subman-
ifold of M, possibly Y = M. Then, for the restriction zy (o) of zps(o) on Y, the
value of wys(zy (o)) is infinite. In such a case, we consider an expanding sequence of
compact submanifolds X,, of Y with Uzozl X,, =Y and substitute the restrictions
zx, (o) for zy (o). The map ¢ is said to satisfy the w-upper bound condition on'Y
if there exists a constant ¢y > 0 and submanifolds X,, as above such that

(0.1) (wyp — @ wmr)(zx, (o)) < co

for any n and any straight simplex o : A? — H? with Vol(s) > 1. Here we do not

need the assumption that (wyr — ¢*war)(2x, (0)) > —co. The lower bound ‘1’ of

Vol(o) is chosen just as a constant such that vs — 1 is a positive small number.
The following theorem is our main result.

Theorem A. Let E be a neighborhood of a simply degenerate end of M. If ¢
satisfies the w-upper bound condition on E, then the restriction |g is properly
homotopic to a bi-Lipschitz map onto a simply degenerate end of M'.

Next we consider the case that ¢ satisfies the w-upper bound condition. Let
fn : X(op) — M (n = 0,1,2,...) be pleated maps tending toward a simply
degenerate end £ of M and X(o,) the surface ¥ with the hyperbolic structure o,,
induced from that on M via f,. Suppose that f, realizes a measured lamination
B, which is normalized so that length, (3,) is equal to one. Then {3,} has a
subsequence converging to a measured lamination v in X(og). The support of v is
independent of the choice of the subsequence and called the ending lamination of
£. From the definition, (,, is arbitrarily close to v in X(og) for all sufficiently large
n. However, the realization v, of v in X(0,) is not necessarily close to 3,. So it
would be possible to encounter unknown phenomena by observing the lamination
v, with the ‘moving’ hyperbolic structures o,, on . In fact, the following theorem
is proved by analyzing a limit lamination v, of v, in a geometric limit surface ¥,

of X(oy,).

Theorem B. Suppose that E is a neighborhood of a simply degenerate end £ of M
and E' = ¢(E) is also a neighborhood of a simply degenerate end £ of M'. If £
and &' have the same ending lamination, then either ¢ satisfies the w-upper bound
condition on E or ¢~! does on E'.
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Ending Lamination Theorem is a rigidity theorem for infinite volume hyperbolic
3-manifolds proved by Minsky partially collaborating with some authors, see [MM,
Mil, Mi2, BCM] and so on. In the original proof, the theory of curve complex
is crucial. In particular, the Gromov hyperbolicity of curve complex [MM, Bowl]
and Length Upper Bound Lemma for tight geodesics [Mi2, Bow2] are the two main
pillars supporting the proof.

By Theorems A and B, we have an alternative proof of Ending Lamination
Theorem without relying on the theory of curve complex.

Corollary C. Suppose that ¢ : M — M’ preserves the end invariants, i.e. con-
formal structures on geometrically finite ends and ending laminations on simply
degenerate ends. Then ¢ is properly homotopic to an isometry.

This corollary says that Gromov-Thurston’s principle is valid for hyperbolic 3-
manifolds of infinite volume. For simplicity, we consider only the case when ends of
hyperbolic 3-manifolds are incompressible. It would be possible to generalize our
argument to the compressible end case by using the topological tameness theorem
for hyperbolic 3-manifolds (Agol [Ag], Calegari-Gabai [CG]) and applying Canary’s
branched covering trick [Ca].

This paper is organized as follows. Section 1 recalls standard notations on hy-
perbolic geometry. Besides we construct normalized maps with certain bounded
geometry by using pleated maps. Normalized maps have the advantage that they
are embeddings to a hyperbolic 3-manifold M. Section 2 presents the decomposi-
tion of a neighborhood E of a simply degenerate end £ of M by normalized maps
tending toward &, where the ubiquity of pleated maps in E are used essentially. In
Section 3, smearing 3-chains zx (o) supported on almost compact subsets X in F
are defined. We consider there a continuous map 3 : M — M’ ‘essentially’ equal
to a homeomorphism ¢ satisfying the w-upper bound condition on E. For a small
n > 0, a straight singular 3-simplex 7 : A3 — M is n-inefficient if the volume of
the 3-simplex obtained by straightening 1)o7 is not greater than vs —n. It is shown
that the w-upper bound condition for ¢ on F implies that the n-inefficient 3-chains
occupy only a small part of supp(zx(c)) for any long blocks X = Ny, ,) in E. In
Section 4, we present the infinite volume version of results in [So2] for closed hyper-
bolic 3-manifolds. By using the notion of simplicial honeycombs, we will prove that
the lift ¢ of ¢ to the universal covering H? is approximated by the identity near
the boundary S2 of H? with respect to suitable coordinates on H?. In Section 5,
we first construct a locally bi-Lipschitz map <p(1) : Etnick — E' = o(F) properly
homotopic to ¢|z,,,., and then extend o) to a bi-Lipschitz map &g : B — F',
which proves Theorem A. In Section 6, we consider geometric limits of pleated
maps, ending laminations and earthquakes and study their mutual relations. Let

éé) : Z((Q — E(EQ be a geometric limit of pleated maps fé/) : 25{) — EO tending
toward the end ") of E). Consider the realizations v of the ending lamination
v of EU) in Zg) and their geometric limit V&) in 25,2. We investigate connec-
tions between v, and v/ under the assumption of v = 1/ via ¢. The main tool
for comparing these laminations is supervising markings of 3,, and Y., by a fixed
hyperbolic surface ¥, As an application of these geometric limits, we will present
Irreversibility Lemma (Lemma 6.9). In Section 7, by using the preceding lemma,
we prove Volume Difference Boundedness Lemma (Lemma 7.1), which is a key to
Theorem B.
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1. PRELIMINARIES

In this section, we present fundamental definitions and notations in forms suit-
able to our arguments. Refer to Thurston [Thl], Benedetti and Petronio [BP],
Matsuzaki and Taniguchi [MT] and so on for other notations concerning hyper-
bolic geometry and to Hempel [He] for 3-manifold topology. For a subset A of a
metric space X = (X,d), the closure of A in X is denoted by A. For any r > 0,
the r-neighborhood {y € X |d(y, A) < r} of A is denoted by N,.(4, X) or N,(A)
for short. In the case of A = {z}, we set N, ({z}) = B,(x). For a constant c,
¢(ay,...,a,) means that it depends on variables ay, ..., an.

A Kleinian group is a discrete subgroup of Isom™ (H?) = PSLy(C). Throughout
this paper, any Kleinian group I' is supposed to be torsion-free, hence in particular
the quotient map p : H3® — H3?/T' = M is the universal covering. We always
suppose that M has a uniquely determined hyperbolic structure with respect to
which p is locally isometric and moreover M has the orientation compatible with
the standard orientation on H? via p.

Our definition of thin and thick parts of hyperbolic 3-manifolds are slightly
different from standard ones.

Definition 1.1 (Thin and thick parts of hyperbolic 3-manifolds). For a u > 0,
the pure p-thin part M ihin(u) of M is the set of points z € M such that there
exists a non-contractible loop ! in M of length < 24 and passing through x. The
complement My inick(n) = M \ Int My tnin () is called the pure p-thick part of M.
By the Margulis Lemma [Thl, Corollary 5.10.2], there exists a constant p, > 0
independent of M, called a Margulis constant, such that, for any 0 < p < u,, each
component of My, ipin(,) is either an equidistant tubular neighborhood of a simple
closed geodesic, called a Margulis tube, in M or a parabolic cusp of type Z or Z x Z.
The union Mipin(,) of components of My, thin(,) meeting My, ¢nin(,/2) non-trivially is
called the p-thin part of M and the complement Miyicx(,) = M \ Int Mipin(,) is the
p-thick part of M. Then we have My, thin(u/2) C Minin(n) € Mp-thin(u)- Let Meusp(p)
be the union of cuspidal components of Mipin(,) and Miube(u) = Minin() \ Meusp(p) -
In other words, Mipe(,) is the union of Margulis tube components of My, (,)- The
complement M \ Int Mgy (,) is the main part of M and denoted by Myain(,)-

Remark 1.2. The pure p-thin part M ¢pin(,) may have a Margulis tube compo-
nent with very small normal radius. In such a case, the boundedness of geometry
on My, thick(u) (see Subsection 1.1) would not be estimated by the constant p. On
the other hand, the normal radius of any component of Mipe(,) With respect to
our definition is greater than a constant c¢(u) > 0 depending only on u.

For any a,b > 0, consider the subset ﬁ(a,b) = {(2,t)|0 < Re(z) < a,t > b} of
H3 = C x Ry. Let P(a,b) be the quotient space of P(a,b) by the action on H3
generated by the isometry (z,t) — (z + v/—1,t). A submanifold P of M is called
a finite parabolic cusp if P is either a Z x Z-component of Mygp(,) Or isometric to
P(a,b) for some a,b > 0. We say that a subspace of M is almost compact if it is a
union of a compact set and finitely many finite parabolic cusps of M.

Assumptions. Let T' and I"” be finitely generated non-abelian Kleinian groups.
Suppose that there exists an orientation-preserving homeomorphism ¢ : M =
H3/T — M’ = H3/T" which induces a bijection between the components of

M ysp(y and those of Méusp(u). By Scott-McCullough’s Core Theorem [Sc, MC],
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there exists a compact connected submanifold Ciyain Of Miain(u) such that (i) the
inclusion Cryain € Mimain(y) 18 @ homotopy equivalence, (ii) Crain NV is an annulus
in 9V for any Z-cusp component V' of Mcsp(,), and (iii) OV is a torus component of
OCain for any Z x Z-cusp component V' of Mcygp(,)- In particular, the properties
(ii) and (iii) imply that any end of Main(,) contains no accidental parabolic cusps.
A submanifold C of M is called a finite core if C'N Myain(u) = Cmain and C NV is
a finite parabolic cusp for any component V' of M,ep(,)- Throughout this paper,
we suppose that any component ¥ of JC is incompressible in C. Any end & of
M nain(y) is simply called an end of M. The closure £ of the component of M \ ¥
adjacent to & is said to be the neighborhood of £ with respect to C. The end £ is ge-
ometrically finite if one can choose C so that it is locally convex on a neighborhood
of ¥ in M. Otherwise £ is geometrically infinite. According to Bonahon [Bo|, any
geometrically infinite end £ is simply degenerate, that is, there exists a sequence
of closed geodesics A} in E diverging toward £ and freely homotopic in E to a
simple closed curve A, in ¥. Note that E is homeomorphic to ¥ x [0, 00), see [Thl,
Theorem 9.4.1] and [Bo, Corollaire C]. Fix a complete hyperbolic structure on ¥ of
finite area and realize each )\, as a simple geodesic loop in X. Then the sequence
of the normalized simple closed geodesics r, A, with 7, = 1/lengthy,(),,) has a sub-
sequence converging to a measured lamination v in ¥. The support supp(v) of v is
independent of the choice of the diverging sequence A}, or that of the subsequence
of 7, An, which is called the ending lamination of £, see [Thl, Section 9.3].

1.1. Pleated maps, revisited. First we review some results concerning pleated
maps.

Let C be a finite core of M. Fix a Margulis constant pug > 0 such that C
is disjoint from Miype(u) and Miype(y,) N E is unknotted and unlinked in E in
the sense of Otal [Ot] for any end neighborhood E with respect to C. Suppose
that F is the neighborhood of a simply degenerate end £ with respect to C. We
set BN Minick(uo) = Ertnick(uo)s £ N Meusp(uo) = Peusp(uo) and so on. A proper
homotopy equivalence f : (o) — FE is called a pleated map realizing a geodesic
lamination A in ¥(o) if f satisfies the following conditions, where o is a hyperbolic
structure on X.

e For any rectifiable path « in (o), its image f(«) is also a rectifiable path in F
with lengthy,,)(a) = lengthg(f(a)).

e f(1) is a geodesic in E for each leaf [ of \.

e For each component A of ¥\ A, the restriction f|a is a totally geodesic immersion
into

We say that the lamination A is a bending locus of f or realized in E by f. In the
case when A is a neighborhood of a cusp of X, the last condition is guaranteed
by [Thl, Corollary 9.5.6]. Since Areax(,)(A) = 0, these conditions imply that, for
any Borel subset A of ¥, Areax,)(A) = Areag(f(A)). If necessary adding finitely
many simple geodesics to A\, we may assume that any pleated maps f: ¥ — FE in
this paper satisfy the following extra conditions.

e Each component A of ¥ \ A is either a maximal ideal 2-simplex or a once-
punctured mono-gon. In the former case, f(A) N Egygp(yy = @ for a sufficiently
small g > 0. In the latter case, f(A) N Eqyspy 7 0 for any v > 0.
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Such a lamination A is called full in . Here A being a mazimal 2-simplex means
that A is isometric to an ideal 2-simplex in H? such that all the vertices are points
at infinity, or equivalently Area(A) = 7.

For a pleated map f : ¥(0) — E, set Y(f) = f~ (Eihin(u,)) and F(f) =
f _1(Ethick(uo))- If necessary deforming f slightly, we may assume that each com-
ponent of the boundary 9Y (f) is a (non-smooth) simple loop in X.

Lemma 1.3. For any component Yy of Y (f), the following (1) and (2) hold.

(1) The inclusion ¢ : Yy — X is 7 -injective.
(2) Yy is either a disk or an annulus or a once-punctured disk.

Proof. (1) Let V be the component of Eipin(,,) containing f(Yp). If the inclusion
L : Yy — X were not mi-injective, then there would exist a component 3 of 0Yj
which bounds a disk D in ¥ \ IntYy. Since the inclusion V' C F is m-injective
and since f|g is contractible in E, f|g is contractible also in V. It follows that
flp : D — E is homotopic rel. 5 to a map into V. Any component a of D N A is
an arc such that f(«) is geodesic in E which is homotopic into V' rel. da. Since V/
is locally convex in F, f(«) itself is contained in V. Since the restriction of f on
any component A of D \ A is totally geodesic and f(0A) C V, f(A) is contained
in V and hence f(D) C V. So we have D C Yj, a contradiction. It follows that
t: Yy — X is mi-injective.

(2) Since for: Yy — V is mi-injective and (V) is isomorphic to Z, 71 (Yo)
is either trivial or isomorphic to Z. Thus Yj is either a disk or an annulus or a
once-punctured disk. (I

Let Ay be the core of ¥(0)tube(u,) consisting of simple geodesic loops. Now we
consider the case when a pleated map f : ¥(0) — FE realizes Ay, that is, the
bending locus of f contains Ay. Suppose that pg is sufficiently small compared
with a fixed Margulis constant y.. For any components Vo of Eyype(y,) and Vi of
Eiube(n,) With Vo C V4, dist(9Vi, Vo) is greater than an arbitrarily large constant
r > 0. Let Y, be the component of f‘l(Etube(#*)) with f(Yi) N Erype(ue) 7 0. If Ya
were a disk, then Y, would contain a hyperbolic disk of radius r. This contradicts
that Area(Y,) < Area(X(0)) = —2mx(X) if r is large or equivalently g is small.
As in Lemma 1.3, it follows that Y, is an annulus, which has a topological core Ij.
Then we have a pleated map f; : ¥ — E such that fi(Ay,) = f(Af) U, where Ay
is the geodesic core of a component of Eype(,,) freely homotopic to f(lp) in E. By
repeating this process finitely many times, we have a pleated map g : ¥(7) — E
satisfying the following conditions.

(Y1) For the geodesic core [ of any component of (7)iube(uy), 9(I) is a geodesic
loop in F.

(Y2) 3(7)thin(uo) is a core of Y (g), or equivalently, F(g) := ¢~ (Egnick()) IS & core
of X(7)thick (o) -

Abbreviations and uniform constants. From now on, we work under a fixed
po and set Ethin(,uo) = FEthin, Ethick(po) = Elthick, Ecusp(p.g) = Ecusp and Emain(pg) =
Fmaim and so on. Moreover we say that a constant c is uniform if ¢ depends only
on the Euler characteristic x(X) of ¥ and pg. For example, a uniform constant
¢ = ¢(k, 1) means that c¢ is a constant depending only on x(X), 1o and k, I.
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For any element 7 of PSLy(C) and x € H3, tl(y, x) = distys(x,yx) is the trans-
lation length of v with respect to x. The infimum translation length tl(~y) of v is
defined by inf{tl(y,z) |z € H3}. In particular, if ~ is parabolic, then tl(y) = 0.

Lemma 1.4. Let f : ¥(c) — E be a pleated map satisfying (Y1) and (Y2). For
any component F of X(0)thick, let xp be a fized point of F N F(f). Then there
exists a generator system vi, ...,y of m1(F,xp) with u < ug and such that

Lo < tl(’yj) < tl(’yj, 57']:‘) < l()

for some uniform constant lo > 0 and ug € N, where v; € mi(F,zr) is identified
with the element of I uniquely determined from v; and a point Tp with p(ZTp) = xp.

Proof. Since diam(F') is uniformly bounded, it is not hard to show that there exists
a positive integer ug depending only on x(X) and oriented closed curves cy, ..., ¢,
with u < up in F' passing through zr and satisfying the following conditions.

e The elements 71, ...,7, of m1(F,zF) represented by ci, ..., ¢y, respectively, form
a generator system of w1 (F, zp).

e lengthy,y(cj) <lo (j =1,...,u) for a uniform constant lo > 0.

e Any c; is not freely homotopic in F' to a loop cyclically covering a simple loop in
F.

The second condition shows that t1(y;,Zr) < lg. The third condition implies that
f(cj) is not freely homotopic into any component of Eipin(y,)- This shows pg <
t1(s).- O

Bounding volume. Let C be a connected oriented 3-manifold such that the
boundary 9C' is a disjoint union of smooth surfaces of finite type. Suppose that
¢ : 0C — F is a proper continuous and piecewise smooth map which is extended
to a proper continuous and piecewise smooth map Z : C — E. Then the bounding
volume Volbd(() of ( is defined by

Vo' () = [ 2°(5)
C

where Qg is the volume form on E. It is a standard fact in homology theory
that Volbd(C ) is independent of the choice of the proper extension Z. Consider the
case of C'= X x [0,1] and that fo = (|sx{o}, f1 = C|§X{1} are proper homotopy
equivalences. Here ¥ means that it has the orientation opposite to that on ¥. Then
we set Vol?(¢) = VoI®d(fy, f1). From the definition, Vol®d(f1, fo) = —VoI®d(fo, f1)
holds.

Lemma 1.5. Let P be either a 3-ball or a solid torus and ( : 0P — E a contin-
uous map satisfying the conditions as above. Then [Vol*®(¢)| < Area(dP), where
Area(OP) is the (absolute) area of OP with respect to the metric on OP induced
from that on E wvia C.

Proof. First we consider the case that P is a 3-ball. Then a proper extension
Z : P — E of ¢ has a lift Z:P — H3%. We identify P with the unit ball
D3 = {x € R?|||z| < 1} by an orientation-preserving diffeomorphism. Fix a point
vo € H3. Let X : D — H3 be the map extending Z = Z|ap such that, for any
x € OD3, X |10,2) is the affine map onto the geodesic segment in H? connecting vy
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with Z(x), where [0, z] is the straight segment in D® connecting the origin 0 with
x. Then we have

vori(q) = [

Z*(QE):/ Z5(Qms) = [ X*(Qps).
P P

D3
For any straight 2-simplex A in H?, let vy * A be the 3-simplex in H? obtained by
suspending A with vg. Then it is well known that Vol(vg * A) < Area(A). This
shows that |Vol”d(¢)| < Area(8P).

Next we consider the case that P is a solid torus. Let D be a meridian disk of
P. Consider the cyclic n-fold covering p,, : P,, — P. Cutting open P,, along a lift
D,, of D, we get a 3-ball C),. By the former result on 3-balls,

[Vol(R,)| = |Vol(Cy,)| < Area(0C,,) = Area(0P,) + 2Area(D,,).

Since |Vol(P,)| = n|Vol(P)|, Area(0P,) = nArea(0P) and Area(D,,) = Area(D),
it follows that

1 1
[VoIPd(¢)] = ~[Vol(Pn)| < —(Area(9Py) + 2Area(Dy))
2
= Area(OP) + gArea(D).
The required inequality is obtained by letting n — oo. O

Bounded geometry. For metric spaces (X, dx) and (Y, dy ), we say that a home-
omorphism h : X — Y is K-bi-Lipschitz for K > 1 if

%dx(xovﬂh) < dy (h(z0), h(z1)) < Kdx(z0,71)

for any zg,z1 € X. Here we consider the case that X, (n € N) and Yj are
complete Riemannian manifolds of the same dimension with the base points
and yo respectively. A sequence {(X,,x,)} is said to converge geometrically to a
(Yo,yo) if there exist sequences {R,}, {K,} with R, /" oo and K, \, 1 and a
K,,-bi-Lipschitz map h,, : Bg, (¢n, Xn) — Br, (yo,Y) for each n € N.

We will apply a standard argument of bounded geometry together with the
theory of geometric convergence. As a typical example, consider the geometric
convergence of pleated maps f, : ¥(o,) — M,,. Take a base point y,, of ¥(c,) in
a component Fy, of ¥(0y, )shick- Then f,,(y,) is contained in the thick part M,, tnick(y)
for some Margulis constant p less than pg. Otherwise, since the diameter of the
component F, is uniformly bounded, f,(F;,) would be contained in the component
V' of Eipin(y) for some n. Then the non-abelian group fn.(m1(F;,)) would be a
subgroup of the abelian group 71(V'), a contradiction. Thus {(M,, fn(y»))} has
a subsequence converging geometrically to a hyperbolic 3-manifold (M, Yoo ), se€
[Th1, Corollary 9.1.7]. By the Ascoli-Arzela Theorem, we may assume that f,|r, :
F,, — M, converges to a sub-pleated map fuo|r,, : Foo — Mo up to marking.
This suggests us that, in many cases, it suffices only to consider the situation of
foo|F,, to know common geometric properties on f,|p, (n = 1,2,...). A similar
argument works for a sequence of proper least area maps to thick parts of hyperbolic
3-manifolds. However, we should remind that one can not apply such an argument
to obtain common geometric properties on thin parts.
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1.2. Combined pleated maps and normalized maps. Let g : ¥ — FE be a
pleated map satisfying the conditions (Y1) and (Y2) in Subsection 1.1. Then, for
a component F' of F(g), we say that the sub-pleated map g|r is unwrapped if g|r
is properly homotopic in Fipicx to an embedding. A proper homotopy equivalence
f i3 — Eis called a combined pleated map if f|r is an unwrapped sub-pleated
map for each component F of F(f) = f~!(Epick) and and fl|y is either a ruled
annulus or a totally geodesic once-punctured disk for each component Y of Y'(f) =
f7Y(Einin). Note that, for two components Fy, Fy of F(f), f|r and f|r, are not
necessarily assumed to be restrictions of the same pleated map.

Now we define a proper homotopy equivalence embedding associated with a
combined pleated map f : ¥ — E. For any component F of F(f), consider an
embedding hp : F — Elipicx satisfying one of the following two conditions.

e The intersection f(OF) N Eyupe (= f(F) N Etupe) is non-empty. By modifying
slightly the hyperbolic metric on Eipick in a small collar neighborhood of 0FEipick
in Fipick, we have a new metric such that 0Fypiek is locally convex in Fypick. By
Freedman-Hass-Scott [FHS], f|r is properly homotopic in Fipick to a least area
embedding hr. Then we say that hp is a least area map of type I. The least area
property implies that hg, (F1) Nhg,(Fy) is empty for any distinct components F;
(i=1,2) of F(f) with f(0F;) N Etupe # 0.

e The intersection f(OF)N Eyype is possibly either empty or non-empty. Modify the
metric on Epicx the 1-neighborhood N7 (f(F), Einick) of f(F) in Eypiex such that
the boundary dNi(f(F)) is locally convex in Ni(f(F)). Again by Freedman-
Hass-Scott [FHS]|, there exists an embedding hp : F' — Ni(f(F)) which has
least area among all piecewise smooth maps b : F — Ni(f(F)) properly
homotopic to f|r in Etnick- Then we say that hp is a least area map of type I1.

Definition 1.6 (Normalized maps). An embedding f:¥ — Eis called a normal-

ized map associated with the combined pleated map f if the following two conditions

hold.

e For any component F of F(f), f\ r is a least area map either of type I or II.

e For any component Y of Y (f), ]?(Y) is either a least area annulus or a totally
geodesic once-punctured disk embedded in Fipiy,-

If f| r is a least area map of type I for all components F' of F(f), then we say that

fis a normalized map of type I

Lemma 1.7. Let f : Y(0) — E be a normalized map. Then the following (1)—(3)
hold.

(1) There exists a uniform constant ag > 0 with Areaz(2) < ao.

(2) There exists a uniform constant dy > 0 with diam4(F) < dy for any component

o~

F of F(J). )
(3) For any d > 0, there exists a uniform constant vo(d) > 0 with Vol(Ny(f(X))) <
Uo(d).
Proof. (1) For any component F' of F(f), Areaz(F) < Areay,(F) < —27mx(%).
Since F' C ¥(0)thick, & standard argument of bounded geometry on least area maps
shows that there exists a uniform constant [ > 0 with length 5 (b) < 1 for any
component b of 9F (f). It follows that Areasz(A4) < 2I for any component A of

A(f), where A(f) is the union of annulus components of Y (f). From these facts,
we have a required uniform constant ag > 0.
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(2) The assertion (2) follows immediately from the assertion (1) and length ;(b) < T
for any component of OF.

~

(3) Again by an argument of bounded geometry, we know that Vol(Ny(f(F)))
is less than a uniform constant v{(d) > 0 for any component F of F(f) Since
Areaz(A) < ag for any component A of A(f), one can have a uniform constant
vy (d) > 0 with Vol(Ny(F(A))) < vy by using an argument similar to that in [Thl,
Proposition 8.12.1], where the mj-injectivity of ﬂA in Fihin is crucial. By these
facts, one can have a uniform constant vy satisfying the condition (3). O

2. DECOMPOSITION OF NEIGHBORHOODS OF SIMPLY DEGENERATE ENDS BY
NORMALIZED MAPS

Let £ be a simply degenerate end of M and E the neighborhood of £ with
respect to a finite core of M. In this section, we consider a decomposition of F
by normalized maps in E tending toward the end £. For any proper homotopy
equivalence f : ¥ — E, the closure of the component of F \ f(X) adjacent to &
is denoted by ET(f). Let fo, fi : ¥ — E be two proper embeddings which are
homotopy equivalences with fo(X) # f1(X) (possibly fo(X) N f1(X) # 0). Then
fo < f1 means that E1(fy) D fi1(X). A sequence {f,} of homotopy equivalence
embeddings in F is said to be monotone increasing if f,, < fn4+1 for any n.

Let f : ¥ — F be a combined pleated map. A component F' of F(f) is mazimal
if any non-contractible simple loop [ in F such that f(I) is homotopic in Fipick to a
loop in OFype is homotopic in F' to a component of OF. A combined pleated map is
mazimal if f|p is maximal for any component F' of F(f). Fix a maximal combined
pleated map fy : ¥ — E. Let W(fy) be the union of components of Eyupe meeting
fo(F(fo)) non-trivially. Suppose that E*(fo) N (Esube \W (fo)) # 0. Let Vi,..., Vi
be the components of Fyupe \W (fo) contained in ET(fg) and nearest to fo(X). That
is, fori = 1,..., k, there exists a non-contractible simple loop I; in ¥ such that fo(l;)
is freely homotopic in Fipick UW (fo) to a loop in 9V;. Since Eiype is unknotted and
unlinked in E by Otal [Ot], Iy, ...,[; are taken to be mutually disjoint in ¥. From
the maximality of fy, any I; is not homotopic in X to any loop in F(fy) or A(fy). Let
G(fo,1;) be the union of components of F(fy) or A(fp) intersecting I; homotopically
essentially and P(fo,!;) the union of components of A(fy) meeting dG(fo, ;) non-
trivially. We say that G(fo,(;) is minimal if there are no loop I; with j € {1,...,k}
and G(fo,l;) € G(fo,l;). By renumbering l;’s, we may assume that G(fo,l1) is
minimal and G(fo, 1) contains /; if and only if i = 1,..., ko for some ko < k. From
the minimality of G(fo,11), G(fo,11) = G(fo, ;) for i =2, ..., kg. Then there exists
a maximal combined pleated map fi : ¥ — E such that fils\q(f,1)uP(fo.l1) =
fols\a(fo,tn)uP(fo.n) and W(f1) = W'(fo,l1) UVi U---U Vg, where W'(fo,l1) is
the union of components of W ( fy) meeting fo(A(fo) \ G(fo,11)) non-trivially, see
Figure 2.1. If ET(f1) N (Etube \ W(f1)) # 0, one can define a maximal combined
pleated map fo from Jil similarly. Repeating this process as much as possible, we

m

have a sequence {fs }-"; (possibly m = 0o0) of maximal combined pleated maps
in E*(fo).

Let ffﬁ be a normalized map of type I derived from f7 such that fm| = fﬁ| F
if fa|r = falr, for components Fy of F(fs) and F» of F(fz). By [FHS], fm(Fl)ﬂ
f/l;i(FQ) =0 if fal|r, # falp,. From our construction of a sequence {fsm Zil, the
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E
( Ws OV4 +
fo(®) E*(fo)
I 08&) —_ . ng 0
G(forl1) U P(fo, 11) T : 12
0 T G me
l Ow ()
____________ i
Wy

Figure 2.1. The case of ky = 2 and G(fo,ll) = G(fo,lg). W(fo) =WiU---uUWs.
W/(fo,h) =W UW4sUWs.

. D oy . . .
normalized sequence {fz}.*, is monotone increasing. Set

/\

(2.1) = | ] f2(®) N Einick.

)
1

m=1

Let R be the closure of a component of Fipick \ F , and let )R = OR N Einin
and R = OR\ O1R. If any neighborhood of the end £ of E intersects Eiype
non-trivially, then dpR is contained in fm(Z) U me(Z) for some m. See Figure
2.3. If R is compact, then R contains a properly embedded compact surface H,
called a wertical core of R, with 0H C 01 R which admits a homeomorphism h :
H x [-1,1] — R with h(H x {0}) = H and h(H x {-1,1}) D dpR. If £ has a
neighborhood disjoint from Fi,pe, then there exists a unique component of Ethick\f
the closure Rs, of which is not compact. Then R, is homeomorphic to Xain X
[0, 00).

Let H' be a compact connected subsurface of H such that each component
of OH’ is non-contractible in H, and let n : H' — R be an embedding with
n(OH") C W (fz) UW (fms1) and such that n(H') is isotopic in R to h(H' x {0})
by a (possibly non-proper) isotopy. Then we have the following:

Claim 2.1. At least one of n(OH")NO(W (f7)\W (Jrz1)) and n(0H)NI(W (frs1)\
W (f)) is empty.

Otherwise, H' would contain components Xy, A} with 7(\) C AW (fm) \

W (fmg1)) and n(N) € AW (Fzs1) \ W(Fm)) Let Ai (i = 0,1) be a simple loop
in A(fmﬂ) such that fr4:();) is homotopic to 77()\’) in W(fmﬂ) and A()\o) the
component of A(fm) containing A\g. Then G(fm,)\l) is contained in G(fm,ll) \
IntA(Ag). See Figure 2.2. This contradicts the minimality of G(fm, ly).

Suppose that R has a point « with distg(z, doR) > dy + 3, where d; is a uniform
constant with diam(F') < d; for any hyperbolic structure o on ¥ and any component
F of ¥(0)thick- From the ubiquity of pleated maps, there exists a sub-pleated map
q : F' — FEipicx meeting the 1-neighborhood of = in R, see for example the proofs
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Fai (W)

Figure 2.2

of Proposition 9.5.12 and Theorem 9.5.13 in [Thl]. Since distg,, .. (¢(F"),OoR) > 2,
this implies that q(F”) is contained in R and F” is a subsurface of F. By Claim

2.1, there exists a normalized map f ¥ — F with fm < f < fm+1, f(F') C
Ni(q(F")) N Etpick and such that f( (f ) \ F’) is contained in either fm( ) or
fam+1(2). Figure 2.3 illustrates the case of f( (f ) \F')cC fm( ).

fAﬁL(E) — 43/./?}%+1(E)

(

Figure 2.3. The union of blue segments and blue curves represents 0y R. The union
of vertical segments labelled with ‘4’ or ‘=’ is Jy R.

Repeating the same argument for all such R and the closures of components of
R\ f(F), we have a monotone increasing sequence {f,}>2, of normalized maps
containing the original { f# gll as a subsequence and tending toward the end £ of

E as n — oo. The union G = (e ﬁL(E) N Einick contains F. For any normalized
maps go, g1 : ¥ — E with go < g1, we write E(go,g1) = E*(go) \ IntE™ (g1).
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Moreover set N,, = E(fn, fn+1) and Ny, thick = Np N Einick. Let R, be the closure
of Int Ny, ¢thick. The boundary OR,, consists of 01 R, = OR, N Ewin and R, =
OR,, \ O1R,,. Note that 9yR,, is contained in fn(E) U ﬁH_l(E). We say that R, is
the main part of N, see Figure 2.4. Then the following (R1) and (R2) hold.

E
R, J10()
~yo| To
Nl BT
L
Jo(2)

Figure 2.4

(R1) For any point x of R, distg, (x,doRy) < do + 3.
(R2) If at least one of 9y R, = OoRy, N fu(X) and 95 Ry, = OoRy N frr1(X) is
disjoint from the union F defined as (2.1), then distg, (95 Rn, 03 Ry) > 1.

Summarizing the arguments as above, we have the following lemma.

Lemma 2.2. For any n € NU {0}, there exist constants satisfying the following

conditions:

(1) a uniform constant d2 > 0 with diam(R,,) < da,

(2) a uniform constant V4 > 0 with Vol(N,,) < V1,

(3) a constant ro > 0 independent of n € NU{0} such that R,, contains an embedded
hyperbolic 3-ball By, of radius rg.

If y,, is the center of B, then B,, = B, (yn) C R, C N,. We regard that y, is
the base point of R,, and of N, see Figure 2.4.

Proof. (1) The assertion follows immediately from Lemma 1.7 (2) and (R1).

(2) By (1), Vol(R,) = Vol(Ny thick) is uniformly bounded. The closure of the
intersection Int V,, N Egype consists of at most —3x(X)/2 solid tori V. The boundary
0V contains ﬁb(An) and fAnH(AnH) for some components A; of A(ﬁ) for ¢ =
n,n + 1, where possibly one of A,, and A, 1 is empty. See V, and V; in Figure
2.4. Moreover the closure of 9V \ j?n(An) U an(AnH) consists of at most two
annuli with uniformly bounded diameter by (R1). It follows from this fact together
with Lemma 1.7 (1) that Area(dV) is uniformly bounded. By Lemma 1.5, we have
Vol(V) < Area(0V). Again by using (R1), one can show that the volume of any
component of N,, N Eqygp is uniformly bounded. This shows (2).
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(3) If at least one component of dg R, is disjoint from F , then the assertion follows
from (R2). Otherwise, dyR is contained in F and hence all components of dyR are
least area surfaces in Fipicx which are not properly homotopic to each other. Such
surfaces are not accumulate in Fipiec. Thus the existence of rg > 0 as above is
proved by an argument using a standard argument of bounded geometry. (I

3. SMEARING CHAINS ON 3-MANIFOLDS

3.1. Definition and fundamental properties of smearing chains. Suppose
that M = H3/I" is a hyperbolic 3-manifold satisfying Assumptions in Section 1.
Then the quotient map p : H?> — M is a locally isometric universal covering. Let
A™ be a regular k-simplex of edge length 1 in the Euclidean k-space. A singular
k-simplex o : A¥ — M is called straight if its lift o : A¥ — H? to H? is straight,
that is, & is the affine map with respect to the Euclidean structure on A% and the
quadratic model on H?. For any singular k-simplex & : AF — H?, let straight(c) :
AF — H? be the straight map with straight(c(v;)) = (v;) for all vertices v;
(j = 0,1,...,k) of Ak, We note that the image straight(c)(A¥) is a (possibly
degenerate) straight k-simplex in H3. For a singular k-simplex o : A¥ — M, the
map straight,, (o) = postraight(c) : A¥ — M is called the k-simplex obtained by
straightening o, where o : AF — H3 is a lift of o.
The oriented volume of a C' singular 3-simplex o : A3 — M is defined by

Vol(o) = /A3 " (),

where Qy is the volume form on M. We say that o is non-degenerate if Vol(o) # 0,
and positive (resp. negative) if Vol(o) > 0 (resp. Vol(o) < 0).
Let wys be the 3-cocycle on M defined by

wpr (o) = Vol(straight (o))

for any singular 3-simplex o : A3 — M. Note that |wps(o)| is less the volume v3
of a regular ideal 3-simplex in H? for any singular 3-simplex o : A3 — M.

For any smooth manifold N, let C*(A*, NV) be the topological space of C'-maps
AF — N with C'-topology. We denote by % (N) the R-vector space consisting
of Borel measures p on C'(AF, N) with the bounded total variation ||u| < oco.
An element of €% (N) is called a k-chain. The boundary operator 0 : € (N) —
%r—1(N) is defined naturally. Thus we have the chain complex (€. (N), 0s).

Now we consider the case of N = M. Take the base point z¢ of H? and suppose
that yo = p(xo) is the base point of M. Let ppga.r be a left-right invariant Haar
measure on PSLy(C), which is normalized so that, for any bounded Borel subset U
of H3,

(3.1) LHaar({@ € PSLy(C) | azg € U}) = Vol(U).

From the invariance of pipya.,, we know that the quotient map ¢ : PSLy(C) —
P(M) =T\PSL3(C) induces the measure [ifaar o0 the quotient space P(M). That
is, OHaar(¢(A)) is equal to paar(A) for any measurable subset A of PSLy(C) with
AN~yA =0 if y € T'\ {1}. For any point z € H? and a € P(M), a e z denotes
the point of M defined by p(ax) for an o € PSLy(C) with g(a) = a. Note that the
point does not depend on the choice of a € ¢~!(a). Thus the map

o: P(M)xH? — M
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is well-defined. For any singular 3-simplex o : A> — H? and a € P(M), the
singular 3-simplex a e o : A3 — M is defined by po (o) for an a € PSLy(C) with
q(a) = a.

Let ¢ : A2 — H? be a non-degenerate straight 3-simplex. Suppose that
smear (o) is the Borel measure on C'(A3, M) introduced in [Thl, Section 6.1],
which satisfies the following conditions.

e The support supp(smeary; (o)) is {a e o |a € P(M)}.
e For any closed non-empty subset X of P(M),

(3.2) smearys(o)({aeo|a € X}) = ligaar(X).

We denote the inner center of the straight 3-simplex o(A3) in H? by o(c). For
any non-empty almost compact subset X of M, the restriction of smeary;(o) to
{aeo|a € P(M) with aeo(c) € X} is denoted by smearx (o). By (3.1) and (3.2),
its total variation is

(3.3) |lsmearx (¢)|| = Vol(X).

In particular, smeary (o) is an element of ¢5(M). Set o_ = poo for an orientation-
reversing isometry p on H? with p(o(c)) = o(c). Consider the element zx (o) of
é3(M) defined by

(3.4) zx (o) = %(smearx(a) —smeary (o_)).
Then, by (3.2) and (3.3), we have ||zx (o) = Vol(X) and
sx(0)({aeo|ac P(M) with aso(0) € X}) = %VOI(X).

For a Borel measure w on C'(A3, M), let supp(® (w) be the subset of C' (A2, M)
defined by

(3.5) supp(2)(w) = {T\D |’7’ € supp(w) and D € (A?’)@)}7
where (A%)(2) is the set of 2-faces of A%. By the definition, supp(dsw) C supp® (w).

Lemma 3.1. For any almost compact subset X of M, supp(0szx (o)) is contained
n supp(2)(zN2(3X7M)(a)), where 0X = X \ IntX. In particular, ||03zx(0)| <
4AVol(N2(0X, M)).

Proof. The volume of any straight 3-simplex A in H? is less than v3 = 1.014916.... .
On the other hand, since the volume of a 3-ball in H? of radius one is 7(sinh 2—2) =
5.11093..., the radius of the inscribed ball in A is less than one. Let D be any
element of (A%)(?). For any a e o with a e o(c) € X, there exists b € P(M) with
beo(o_) € Ny(X, M) and such that aec|p = beo_|p. Similarly, we have aeo_|p =
bec|p. Moreover, if aeo(c) € X \N2(0X, M), then beo(c_) is an element of X. This
shows supp(@szx (0)) C supp® (zx,(ox,a1))- Since [|zx 0x,01) ()| = Vol(N2(9X))
and A3 has four 2-faces, ||932x ()| < 4Vol(N2(0X, M)) holds. O

Since the image 7(A3) of any element 7 = a @ o € supp{zx (o)} has ‘long tails’,
7(A?) is not necessarily contained in X even if a ® o(c) is an element of IntX with
dist(a @ 0o(0),0X) large. So we sometimes need to treat the body (inner part) and
tails (outer part) of 7(A3) separately as in the next section.

There exists 7 = r(X) > 0 such that, for any complete hyperbolic structure o
on ¥ with Area(X(0)) < 0o, X(0) contains a disjoint union H = Ay U --- LU Ay, of
mutually disjoint simple closed geodesics satisfying the following conditions.
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e For each component A;, length (A;) < r.

e H contains the geodesic cores of all components of ¥(0)tube.

e The Euler characteristic of each component of X(o) \ H is —1. In other words,
'H is a maximal disjoint union of simple closed geodesics in (o).

We say that H is an r-hoop family of (o). If our Margulis constant pg > 0 is
sufficiently small, then the length of any simple closed geodesic in (o) crossing
components of Yiupe(o) is greater than r. So the second condition always holds.
One can fix a constant r > 0 depending only on the topological type of 3 such that
(o) admits an r-hoop family H = A; U --- U \,,. Then we say that H is just a
hoop family of (o).

Let M be a hyperbolic 3-manifold satisfying the conditions in Assumptions of
Section 1. Suppose that £ is a simply degenerate end of M and F is the neighbor-
hood of £ with respect to a finite core C'. Since M has only finitely many parabolic
cusps, one can choose the finite core C' so that, for any pleated map f : X(oy) — E
in E and any hoop family A; U --- U Xy, of X(os), f(A;) (j =1,...,m) does not
correspond to any parabolic cusps of M. From now on, we denote a hoop family of
Y(of) by H(f). We say that f is hoop-realizing if f realizes a hoop family H(f).
This means that any component A; of H(f) is not only a geodesic loop in ¥ but
also the image f(\;) is a geodesic loop in E. Let f; : ¥ — E (i = 0,1) be pleated
maps satisfying the following conditions.

(F1) f; is hoop-realizing and unwrapped in the sense of Subsection 1.2.

(F2) Ni(fo(2)) NNL(f1(X)) N Erain = 0, and f1(X) is contained in the component
of E\ fo(X) adjacent to .

Let ﬁ : ¥ — E be a normalized map contained in a small neighborhood of f;(¥)
in E, see Definition 1.6. Then an 7-hoop family ’H(ﬁ) of E(ﬁ) is defined similarly
for some constant 7 = 7(X) > r(3).

By Lemma 1.7 (2), one can define an (ideal) triangulation 7; (¢ = 0,1) on X
satisfying the following conditions, where X is supposed to have the piecewise Rie-
mannian metric induced from that on E via ]?Z

T1) Each element v of Ti(o) is either a point of H(ﬁ) or an ideal point of 3.
T2) UTi(l) contains H(f;).

T3) For any component [ of H(ﬁ), N UTi(O) consists of just two points.
T4) The cardinality of 7; is uniformly bounded.
T5)

There exists a uniform constant ds > 0 such that the ds-neighborhood of any
point z of F(f;) = f{l(Ethick) contained in star(v) for some v € TZ-(O), where
star(v) is the union |J, IntD,, for all elements D, of 7; with v as a common

vertex.
Let H(ﬁ) N fifl(Embe) = H(ﬁ-)mbe. We consider the unions of closed curves

(3.6) Hi= [i(H() and  Hipune = Fi(H(f)oube)

in E. A singular 2-simplex o : A2 — ﬁ(E) is called a 2-simplex with respect to
ﬁ(n) mod ﬁi,mbc if, for any edge e of AZ, either o(e) is an element of ﬁ(Ti(O) UTi(l))
(possibly an ideal vertex) or the restriction ol. is an immersion into H,; connect-
ing two points of ﬁ(ri(o)). Then o], is called a 1-simplex with respect to ﬁ(n)

mod ﬁMubC. Note that ﬁ(E) is not necessarily a closed surface. So any simplicial
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2-cycle on ﬁ( Y}) with respect to fz(n) mod 7—A{z tube 18 supposed to represent a class
of the locally finite homology group Hloet( fz( ),R).

We set X = E(fo, 1), which is the closure of the component of E\ fo(2)U f1(2)
lying between fo( ) and fl( ) as is defined in Section 2. The following connecting
lemma given in [So4, Lemma 5.1] plays an important role in the proof of Theorem

A.

Lemma 3.2 (Connecting Lemma [So4]). Suppose that o : A3 — H3 is a straight

3-simplex with Vol(c) > 1. Then there exists a 3-chain z on M satisfying the

following conditions.

(1) 2 = z¢(0) + @, where @ is a 3-chain on M with |[a|| < by for some uniform
constant by > 0. R

(2) For i = 0,1, there exists a simplicial 2-cycle w(r;) on fi;(¥) with respect to
fAZ-(Ti) mod 7’-\[1»7tube representing the fundamental class of fz(Z) and satisfying

032 = Vol(o)(w(11) — w(7)).

3.2. Inefficiency of smearing 3-chains. Let ¢ : M — M’ be a homeomorphism
between hyperbolic 3-manifolds satisfying the conditions in Assumptions of Section
1 and ¥ : M — M’ a continuous map properly homotopic to . Afterwards
will be chosen so that it satisfies (P1) and (P2) below. Suppose that p : H® — M
and p' : H® — M’ are the universal coverings. Take the base points yg of M
and y{, of M’ so that ¥(yo) = y6 and points xg, z{ of H? with p(zo) = yo and
Y '(zf) = yb. Consider the lift 1 : H3 — H3 of v to the universal coverings with
w(xo) = z(. We note that w is equivariant with respect to the 1somorphlsm Py -
m1(M,yo) — m(M’,y}). That is, for any v € 71 (M, yo), Yory= Pu(y) 0 ¥ holds.
Here the covering transformation on H® determined uniquely by v € 71 (M, yo)
(resp. Y. (7y) € T (M’ y})) is also denoted by v (resp. 1. (7)). Let o : A3 — H?
be a non-degenerate straight 3-simplex. For any 7 > 0 and a € PSLy(C), a 3-
simplex ac : A% — H3 is n-efficient (resp. n- meﬁﬁfczent) with respect to w if
u(o)Vol(straight(ihoac)) > vs —1n (resp. 1(o) Vol(straight (o ac)) < vs—1), where
(o) = Vol(c)/|Vol(c)|. Let ao : A3 — H? be any n-efficient straight 3-simplex
in H?® with respect to {Z)v Note that the n-efficiency is an open condition. We say
that a non-degenerate straight 3-simplex 7 : A% — M is n-efficient with respect
to ¢ if its lift to the universal covering is n-efficient with respect to @E, otherwise 7
is n-inefficient.

For any closed subset X of M, let C{ 4 (0; X) be the subset of P(M) consisting of
elements a such that aeo(c) € X and aeo is n-inefficient. We denote the restriction
of zx () to 3-simplices a @ o with a € CY (03 X) by 2% 0 (0)- Let 2% (o) be
the restriction of zx (o) to the closure of supp(zx(0)) \ Supp(z e (7))-

Let E be the neighborhood of aAsimply degenerate end of M with respect to
a finite core of M. Suppose that {f,}>2, is the monotone increasing sequence of
normalized maps in F as in Section 2 and N,, = E(fn, fnﬂ). For any ng, n; € NU
{0} with ng < ny, we denote E(fn,, fn,) By N(ng,ny), that is, Nepg ny) = UZ;; N,,.
For the d-neighborhood of Ny(N(ngn,)) With d > 0, we set zn,(n,, ,,,)(0) =
z(ng,n1;d) (o) or z(ng,ni;d) shortly. For any d > 0, let C!! . (0,;n9,n1;d) be the
subset of P(M) consisting of elements a such that a 00( ) € Na(N(ng,ny)) and aeo
is n-inefficient. We denote the restriction of z(ng,n1;d) to 3-simplices a ® o with
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a € Cf 4(0,;n0,n1;d) by 2 (no,n1;d). Let 20 (ng,n1;d) be the restriction of
z(ng,n1;d) to the closure of supp(z(ng, ni;d)) \ supp(z; g (no, n1; d)).

Now we consider the case of X = N(p, ,), that is, the case of d = 0. Note
that N, n,) is an almost compact submanifold of M for any ng, ny € NU {0}
with ng < ni. See Section 1 for the definition of almost compact subspaces. Let
Tn; be a triangulation on ¥ such that fn (Tn,;) is a triangulation satisfying the
conditions (T1)~(T5) given in Section 3. We set Hp = () H.,, see (3.6) for
ﬁn. Let N(ﬁE) be a neighborhood of 7‘AlE in M consisting of mutually disjoint
tubular neighborhoods with Vol(NV(Hg)) = > N(H,) < co. Then the normal

radius of any components of A (ﬁn) converges to zero as n — oo. Suppose that
1 : M — M’ is a continuous map satisfying the following conditions.

(P Ylanar(fie) = Clanw e

(P2) For each component | of Hg, 1(I) is a closed geodesic in M.
Consider a piecewise totally geodesic map f* : ¥ — M’ properly homotopic

to 9o ﬁ” : ¥ — M’ and satisfying the following conditions.

o Forany v e 1), f1(v) =10 fu, (v).

e For any e € T,(é), fr:(e) is a geodesic segment in E’ homotopic to ¢ o fn (e) rel.
Oe.

e For any A € Tr(f) - (A) is a totally geodesic triangle in E” bounded by f,* (0A).

i) JIn;
Lemma 3.3. With the notation as above, there exists a constant C > 0 independent
of no and ny such that Vol®3(f7% %) < VOl(E(fngs fn,)) + C.

no’Jni

Proof. Let o : A> — H? be any straight simplex in H® with Vol(c) > 1. Suppose
that Gp,.n, is the connecting 3-chain given in Lemma 3.2 (1) associated with X =
E(ﬁlo,fnl). Then |[Gng.n, || < bo and O32py,n, = Vol(o)(w(7n,) — w(Th,)) holds
for the 3-chain z,,,n, = 2(10,71;0) 4 @ny,n, in E, where w(7,;) (j = 0,1) is the
2-cycle on fnj (¥) as in Lemma 3.2 (2). There exists the fundamental 2-cycle S(7,,,)
on X with respect to 7,,; mod H(J?nj)tube such that fnj*(S(Tnj)) = w(7y;). Then
straight (¢, (2,0, )) is a locally finite 3-chain on M’ with

O3 straight (Y. (2ng,n, )
= Vol(o)(straight(y o fnl )«(S(Tn,)) — straight(y o fno)*(S(Tno)))
= Vol(o) (/) (S (Tny)) = (frig) (S (7))
Here the equality straight (¢ o ]?nj)*(S(Tnj)) = (f1;)+(S(7n,)) is proved by the fact
that frl:; is a piecewise totally geodesic map defined as above. Then we have
Wy (Y (2(no, 113 0) + Uy ny ) = Vol(straight (¢ (2ng.n, )
= Vol(a) Vo™ (f1x, fr).

no?

(3.7)

On the other hand,
war (Y4 (2(n0, 113 0) + g ,ny ) < v3([[2(120, 213 0)] + [[@ng,ns [])
< U3(V01(E(ﬁlov ﬁu)) + bO)

By letting Vol(o) — w3, one can have a required inequality. a
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Now we recall the definition of w-upper bound condition (0.1) for ¢ on E, where
{X,} is an expanding sequence of compact submanifolds of E with (J,>, X,, = E.
For any almost compact submanifold Y of M and any ¢ > 0, there exists a compact
submanifold Y’ of Y with Vol(Y \ Y’) < e. Thus the compactness condition for X,
can be replaced by the almost compactness condition. Moreover any continuous
map 1 with the properties (P1) and (P2) also satisfies the w-upper bound condition
if we replace the constant co by co + 4v3Vol(N(Hg)), where we used the fact that
straight(¢ o 0’) # straight(y o ¢’) for o’ € supp(zx, (0)) occurs only when at least
one of the four vertices o’(v;) (i = 0,...,3) is contained in N(Hg). Hence the
property for ¢ is equivalent to the existence of a constant ¢y > 0 satisfying the
following condition for . For any almost compact submanifold X of E, there
exists an almost compact submanifold X with X D X and satisfying

(0.1)' Wy (P« (22(0))) > wm (25 (0)) — o

for any straight simplex o : A% — H? with Vol(o) > 1
The following lemma is the infinite volume version of Lemma 1 in Soma [So2].
Here the n-inefficiency is the condition with respect to the continuous map .

Lemma 3.4. Suppose that v : M — M’ satisfies the w-upper bound condition
(0.1)" on E and 0 < e < vz — 1. If Vol(o) > v —¢, then
€V1(7L1 — no) 4 bil

n n

for any ng, n1 € NU {0} with ng < ny, where Vi is the constant given in Lemma
2.2(2) and by = b1(co) > 0 is a uniform constant.

||Zglefﬁ(n05n1; O)H <

Proof. Suppose that X = N(ng,n;) and X is an almost compact submanifold of
E with X D X and satisfying (0.1)" for any straight simplex o : A® — H? with
Vol(o) > 1. Let Y be the closure of X \ X in E. Since |Vol(7)| = Vol(o) for any
7 € supp(z(no, n1;0)),

wi (25 (0)) = Vol(o)||z (o) = Vol(o)([|z5 (o) + [|2(n0, 715 0) )
— Vol(0) (Vol(7) + VOl(E(Fogs Fur)))-
By Lemma 3.2 and (3.7),
wirr (Y« (25(0))) = warr (Pu(29(0))) + warr (P (2(n0, 115 0)))
(3.9) < 0|25 (0) | + war (@ng,n, ) + v3VOIP (f1, F1)
< v3Vol(Y ) + bovs + v3Volbd(fn0, I
By (0.1)", (3.8) and (3.9) with Vol(c) — w3, we have that
(3.10) VOU(E(fy, ) < VOI*! (f12, f12) + bo + covg
Now we suppose that Vol(o) > vz — e for a fixed 0 < ¢ < v3 — 1. We have first
o (6 (0, m130))) = wars (. (<04 (mo, 113 0))) + i (s (g5 (0, 110))
< 3|20 (n0, 113 0) || + (v3 — 1) |2, og5 (120, 715 0) |
= vs2(n0, 115 0) || = ll2{},e (120, 15 0)]|

= U3V01(E(J?noa ﬁu)) - n”zgqefﬁ(n()v ni; 0)”

(3.8)
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On the other hand, by (3.7) and (3.10),
warr (s (2(no, 115 0))) = Vol(@)VoI™ (£, £11) = warr (¥s (@ny )

> (v3 — €)(VOI(E(fno, fy ) — bo — covy ) — bows

> (v3 = &)Vol(E(fug, fur)) = b1,
where by is the uniform constant defined by

by = vs3(bo + covgl) + bovs = 2bgvs + cp.
Thus we have L
12 (110, 1115 0) || < eVOU(E (frg s fny)) + b1

By Lemma 2.2 (2), Vol(E(fny, fn,)) < (n1 —no)Vi. This completes the proof. O

Corollary 3.5. With the assumptions as in Lemma 3.4, for any d > 0, there exists
a uniform constant e(d) > 0 satisfying

fittaar (C1 (0510, n15 d)) < 2eVi(m — no)vl N 2e(d)'
Proof. By (3.2),
20,15 Dl = S otcaras (o) + sunearay (0))(Cl 13 d) )
= %ﬁHaar(C&eﬂa(o;no,nl;d)).

On the other hand, by Lemma 1.7 (3),
et (10,713 )| < et (0,113 )+ 127 ) (@ + 2 ) )

|+ w3 (VolWNa(fao (5))) + Vol(Na(fay (£))))

0
< |2 o (0, 12130
0 || +2’U3’U0(d).

< Hzinnefﬁ (n07 n

)
)
;0)
By Lemma 3.4, e(d) := by + 2v3vp(d)

is a required uniform constant. ([l

4. SIMPLICIAL HONEYCOMBS (INFINITE VOLUME VERSION)

In this section, we first recall the notion of simplicial honeycombs which is in-
troduced in [So2] for hyperbolic 3-manifolds of finite volume and show that it is
applicable also to the case of infinite volume. Similar tools are used also in [Sol].
However, in [Sol], the author needed the Cannon-Thurston map to define them.
Here we do not rely on the Cannon-Thurston map. We will prove by using sim-
plicial honeycombs that the lift ¢ of ¢ to H? is well approximated by the identity
near the boundary S2, of H? with respect to suitable coordinates on H? (Lemma
4.10) if ¢ satisfies the w-upper bound condition on a simply degenerate end of M.

4.1. Simplicial honeycombs revisited. Throughout this section, we work with
a number J > 4, which will be fixed in Subsection 5.1. The number is a uniform
constant J(rg) depending only on rg > 0 given in Lemma 2.2. We may assume that
ro < 1.

For any element z of the complex plane C, we denote by B,(z) the disk in C of
radius @ > 0 and centered at z. The set of vertices of a triangle 7" on C is denoted
by v(T). We denote by 0 the origin of C and by 4J the point 4.J + 0y/—1 of C.
For any z € C\ {0}, let T, be the regular triangle in C centered at 0 and with
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~

z € v(T,). Take § > 0 sufficiently smaller than r¢. For any z € Bs(4J) and a given
m € N, we divide fz into 9" regular sub-triangles 7%, 1, T, 2,...,T, gm of the same
size with 0 € v(T%,;) fori = 1,...,6. Let V(™) (L) be the union U?:l v(T,,;). Then
Bs(4J) is the control disk for V(™) (T,)’s. See Figure 4.1. The length of each edge

Figure 4.1. The case of m = 2.

of T, ; is 3~™/3|z| < 37™ - 5v/3.J, which is called the fineness of V(™) (T.). For
any z € Bs(4J), let wo.., w}, w; be the specified points of V(™) (fz) defined by
%Z’ w: :%(3+4\/j1)z, w, = % (3—4\/j1)z.

We set z = xg), t = zg) for a point © = (2,t) € H? = C x Ry. For a subset
A of H3, we denote the subset {zq) |z € A} of C by Ag. For i =1,2,...,9™
and 0 <t < s < 1, let A(Zsl)t be the straight simplex in H? with four vertices
vo, V1, V2, v3 With vg = (0,1/s), {v1,v2,v3}c) = v(T%;:) and wvyw) = s if either
vgic) = 0 or vyc) = wo,z, otherwise vyr) = ¢ for k = 1,2,3. We say that the
set Hfj;m) = {Aisl)t li = 1,2,...,9™} is the simplicial honeycomb in H3 of type
(z,m, s,t). See Figure 4.2, where o is the geodesic line in H® connecting 0 with
oo. We set

em(s) = sup{vs — Vol(A); A € HE™ 0<t<s z€ By(4J)},

z,t

Wo;z =

where the radius 1 of By(4.J) is taken as a positive constant sufficiently smaller
than 4J and independent of §. Since any A € HSt’m) geometrically converges to an
regular ideal simplex uniformly on any compact subsets in H? as 0 < t < s — 0,

(4.1) lir% em(s) = 0.

(s,m)

it Here we

The next lemma follows immediately from the definition of H
recall that 2o = (0,1) is the base point of H> = C x R.
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lo

1/s

H(st,m)
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e
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—— C
Tz i 0 Wo;z z
Figure 4.2

Lemma 4.1. There exists a uniform constant do(m) > 0 independent of 0 < s < 1
such that, for any element A of H(s ™ distys (z9,0(A)) < do(m).

Note that lim do(m) = oo.

Let w ]HI3 — H3 be the lift of the continuous map ¢ : M — M’ given in
Subsection 3.2. For a € PSLy(C), w o « is denoted by 1,. If necessary deforming
Yo slightly by homotopy, one can suppose that 1/)&( ,1/s) # 1/@(0,5). Then the
composmon wa B= ﬂowoa H? — M3 with 3 € PSLy(C) is called a normalization
of wa if it satisfies

(42)  {¥a,p(0,1/5),9a,5(0,5)} Clo and  ¥4a5(0,5)Rr) < Ya,5(0,1/5)g).
See Figure 4.6 for the normalization {/;aﬂ with s = u,,.
Definition 4.2. For any non-degenerate straight 3-simplex A in H?, we denote a
positive straight 3-simplex o : A3 — H? with 0(A3) = A by oa. We say that A is
n-efficient with respect to v, if oa is n-efficient, that is, Vol(straight(¢ 0 oa)) >
vz — 1. A finite set {Aq,...,A,} of positive straight 3-simplices in H? satisfies the
property P (z/;a) if each A (i=1,...,n) is n-efficient with respect to 1.

Now we present two technical lemmas, which are proved by arguments quite

similar to those in [So2]. Here distcxr . is the distance function and meascxr L s
the Lebesgue measure on C x R with respect to the standard Euclidean metric on

CxR, CE?xE =E? Let V(g "™ be the union of all vertices of Ai )t € H =)
other than the top vertex (0,1/s). Then we have Vi,{ )[C] V(m)(T.). Note that

Vz(ft’m) contains (0, s) and (wy.z, s), any other elements of which are of height ¢.
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Lemma 4.3 (cf. [So2, Lemma 3]). For any § > 0 sufficiently smaller than rq, there
exist constants s1 = s1(0,m) > 0 and n = n(d,m) > 0 satisfying the following (*).

(*) If Hif;m) has the property ngﬁ(zza) for some a € PSLy(C), 0 < s < s

and (z,t) € Bs(4J) x (0,s] and o has a normalization 3 with Jaﬁ(wo;z,s)[@] €
Bas(wo;z), then there exists a constant co > 0 independent of 6 such that

(4.3) distc(v[(c],iaﬂ(v)[@) < cgd and Ja,ﬁ(v)[R] < cgd
for any v € Vz(,st’m), see Figure 4 in [So2] (and also Figure 6 in [Sol]).

We also suppose that any constant is independent of n and §. A function f(9)
of ¢ is often denoted by (d) if 0 < f(d) < R¢ holds for some constant R > 0. For
example, if fo(d), f1(9) are such functions and a, b are non-negative constants, then
afo(8) + bf1(d) can be represented as a(d) + b{d) = (J).

Suppose that X is a subset of C x (0,s]. We say that Ja,B|X is a (d)-almost
identity if @Zaﬁ satisfies (4.3) for any v € X. Lemma 4.3 asserts that one can
choose a normalizing factor  of Ja so that Javmvfgm) is a (d)-almost identity

when Hi‘j;m) has the property sz(zza). In general, the choice of 3 depends on
(2,t). Lemma 4.10 will show that, in our case, there exists a normalizing factor
without depending on (z,t).

For any Borel subset L of Bs(4.J) x (0, s], we set

W(S’m)(L)ZBQJ(O)X(Oﬂs]m( U Vi,st’m))’

NE™(L)y = W™ (L) N By (0) x (0, s].

The following lemma corresponds to Lemma 5 in [So2]. For the proof, it was
crucial that the fineness of V(") (T,) converges to zero as m — cc.

Lemma 4.4 (cf. [So2, Lemma 5]). Fiz a constant ¢ > 1 and suppose that § > 0
and s > 0 are any sufficiently small numbers. Then there exists mo = mo(d) € N
and a constant 0y > 0 independent of ¢, s such that, for any integer m > my, the
followings hold.

meascx k., (WEm™(L) > (1 - Opcd)meascyr, (B2s(0) x (0, s]),
meascxr, (N*™ (L)) > (1 — fpcd)meascxr, (Bs(0) x (0, s])
for any Borel subset L of Bs(4.J) x (0, s] with
meascyr, (L) > (1 — cd)meascxr, (Bs(4J) x (0, s]).

In fact, the lemma holds if 8y = 5. However we just need that 6y is a positive
constant in our argument.

4.2. Applications to simply degenerate ends. Let E be the neighborhood of
a simply degenerate end £ with respect to a finite core of M. The submanifold
U,y Ny, of E given in Section 2 is also a neighborhood of €. Throughout the
remainder of this section, we suppose that ¢ : M — M’ satisfies the w-upper
bound condition (0.1)" on E. So one can use results in Subsection 3.2.

Let p : H® — M be the universal covering and ¢ : PSLy(C) — P(M) the
quotient map given in Section 3. We may suppose that the base point zy of H?
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is taken so that yo = p(zo) is the base point of Ny. For the constant rg given in
Lemma 2.2 (3), consider the open subset A of PSLy(C) consisting of elements o
with distys (axo, o) < 2r9/3. Recall that, for any n € NU {0}, R,, is the main
part of N,, with the base point y,, and satisfying the conditions (R1) and (R2) in
Section 2, see Figure 2.4. Let o, be an element of PSLy(C) with ¢(a,) @ 29 = yp.
Set anxo = Ty, an A=A, and ¢(A,) = A,,. For any o = a0 € A, with a € A,
distys (&/xo, anzo) = distgs (axo, o) < 2r9/3. By Lemma 2.2 (3), the following
properties hold.
e For any n € NU {0}, the restriction ¢| 4, of ¢ is injective and hence

,uHaar(A) = ,uHaar(An) = ﬁHaar(An)-
e For any ng, n1 € NU {0} with ng # n1, An, N Ay, is empty.
For any non-degenerate straight 3-simplex o : A% — H?, let A} ; (o) be the
subset of A,, consisting of elements a € A,, such that a e o is n-inefficient and set

Az,inefﬁ(g) = (q|»An)71(AZ,inefﬁ(U))'

For a given 0 < § < 1, we fix a integer m > mg(d) for mo(0) in Lemma 4.4 and
let n = n(d, m) be the positive number in Lemma 4.3 for an integer m is greater
than mo. Let £ be the subset of A, x Bjs(4J) x (0, s] consisting of elements
(a, 2,t) such that aA; is n-efficient for all A; (i = 1,2,...,9™), where we denote
the elements Ai‘szt of H{%™

21 by A; for simplicity. If we set X, = A} | x(0)
for o; = o, : A3 — H3, then

n;z,i,t

gT(Ls,m)W — {(047 z,t)

For any k € N,

o
(z,t) € Bs(4J) x (0, ], 0 € Ap \ | J X7, , } .

i=1

k k
Z /”LHaar(Xg;z,'L,t) = Z ﬁHaar(AZ,ineﬂi(o—i))
n=1 n=1

< //ZHaar(CiZefﬁ(o-i; 17 ka dO(m7 TO)))

for i =1,2,...,9™, where do(m,r9) = do(m) + r¢ for the constant do(m) given in
Lemma 4.1. By Corollary 3.5,
k9™
2-9"e(s)Vik  2-9™e(do(m,
) 3D () < L 20"l da ()
n=1i=1

Let V,,(A), Wi (M) (A > 0,n =1,2,...) be measurable subsets of a measure space
(X, p) with Vi, (A) € Wy, (A). Then p(Vi, (X)) = (n) u(Wn (X)) means that there exists
a constantc > 0 independent of A and n and satisfying

,U/(Vn()‘)) > (1 - CA)M(Wn()‘))
for any sufficiently small A > 0 and any n greater than some n(A) € N.

The following lemma is an infinite volume version of Lemma 6 in [So2]. Here, we
denote by LY the a-section of E5™ in A, x Bs(4J) x (0, s] for a € A,,, which
is a Borel subset of Bs(4.J) x (0, s].

Lemma 4.5. For any sufficiently small § > 0, there exists ng = ng(d) € N such
that, for any n > ng, there are s, > 0 with lim s, = 0 and such that, for any 0 <

s < sp, there exists a Borel subset OSLS) of A, satisfying the following conditions.
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(1) For any o € Ay \ 0% and any 0 < s < sy, Hi‘ft’m) has the property ngﬁ(i/;a)
if (2,t) € LY.

(2) praar(An \ OF)) = (5) firtaar (An).

(3) For any a € A, \ o, IMeASC xR, (L((f)) ~ (5) meascxr, (Bs(4J) x (0, s]).

Proof. Suppose that there would exist infinitely many n(a) € N with n(a) < n(a+1)

and such that, for any 0 < § < 1/n(a) (a = 1,2,...), there exists 0 < s < § such
that any Borel subset O,,,) of A,,(,) does not satisfy at least one of the conditions

(1)-(3).

Let ag be the smallest integer satisfying
. . m .
0y > 2-4 92 e(do(m,ro)).
né NHaar(A)
Since 1ir%5m(s) =0 by (4.1), 9™ - 2¢,,,(s)Vin~n(ag) < apd®pmaar(A)/2 holds for

any 0 < s < §p if we take 0 < 59 < 1/n(ag) sufficiently small. For any (z,t) €
Bs(4J) % (0, s], since

n(ao)

ag
ZNHaar(Xg(a);z%t) < Z MHaar(X;Z;Z_,LtL
a=1 n=1

the inequality (4.4) with k = n(ag) implies

ag 9™

4-9me(s)Vin(a 4-9me(dg(m,r
ZZMHZ&T(Xg(a);Zyi_’t) < (n) 1 ( 0)+ (7;]( 0)) < aoézﬂHaar(A)~
a=11i=1
Then, for some a € {1,...,a0} and s,(a) = Sp, we have

fttaar X measc, (E45")

>1-6%
HUHaar X MEASCxR (An(a) X Bé(4j) X (07 S])

Hence there exists a Borel subset O,,(q) of A, (q) with (1)—(3). This contradicts our
definition of n(a). So one can have a positive integer ng and 0 < s,, < 1/n for any
n > ng which are desired in Lemma 4.5. This completes the proof. ([

Take n > ng(d) arbitrarily. For a fixed 0 < s < s,, let a be an element of
A\ 0% and LY the subset of Bs(4J) x (0, s] given in Lemma 4.5 (3). Recall
that, for any § € PSLy(C) satisfying (4.2), Ja’g =fo {/;a is called a normalization
of @a. Suppose that p, g : Bs(4J) — C is a continuous map defined by

(4.5) Pa,p(2) = wa,ﬁ(WO;zv 5)[<C] ) (wO;z>_1a

where wy,, is the specified point of y(m) (fz) given in Subsection 4.1. Then the
correspondence w — py, (%) -w defines the similar map on C fixing 0 and mapping
o,z t0 Ya,p(wo;z, 8)[c)- Since any V, ; = Vz(ft’m) with 0 < ¢ < s contains (wo,z, $p)

as a common point, it follows from Lemmas 4.3 and 4.5 that, for any (z,t) € Lgf),

(4.6) Vo5 (0)(c] = Pa,s(2) - v | < pas(2)(8) (v € Vep).

Remark 4.6. Note that the normalization 3 of zza depends on the choice of
zo € Bs(4J) with (z0,t0) € LY. For any (z,t) € LY with z # 2, VYa,8lv. .
is approximated by either the identity or a conformal map on C fixing 0. We
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would like to choose a common 3 so that ¥ gy, , is (§)-almost identical for ‘most’
(z,t) € LY. To accomplish the object, we consider a counter part o/ (V,/ ;) of
a(V,,) for some o € PSLy(C) and (#/,t) € ij,). First we show that o/(V, ) is

stuck on a solid cylinder with the axis a(lg) (see (4.10) below), so that {Ea,ﬁ can
not move a~! o o/ (V,+) essentially. By using this fact, one can prove that a(V, )
is also stuck on an opposite solid cylinder with the axis a’(lg), and hence 9, glv_,

is also almost identical.

For any a@ € A,, and any z € Bs(4J), there exists a unique element o/ =
Tn(a, z) € PSLy(C) with o/(00) = a(x), o/ (w]) = a(w]) and o/ (w;) = a(w]).

Then o/(0) is equal to a(wp,,). See Figure 4.3. Let r, be the elliptic element of

a’(lo)
lo

Figure 4.3. The coordinate on Image(a) = C x R, is taken so that a(co) = oo,
a(0) =0 and a(z) = z, that is, « = Idcxr, -

PSLy(C) of rotation angle 7 and fixing 2/3, co. Then 7,(«, 2) is represented as
aor,.

Lemma 4.7. The map

Gt An % Bs(4J) — PSLy(C) x Bs(4.J)
defined by Cn(a, z) = (Tn(a, 2), 2) is a smooth embedding.
Proof. We set o = 7(ay,2;) for i = 0,1 and suppose that (af,z0) = (af,21).
Then oo r,, = a1 or,, and hence ay = ay. This shows (, is injective. For a
fixed z € Bs(4J), the correspondence o' — a = o o r, defines a smooth map

as well as 7,. It follows that (, is a local diffeomorphism and hence an smooth
embedding. (I

We set
Al ={7.(a,2) € PSLy(C); z € Bs(4J),a € Ay, }.
Then ¢, (A, x Bs(4J)) is a subset of A/, x Bs(4J). See Figure 4.4. Recall that
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P(M)
Al Al
A,
« Tn(a, 2)
(n qla,
—
Z Bs(4J)
z Bg(4J)
Figure 4.4

q : PSLy(C) — P(M) = I'\PSL2(C) is the quotient map given in the paragraph
containing the equation (3.1).

Lemma 4.8. The restriction q|a; : A, — P(M) is injective.

Proof. If q|4; were not injective, then there would exist v € 71 (M, x¢) \ {1} and
of = (s, 2) € AL (i =0,1) with @) = v o0 «f. From the definition of 7, this
implies ag =y o0 ag o1y, or,,. Since both 21, z2 are contained in Bs(4J), 72, 0 s,
well approximated by the identify of H? in a fixed neighborhood of x in H3. Since
moreover § is sufficiently smaller than rq, distgs(a1(xg),y o ag(zo)) < 2r9/3. It
follows that

distys (2, Y2, ) < distgs (€, a1 (o)) + distys (a1 (20), v 0 ag(xo))
27’0 2’)"0 27“0

+ distys (’y o ao($0),7$n) < ? + ? + ? = 2ry.

This contradicts distys (2, y&,) > 27r0. O

By using the injectivity of g|.4; instead of that of g|4,, we have the following

lemma corresponding to Lemma 4.5.

n?

Lemma 4.9. For any sufficiently small 6 > 0, there exists ny = ny(d) € N such
that, for any n > ny, there are s, > 0 with lim s, =0 and such that, for any 0 <

n—oo

s < sl,, there exists a Borel subset O;L(S) of Al satisfying the following conditions.

(1) For any o/ € Al \ O and any 0 < s < s, Hi‘ft’m) has the property Py (thar)
if (z,t) € LY.

(2) prtaae (A5, \ OR) % ) prrtaar(AL)-

(3) For any o € Al \ (’);L(s), meascxr., (LS,)) ~ (5) meascxr, (Bs(4J) x (0, s]).
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The following is a key lemma to prove Theorem A. In fact, we will find an element
(z0,%0) € LY such that (1) |pa,p(z0)| = |pa.p(2)| for ‘most’ (z,t) € LY and (i)
(z0,%0) is also an element of LS,) for o/ = 1,(c, z0). We use a truncating trick for
the proof.

Lemma 4.10. With the notations as above, for any n > max{ng,ny}, there exists
an element a of A, and a Borel subset W, of B27(0)x (0, u,,] satisfying the following
conditions, where u, = min{s,, s, }.

(1) Ja,gh/ya is a (8)-almost identity for some normalization B8 of V.

(2) MeascxRr (Wa) %(5) MeascxRr (B2J(O) X (O,un])

Proof. We set shortly olun) — On, oun) — 0., L) — L, Lgf’") = L, for

a€ A, \ O, and o/ € A\ O}, For a fixed constant K > 0 and any o € A, \ Oy,

we have a Borel subset L, ks of L, satisfying the following conditions.

e meascxr, (La,xs5) = Komeascxr, (La)-

e For any (z,t) € Lo ks and (w,u) € Lo \ La, ks, |Pa,8(2)| = |pa,g(w)|, where [ is
a normalization of .

The existence of such a subset Ly, ks is guaranteed by the continuity of p, g. Since

(n is an orientation-preserving embedding on the compact space A,, x Bs(4.J) by

Lemma 4.7, inf(, ) {det(D¢y (e, 2))} = c¢(J) > 0, where (o, z) ranges over A, x

Bs(4J). By this fact together with Lemma 4.9, one can choose the constant K so

that

Zn (,UHaar X MEASCx R < U {a} X La,Ké))

OZE-An \On

>uHaarxmeasexR+(<A;\0;>xBa<4J>x(o,un1\ U {a’}xLa/),
a’€e AT \O;,

where Zn is the direct product embedding
G = Co X id (g, An X Bs(4) X (0,1,] — Al x Bs(4J) x (0, up)-

In fact, the left side term of the preceding inequality is greater than c;c(J)Kd and
the right smaller than cyd for some constants c1,co > 0. It follows that there exists
(20,t0) € Lo ks with a € A, \ O,, such that (o, zg,t) = En(a, 20,t0) is an element
of {&'} x Lo with o’ € Al \ O,

We will truncate elements (z,t) with relatively large |pa,5(2)| in L,. For sim-
plicity, the coordinate on Image(a) = C x Ry is taken so that a(occ) = 0o, a(0) =0
and a(wo,z,) = Wo,z,, or equivalently o’ = r,,. Let L((ll) be the Borel subset of L,
consisting of elements (z,t) € L, with |pa g(2)] < |pa.8(20)]. Since LY contains
Ly \ Lo, ks, by Lemma 4.5

(4.7) meascxr, (L)) ~(5) meascxr, (B5(4J) x (0, uy)).

Here we choose the normalization § with (4.2) so that Jaﬁ(wo;%,un)[@] coincides
with wo,,,. This implies that p, g(z0) = 1 and hence

(48) [Pas(2)] < 1
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for any (z,t) € LY 1t follows from Lemma 4.4 and (4.7) that
(4.9) meascxr, (N ™ (LYV)) a5y meascxr, (Bs(0) x (0, up)).
For any v € V(™) (Ty;), let
Yo : Bs(4J) — C
be the similar map defined by y,(z) = %v. Note that y,(z) is the element of

V) (fz) which is the continuation of v € V(™) (iu). Let LS,) be the Borel subset
of Ly consisting of elements (z/,¢) € L, such that (o’ o y,/(2'),t) belongs to
N(“"’m)(L,(ll)) for some v’ € V(™) (iu), where ¢ = w,, if 2/ = wp,»» and otherwise
t = t. See Figure 4.5. Since o/ 0 Yy, ,,(20) = &/ (wo;z,) = 0, (20,t0) is an element of

Figure 4.5. The left side shaded disk represents Bs(0).

) as well as of LY. By (4.8), we have

(410) diSt(C 07 1/)%/3(0/ o yvl(zl)’f)[c]) < 0.
Furthermore, by Lemma 4.9 (3) and (4.9),

L4

o

meascy R, (Ll(x/)) ~(5) meascxr, (Bs(4J) x (0, un]).

Let Agleto and Aizl)lto be elements of Hiz:;;m) with v(7%,4,) 2 0and v(T, ;,) =
o/ (v(Ts,,40)). Then v(T%, 4, ) contains wy,,, = ¢(0). Since (zo,%o) € LY n LS,),
Agz,ni()),to’ AS;:;%O and aI(AEZTiZ,to) are n-efficient. See Lemma 4.3 for n = n(§, m).
In particular, this implies that 1,5(v(T%,,i,))c) spans a triangle 77 ; arbitrarily
well approximated by the regular triangle T, ;, if we take 7 sufficiently small. Since
waﬂ(v(szh)) = ¢a7ﬂ(o‘/(v(Tzo7io))) and wa;ﬁ (wo;zov un)[c] = wq;vzo by our choice of
f3, the geodesic line in H? passing through 1, g(a’(0),uy,) and ¥, (a’(0),1/u,) is
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also well approximated by the Euclidean geodesic ray o/(lp) in C x Ry in a half 3-
ball centered at o/(0) and with sufficiently large radius. See Figure 4.6. This means

lo Oé/(lo) lo O/(lo)
Vap(e(0),1/un)

1/un -------------- CY ------------- ( O/(O)y 1/“71) \*

{/;(x,ﬂ(07 1/un)

wa,ﬂ
_— >
(un) (un)
Azzyi(uto al(Azz,iD,tg)
Jd<ﬂ(07un) p
u R a / ? ~
tz B G . (a/(0), un) : a,p(a/(0), uy)
= = ——c
0 Tzo,io TZ(),il Woszo 0 T;[),:-l\ Wo;zo

Figure 4.6. The normalization of Ja centered at 0.

that 3 works just like a normalization of ¢ centered at wo,-, = a/(0). So, for any
(#/,t) € LS,), by relying on (4.10) and Lemma 4.3 with use of o/(0) and o’ oy, (2")
instead of 0 and wy,. respectively, one can prove that {/;aﬁ is (d)-almost identical
on o/ (V, ;) and hence in particular on a’(W(“n’m)(LS,))) D of (Nnm) (LS,))) See
Figure 4.7 (a).

l(] O/(lo) lo O/(lo)
i N(u"’m)(Lal)) a’(N(“"’m)(LS,>)) )
(O/ © yv’(z )7 t) / \ (yv(z)v t)
% o|Co Un Un o) o
D e R R L R R Y
20 °o O/(Vz’ t) t t Vzt o° 0(0)
o(; zoo OOZ OOO
0 w();zo 0 Wo; 2o
(a) (b)

Figure 4.7. (a) For any (2/,t) € LS,), Ja,[g o'(v., ,) 18 a ‘rotation’ with the shaft
a/(lp), but (o oy, (z'),t) can not go out of Bs(0) x (0,u,] due to (4.10). (b) A
P ()
similar situation occurs for any (z,t) € La .
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Next, by using o/(N(“"*m)(LS/))) instead of N (un-m) (LS)), one can show in turn
that there exists a Borel subset Lg) of L((yl) with

meaSCXRJr(Lg)) ~(5) meascxr, (Bs(4J) x (0,uy])
and such that, for any (z,t) € L? and some v € V(™) (Thy), (yo(z )
to oz’(N(“"’m)(LS,))). See Figure 4.7 (b). Since 4 g
identical as seen above, this implies
diSt(C(wO;ZmJa,ﬁ(yv(z)7i)[((:]) < 6(1 + <5>)7

which corresponds to (4.10) in the first case. It follows from this fact together with
Lemma 4.3 that ¢, g is (0)-almost identical also on W, = W(“"””)(L((f))7 which
satisfies the condition (2) by Lemma 4.4. This completes the proof. O

belongs

t)
o (N Canm) (L)) 18 s (0)-almost

5. PROOF OF THEOREM A

Throughout this section, we work under the definitions and notations given in
Section 2 and prove Theorem A.

5.1. Construction of locally bi-Lipschitz maps. A continuous map f: X —
Y between metric spaces is called a locally K-bi-Lipschitz if, for any x € X, the
restriction of f on the r-ball B,.(z) for some r > 0 is a K-bi-Lipschitz map onto
a closed neighborhood of f(z) in Y. The aim of this subsection is to show that,
for the neighborhood E of any simply degenerate end £ of M with respect to a
finite core, the restriction ¢|g,,... : Ethick — E' = ¢(F) is properly homotopic to
a locally bi-Lipschitz map if ¢ and hence v satisfy the w-upper bound condition on
E.

By Lemmas 1.4 and 2.2, there exists a generator system %n)7 ey fy(") of m1 (R, Yn)
with u < ug and

(5.1) 240 < tl(pa(1\™)) < thpu (1), 20) < Ao

for any j = 1,...,u and some constant A\¢g > 0 independent of j and n, where p,, :
1 (R, yn) — PSL2(C) is the holonomy associated the covering transformation
on H? based at x,. We set J; = pn( ) for short and denote by [(¥;) the axis
of the loxodromic element 7;. For any pomt 2! € H? with distys (z,,2),) < 2r0/3,

by (5.1), there exists a constant d(r¢) > 0 with distys (z,, l('y](-n))) < d. So one can
have a uniform constant J = J(r9) > 4 such that, for any a € A, \ O,, and any
coordinate C x Ry on H? with az,, = (0,1), at least one of the end points of 7;
is contained in B;(0). If necessary replacing 7; by %—17 we may assume that the
attracting fixed point of 7; is contained in B;(0). For a 7 > 0, two representations
00,01 ¢ T1(Rn,yn) — PSLa(C) are said to be 7-close to each other with respect
to 7](»”) (j=1,...,u)if po(’y§ ))Pl(’Yj(n)) (1 J;STl 1 :_27_4
for i = 1,2,3,4 under a suitable coordinate C x R, on H?® with z,, = (0,1). Let
P m(E y,) — PSLa(C) be the holonomy of E’. For a vertical core F), of
R, the inclusion F;,, — FE is m-injective. Since F), is a deformation retract
of Ru, (¢lr, )« = (W|R,)x : T1(Rn,yn) — m1(E', ¢(y,)) is also injective, where
¥ : M — M’ is the continuous map defined in Subsection 3.2.

) satisfies || < 7
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Lemma 5.1. Let 7 be any positive number. Then there exists ng € N such, for
any n > ng, the following condition (*) holds.

(*) pn : M (Rn,yn) — PSLy(C) is 7-close to pl, : m1(Rn,yn) — PSLy(C)
with respect to 7§n),..., 1&"), where pl, is the representation defined by pl (-) =

Bu(p © (#lR, )« ()8 for some B, € PSLy(C).

Proof. By using an argument quite similar to that in the proof of the assertion
(3.7) in [So2, page 2767], one can show that p] satisfies (*) for a 7(4) > 0 with
%in% 7(§) = 0 for all sufficiently large n. Here we use Lemma 4.10 instead of [So2,

Lemma 6]. See Figure 5 in [So2] for the situation. To complete the proof, it suffices
to take ¢ > 0 with 7(d) < 7. O

For the integer ng > 0 given in Lemma 5.1, let E,, = U,_,,
Eng N Eihick and alEn(hthick = Eno,thickmEthin- Then we have En07thick = U
and 01 Epg thick = U
n > ng, let D, be a Dirichlet fundamental domain of R,, in H? centered at .
By an argument used in the proof of Proposition 5.1 in [Thl, Chapter 5] (see also
[CEG, Theorem 1.1.7.1]), one can show that there exists an o > 0 independent of
n which satisfies the following conditions.

e For the open gg-neighborhood IntA;, (D,,) of D,, in H3, the image U,, = p(IntN,(D,,))
is a deformation retract of R,,.

e There exists an (abstract) incomplete hyperbolic 3-manifold U}, and a (1 + &)-bi-
Lipschitz map &, : U, — U/, such that the holonomy of the hyperbolic structure
on U], with the marking &, is equal to the representation p,, : w1 (Rpn,yn) =
71(Un, yn) — PSLy(C) in Lemma 5.1, where k = k(1) > 0 is a constant with
PL% k(1) = 0.

Nn; Eno,thick =
n>ngo R”
01R,. See Figures 2.3 and 2.4 in Section 2. For any

n>ngo

Here the fact of £9 being independent of n is derived from the boundedness of
geometry on R, (n > ng). I U, NU, # 0 for m # n, then U,, N U, is a
slim open neighborhood of the compact surface R,, N R,,. By Lemma 5.1, p}, =
BBy ) ok (BB )™t on 71 (U, N Uy,). Hence one can choose &, and &, so that
there exists a marking-preserving isometry Cm.n : &m(Um NUp) — & (Um NUR)
with Cmon 0 &mlu,.nu, = &nlu,.nu, - Note that p!, is the restriction of the holonomy
p i m(Ey)) — PSL2(C) of E' = ¢(F). Thus there exists a locally isometric
marking-preserving immersion ¢, : U, — E’. By using ,,’s and ¢,,’s, we have a
locally (14 k)-bi-Lipschitz immersion (1) : Ep thick — E’ properly homotopic to
©| B,y niec- The following diagram presents the connection of the above maps.

inclusion

D,, ————> IntN, (D)

plp, PN, (D2) /Py (m1(Un))

inclusion én

Rn > UIL > U/

n

inclusion l ln
(,0( 1)

o 7/
Ep, thick > B
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By applying our arguments with 1i9/2 instead of pg, we may extend ¢ to a
locally (1 + r)-bi-Lipschitz map from E, thick(u/2) to E', which is still denoted
by o). For any z € Eyy thick(uo/2), 16t ix @ T1( By thick(uo/2), ) — m1 (&, x) be
the homomorphism induced from the inclusion. We denote by p, : m(E,x) —
PSLy(C) and pl, ), : m1(E', oM (z)) — PSLy(C) the holonomies of (E,z) and

(E', M (z)) respectively. By Lemma 5.1 together with the construction of (),
one can suppose that, for any v € 4.(71(Ep, thick(uo/2), 2)) C m1(E, x) with po <
tl(pa(7), ) < 4po,

1 t1(pz(7), z)
1+x — tl(Pgo(l)(m)((Pil)(V)),80(1)($>) -

holds if necessary replacing 7 by a smaller positive number.

(5.2) 1+x

5.2. Proof of Theorem A. We will extend the locally (1 + &)-bi-Lipschitz map
90(1) . Engthick — E' given in the previous subsection to a bi-Lipschitz map
®p : E — E’ required in Theorem A.

Proof of Theorem A. First we show that (1) : E,, thick — E’ is a proper map.
There exist closed non-contractible loops I, in R,, with sup, {length,,(l,)} < oo
and not homotopic to a loop in &, R,,. If (1) were not proper, then there would exist
infinitely many R,, (n > ng) the ¢(V)-images of which stay a bounded region of E’.
If necessary passing to a subsequence, we may assume that [/,,, are not mutually
homotopic in E. Then ¢™)(1,,) are non-contractible loops in E’ which are not
mutually homotopic. On the other hand, since sup,{lengthz (o™ (1,,))} < oo,
U; ¢V (1) would not be in a bounded region of E’, a contradiction. This shows
that (1) is a proper map. Moreover this implies that E’ is the neighborhood of a
simply degenerated end of M’ with respect to the finite core C' = ¢(C) of M’.
Let T be any component of 0;Ep, thick homeomorphic to either a torus or a
half-open annulus. Since T excises from FE,, a connected submanifold contain-
ing a component of the pure pg/2-thin part E,  , thin(y,/2) (see Definition 1.1),

it follows from (5.2) that ¢(1)(T) is contained in Eéhin((1+ﬁ)ﬂo)' Consider the

union £/ of components of E! meeting @(1)(81En07thick) non-

thin((14+x)po) thin((14+k)po)
trivially and denote the closure E’\ EﬁiiaHM“w by Eﬁllizk((l_m)“o). Since ¢ is
cusp-preserving, Eglln)q((un)po) contains Eéusp((l-s-n)uo)' Let H' be a properly em-

bedded surface in E’ satisfying the following conditions.

e The inclusion H' — E’ is a homotopy equivalence. Moreover H' is disjoint from

Eéube((l-&-m)uo) and meets 8Eéusp((1+ﬁ)uo) transversely.

H 4 ! ! / /
e The inclusion HO =H'N Emain((l-‘,—n)uo) - Emain((l-‘,—n)uo)

alence, and HJ is contained in <p(1)(IntEno,thick). See Figure 5.1.

is a homotopy equiv-

Let E};, be the closure of the component of Eglliik((pm)“o) \ H' adjacent to &’
and E% = (pM)"Y(E},). Since the restriction cp(1)|E3{ . BY% — FEly, is a

proper surjective immersion, @] gy, 1s a locally (1 + k)-bi-Lipschitz covering.

Since E has only one end, E is connected. We set (¢(1))"1(H') = Hy and
Hg = Hy OE%. Consider the restriction fr : F(0) — Ejy, tnick of any pleated map
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H, , H
Eno,main l Emain((1+n),uo) i
5 & - B, =
/
D) / oD V4 o
—
v | -
/ \ (80(1))71
| S——
T < T
'\ E/ \/W
Eng,cuip H() \ IntHg T cusp((14+K) o) 4
———————————————————————————————————————— 99(1) o S

Figure 5.1. The union of light and dark blue regions in E,,, (on the left hand side)
represents E5;.

f:¥(c) — E,, satisfying the conditions (Y1) and (Y2) in Subsection 1.1. By ap-
plying an argument in the proof of Lemma 1.3 to the composition f}(,}) =¢Wo fp:
F(oc) — FE’, one can prove that any component of ( }1))*1(E£§1ﬁ((1+n)#0)
In particular, this implies that, for each component

) is a
peripheral annulus in F(o).

’ /(1) /
T of Eipio((4mymo) 1 Eevsp((1+r)uo)

from E, thick & manifold W such that (W, 7O W N E,, cusp) 1s homeomorphic to
(Ax[0,00),1px[0,00),11 x[0,00)), where A is an annulus the boundary 0 A of which
is a disjoint union of two loops ly and I;. Deforming ¢ by a homotopy supported
on W, we may assume that each component of Hy \IntH(") is an annulus. Such a
deformation can be accomplished by a standard argument of 3-manifold topology.
For example, see Lemma 6.5 in Hempel [He]. Note that HY = Hy if Erng.cusp = 0.
Since i o ap(1)|E?{ is homotopic to (p|E?1 DBy — E @(1)|E?{ is extended to a

any component T of (p™M)~1(T") excises

(not necessarily locally bi-Lipschitz) continuous map from E,,, main to E’, where 4 :
EY;, — FE'is the inclusion. If Hy were compressible in Eyg main, then Hg would not
be mi-injective in Ey, main. Since the covering g0(1)|Hg : Hg — H|, is m1-injective, it
follows that H|, is not mi-injective in E’. This contradicts that H| is incompressible
in Er/nain((1+n)ug)' So Hj is incompressible in E;,, main. Since Hg is not an annulus,
any component of Hp is not so. Note that 0H, is contained in 0iEpy main =
Eyymain N Eng cusp- Bach component of 01 Ey main is @ half-open annulus. If a
component Fy of Hy were boundary-compressible in (Epy main; 01 Eng,main), then the
boundary dF) of the boundary-compressed surface F|y would have a component
which is contractible in 01 Ey, main. Since Fp is incompressible in E,; main, Fy is
a disk and hence Fj is an annulus, a contradiction. It follows that H is not only
incompressible but also boundary-incompressible in (Ep, main, 01Fng,main). Since
moreover E, main is homeomorphic to Xpmain X [0,00), Hy is a disjoint union of
mutually parallel surfaces in E, ) main, Which are homeomorphic to Xain. Since E?J
is connected and adjacent to &, Hg and hence H are connected. So, as well as Hy,
H} is homeomorphic to Lyaim. This proves that the covering () s H} — H}is

a homeomorphism. Thus ¢ ‘Efq : B% — FEY%, is a (1+k)-bi-Lipschitz map. Each
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component of E, thin((14x)2u) cONtains a component of Ey, | o thin((14x)2u/2) and
hence that of £, p-thin- Consider the union G’y of components of E,, thin((14+x)2u0)
IntEy, p-thin Meeting 8EL \ IntHg non-trivially. By (5.2), 0Gg N 8E'jq = () and
hence Gy contains OE% \ IntH} as a core. The union of dark blue regions in
Figure 5.1 represents Gy N Efq Let Ey be the closure of Elbq \ Gg. Composing
(cp(l)\E;{)’l with an ambient isotopy in E,,, we have a K()-bi-Lipschitz map
()~ . B, — Epy such that i o ¢(® is homotopic to ¢|g, : By — E’ for
some constant K > 1+ .

We denote by E}; (resp. E}f,) the closure of the component of Erain((14+5)?10) \Ho
(resp. Erlnain((1+ﬁ)uo) \ H{)) containing Ey (resp. E%;,). Then any component V of
the closure Ej; \ Ep is a solid torus. Let m be a meridian of V. Since ¢(m)
is contractible in E’, ¢ (m) is so. It follows that ¢ (m) is a meridian of the
component V' of EglliZl((l-i-K),u,o) with OV’ = p?(9V). By using Lemma 3.4 in
Minsky [Mi2, Subsection 3.4], one can extend ¢ to a K3)-bi-Lipschitz map ¢ :

Ef; — E, for some constant K® > K®_ Since both Eain((14r)21) \ E7; and

E;nain((1+n),u0) \ E%f, are compact, ©®) is also extended to a Kp-bi-Lipschitz map
¢y : E — E’ for some Kp > K®). Since the original ¢|r and ®x are marking
preserving homeomorphisms from E to E’, they are properly homotopic to each

other. This completes the proof of Theorem A. (I

Here we note that the above result by Minsky is proved by using standard ar-
guments of hyperbolic and differential geometry and has no connection with the
theory of curve complex.

6. GEOMETRIC LIMITS OF LIMITS

Ending laminations are geometric limits of geodesic loops tending toward ends of
hyperbolic 3-manifolds. Earthquakes are limit operations of Finchel-Nielsen twists.
We study here geometric limits of ending laminations and earthquakes.

Throughout this section, we suppose that £ is a simply degenerate end of M
with ending lamination v, E is the neighborhood of £ with respect to a finite core
C of M, and f, : &, = 3(f,) — E are pleated maps tending toward .

6.1. Geometric limits of pleated maps and supervising markings.

Convention 6.1. Let {z,} be a sequence in a metric space X. If {x,} has a
subsequence converging to xo in X, then we usually say that {z,} converges to
if necessary passing to a subsequence. However, for short, we may omit the phrase

‘if necessary ...’ if it does not cause any confusions. In particular, for a sequence
{tn} of real numbers, limsupt, (or liminf¢,) is often considered as lim ¢,.
n— 00 n— oo n— oo

Definition 6.2 (Geometric limits of pleated maps). Consider a maximal union
J(fn) of simple geodesic loops in X, tnin such that lengthy, (J(f,)) converges to
zero. The union J(f,) is called the joint of f,. Set XY = 3, \ J(fn). Let
Fui,...,Fyk, be the components of ). Fix a base point z,, ; of F},; with =, ; €
Y thick and set y,, ; = fn(xn;). Let E, ; be the manifold E with y, ; as its base
point. If necessary renumbering ‘i’ of f,, ;, one can assume that the sequence {f, ;}
with fni = flF,, : Fni — By, geometrically converges to a pleated map fuo; :
Fs,i — Ex,, where all k, (n =1,2,...) have the same value kg and E ; is a
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geometric limit hyperbolic 3-manifold of {E,, ; }n. If sup,, {dist z,,,.. (Yn.i, Ynj)} < 00
for fixed 4,5 € {1,...,ko}, then one can suppose that E ; = E ;, and otherwise
Ew,;iNExj = 0. Let Es be a maximal union of mutually disjoint Fu, ;’s. By
matching up them, we have an locally pathwise isometric map foo : Yoo — Foo
satisfying the following conditions.

e Y is a disjoint union of connected complete hyperbolic surfaces F ; (j =
1,..., ko) of finite area homeomorphic to F,, ; such that the restriction foo| Fo '
F,j — Ew is a pleated map. In particular, ¥,/ is homeomorphic to X, for all
sufficiently large n.

e There exists the R,-neighborhood Nuo jin Of foo(Fio,jmain) il Eoo and a lo-
cally K,,-bi-Lipschitz embedding (, ; from N j;, to E with lim R, = oo and

n—0oo
lim K, = 1. Moreover, (n ;0 foo| Fu ; mai 15 homotopic to f|p,

n,j,main
n—oo

ing by a homotopy with an arbitrarily small translation distance for all sufficiently
large.

up to mark-

Note that Nooizn N Noo,jin # 0 for all sufficiently large n if Es ; = Eoo j. Then
one can choose (p i, Cn,j 50 that Cni|Ne i N jin = Cnujl Vo iin NN jin - 1D general,
the topological type of E, is very complicated. It is possible that F, has infinitely
many simply degenerate ends and infinitely many wild (i.e. geometrically infinite
but not simply degenerate) ends simultaneously. For example, see Ohshika-Soma
[0S, Theorem C]. However, since we are mainly concerned with a bounded neigh-
borhood of foo (Loo.main) i Eso, the complexity does not influence our arguments
essentially.

Now we consider the locally bi-Lipschitz embedding

(61) Cn :Noo;n = oo,l;nU"'UNOO,ko;n — FE

defined by Culnw jn = Cn,j- We denote by Epcusp) (1€Sp. p(cuspy) the union of
the components of Eipnin (resp. Xy, thin) corresponding to cusps of Fo, (resp. Yoo)
via ;1. We define Yn(main) = Sn \ Int¥, cusp). Here ‘(cusp)’ and ‘(main)’ in
parenthesis mean that the eventually cuspidal and permanently main parts of X,
respectively. We say that fo is a limit pleated map of {f,}. Then there exists a

K,,-bi-Lipschitz map
(62) &n Eoo,main - Zn(main)
with lim K, = 1 and such that {¢; ! o f,, 0 &, } converges to fuols

n—oo

as n — 0o. We denote by £, the union of all ends &, of E., which are not Z x Z-
cusps and have neighborhoods N,, in E., such that ¢, (N, ﬂ/\/'oom) is contained in
the component of E \ f,(%,) adjacent to £ for all sufficiently large n.

Now we give the definition of geometric limits of geodesic laminations.

uniformly

oo, main

Definition 6.3 (Geometric limits of laminations). A geodesic segment « in a hy-

perbolic surface is called unit if the length of o is one. We say that a sequence of

laminations pu, on X, with compact support geometrically converges to a lamina-

tion o, on Yo if the following (1) and (2) hold.

(1) For any unit geodesic segment qioo il oo N Loo main, there exist unit geodesic
segments v, in p, N X, (main) such that &1 () uniformly converges to .

(2) Consider any subsequence of unit geodesic segments c,,; in fin; N Fy, (main) such
that {;jl(anj) is geometrically convergent. Then the limit of fgjl(anj) is a unit
geodesic segment in (oo N Lo main-
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Note that a geodesic lamination po on Yoo extending fioo N oo main S uniquely
determined, which is called a limit lamination of {uy,}.

To compare structures of limit hyperbolic surfaces, we introduce the notion of
supervising markings. We study the deformation of such structures by using limits
of left earthquakes on the supervising surface. We know that the hyperbolic struc-
tures on X, are not in a bounded region of the Teichmiiller space Teich(X). Let
¥ be the surface ¥ with a fixed hyperbolic structure of finite area and H? a fixed
hoop family of 2f. Then the next lemma follows immediately from standard facts
on hyperbolic geometry. Recall here that we work under Convention 6.1.

Lemma 6.4. There exists a constant K = K({f,}) > 1 and a sufficiently small
6 > 0 satisfying the following condition.

e For some unions J, (n = 1 2,...) and Js of components of H*, there exist
\Int/\/:;( ) — Zn(main) and hso : anain\

IntN5(Joo) — Zoo,main Such that &' o h,, converges uniformly to heo, where
&n Yoo, main — Y (main) 5 @ Ky -bi-Lipschitz map with lim K, = 1 given in

(6.2). o

Let V(foo) be the union of cusps in Ey meeting foo (Yoo cusp) Non-trivially and
corresponding to components of Fiype via (,. Note that the components of J
bijectively correspond to the components of V(f«). We may assume that all J,
\IntNg(Jo)
for short. We say that h is a supervising marking of $% for Y. Let h D DI 3
be a homeomorphism extending h,, and such that ﬁn(Jo) is equal to the joint J(f,)
of f,, (see Definition 6.2) and the following diagram is eventually commutative as
n — oo in the sense of (6.2) and Lemma 6.4, where (,, &, are the maps defined
respectively as (6.1), (6.2) and i, : Yoo main — Do aNd Jn : Ly (main) — L are
the inclusions.

K-bi-Lipschitz maps h,

Hlall’l

and J,, are the same union .Jy of components of H?. Set Eiﬁin = Efmm

5(0) hoo

fooOln
4 —_— L
Zl’l’la.lll Eoo,maln EOO

(63) inclusionl ljnofn l(n (locally)
E

— %,
P fn
We say that J is the joint for {h,}.

From now on, if the supervising marking /}\ln is fixed, then the lamination super-
vised by puf, is denoted by p,, and vice versa. Let uf_ be a geometric limit of zf, and
lioo the lamination in Y., supervised by uf . We note that, if ui, C Jy, then g
is empty. If f,,(uy) is realizable as a geometric lamination in F, then the realized
lamination in E is denoted by pu}.

Note that our choice of h has some ambiguity. For a simple closed geodesic {7 in
Eh meeting a component jo of Jo transversely, one can choose supervising markings
Ty @ 28— %, and h’ 3% — %, so that hy, (jo) = I ' (jo) and the intersection
number of I, and I/, in X, diverges to infinity, where [,, I/, are the realizations
of En(l“) and E;(l“) in ¥, respectively. In the next subsection, we will take %,
satisfying Assumption 6.6 so as to avoid such a difficulty.

Let f,(f) D ) (i = 1,2) be pleated maps geometrically converging to

fé? : ZSQ — Ec(xi)). Suppose that there exist components Fg) of Egé) such that
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féé)|F<1> is properly homotopic to f£)|F<2) in By = EX N EP. Then it is not
hard to see that there exist subsurfaces Fy(f) of ng) with geodesic boundary and a
marking-preserving smooth K-bi-Lipschitz map ¢ : Féol) — Fég) for some K > 1
such that LOO|F(1) : Fécl,,)cusp — Féoz,)cusp is isometric.

oo, cusp

Lemma 6.5. With the assumptions as above, suppose that /\gf) (i=1,2) are lam-
inations in ng) realizing the same lamination in ¥ and /\(02) are geometric limits
of )\Sf) mn E(OZO). Then /\533|F<2> coincides with the realization of Loo()\(o?|F(1>) as a

geodesic lamination in F(g). In particular, if ps is a compact sub-lamination of

)\S,? contained in Féi), then the geodesic lamination /15,0) mn Féoz) realizing too(too)

is a sub-lamination of )\((,i).

Proof. Let ng ) be laminations in fo ) obtained by winding /\S ) around 8F7(Li) so that
each component of GF,(Li) is either a leaf of XS ) or disjoint from XS ), Intuitively,
for any component [ of OFy(f) meeting )\gf) transversely, we reduce [ N )\g) to a
single point on ! and then spin it around ! (see for example Figure 2.2 in [Th3]).

Since each component of 8F7§i) geometrically converges to a cusp of Féé), XS )| P00
as well as ,\Sf ) | J0 geometrically converges to )\(Oio) | R0 It follows from the property
of 1o that there exists a monotone decreasing sequence {e,} of positive numbers
with hm en = 0 and a marking-preserving homeomorphism ¢, : F,(Ll) — F,(LQ)
satlsfymg the following conditions.

e 1, geometrically converges t0 (oo.

e For any leaf I$Y) of A with 1) 0 ")

n,thin(e,)
at any point of 1 n 3Fr(fihm(

the angle o an
, # 0, the angle of i) and 9F "

n,thin(e, )
2 uniformly converges to m/2 as n — co.

1)

° (Fr(llt)hmk(sn)) = Frg?ghick(sn) and the restriction ¢, Fn’thick(sn)

n,thick(en)

Frgzthlck(s ) is 2K-bi-Lipschitz, where 2K is just taken as a constant greater than

—

Since t,, is marking-preserving, for any leaf [,, of X |F(1>, tn(l,) is an arc in F(Q)

properly homotopic to a leaf of /\( )| - One can suppose that such a proper
homotopy has uniformly bounded translation distance depending only on 2K, which
is a standard fact in hyperbolic geometry. For example, see [BP, Lemma C.1.6],
[Thl, Proposition 5.9.2] and so on. A geometric limit argument shows that, for

any leaf [ of Aoo| (), too(loo) is an arc in Fg) properly homotopic to a leaf of
/\((3))| @ by a homotopy with uniformly bounded translation distance. It follows

that )\S,?|F<2) is equal to the realization of ¢y ()\OO|F<1)) in F(SOQ). O

6.2. Geometric limits of ending laminations. Suppose that v, is the realiza-
tion in ¥, of the ending lamination v of £. By Proposition 9.3.9 in [Thl], v, has
no compact leaves and X, \ Vn contains no simple closed geodesic. In particular,
vy, meets each components of h (JO) non-trivially and transversely. Hence one can

retake the supervising markings hn if necessary so that a geometric limit of % of
Vi satisfies the following assumption.

Assumption 6.6. Any component of .Jy is not a leaf of v/f_.
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We may also assume that v and v2 are full laminations if necessary adding
finitely many non-compact isolated leaves. See Subsection 1.1 for full laminations.
Under these assumptions, we prove the following lemma.

Lemma 6.7. Suppose that ¥,, contains a disjoint union of simple geodesic loops ny,
realized by f, : ¥, — E such that nf, geometrically converges to a lamination nf,
in X8, Ifni_ contains a connected sub-lamination s which is also a sub-lamination
of V3, then oo is not realizable in Es

Proof. If jio were empty, then uf_ would consist of a single compact leaf corre-
sponding to a parabolic cups of E,,. This contradicts Assumption 6.6 and hence
oo 7 0. We suppose that i, is realizable in Eo, and will introduce a contradiction.

When (1 is not a closed geodesic in Y, we denote by Jjj the union of compo-
nents of Jy meeting jio non-trivially and by F? the smallest complete subsurface
of X% with geodesic boundary and containing pf_ U Jy. Then any component of
IntF% \ (uf, U J4) contains at most one simple closed geodesic of ¥%. Let 0, F"
be the union of OF% and all such closed geodesics. Note that, if pi_ is a simple
closed geodesic but i is not so, then ., consists of finitely many simple geodesic
lines in ¥,. When u, is a closed geodesic in ¥, we set u“oo = F1. Let F,, and
F., be the subsurfaces of 3,, and ¥ respectively supervised by F?. We denote
by Cfll) the union of simple closed geodesics in IntF), supervised by IntF? N Jp-
The components of 0+ F, are divided into the two unions Ct? and % such that
inf,, {lengthE( )} >0if i is a component of c?, and hm lengthE(b( )) =0if

cﬁl) is a component of C’fl ), where b; is the closed geodesm in E freely homotopic

to fn(c (i)) fori=2,3. Let C,, = C(l) U C(Q) 0(3) and let E E(l) U 37(,2) UE,@

be the union of closed geodesics in E freely homotopic to f,(C,). We define a

continuous map f}, E — F properly homotopic to fn : Xy — E and satisfying

the following condltlons where the subsurface of Zn corresponding to F,, is still

denoted by F;, for simplicity.

e For any component ¢, of C}, fn|cn is a submersion onto En

e For the closure Y,, of any component of s, \ Cy,, the restriction ]/0;1|yn is a partial
pleated map. Moreover, ﬁl|§n\1m F, realizes vy |5, \mntF, as a geodesic lamination

in E. Strictly this means that, for any leaf [ of vy[s \tr,, fn(l) is either a
geodesic line or a geodesic arc connecting points of En in E.

° fn|Fn(man> is homotopic to f,|r,
translation distance.

(maimy DY @ homotopy with uniformly bounded
For any subsurface Y,, of F},, we do not require at this point that fn ly,, realizes v,|y,
as a geodesic lamination in F, because it may not be compatible with the third
condition. Let C’ C’(1 UCY @) UC’r(f), Fn, U, be the realizations of C,,, F}, and v in
E respectlvely Let foO E — E007 FOO, C’Og), Bg) and Uy, be geometric limits
of fn, . 07(12 , BT(L2 and 7, respectively. See Figure 6.1. Thebe definitions imply
that fn(é\'(z)) BY fori=1,2,3, ]?00(5(2 )= BY and foo( o) C Eoo N Es. We
say that fn and fC>O are pseudo-pleated maps bound by C and Céo) respectively. By
Lemma 6.5, there exists a sub-lamination [is, of Vs, corresponding to jis via the bi-
Lipschitz map to : Fioo — ﬁoo given in the paragraph preceding Lemma 6.5. Since
we supposed that e is realizable in o, we may assume that foo|p,, itself realizes
loo- Moreover, by the condition (1) on F¥, the f,-image of any simple closed
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geometric /

convergence
D ——

&S

Figure 6.1. The loops ¢, and ¢/, represent components of 67(11) and 6,(13) respectively.

geodesic in Fiy \ oo is freely homotopic to a closed geodesic in E. So one can
suppose that fo, realizes v |r, and hence the limit fo, of f,, also realizes Uso| 5 as

2)

a piecewise geodesic lamination with respect to Eéo if necessary modifying fn| 7 by

a proper homotopy with uniformly bounded translation distance. Here foo (Yool )

being piecewise geodesic with respect to B 2 means that it consists of geodesic lines
and geodesic arcs o in E with da* C BY.

Since fn is a pseudo pleated map bound by C’n, fn(vn) is a geodesic lamination
in E ‘bent’ along B We will smooth the bending in the following three steps,
where Vn is the union of components of Eiype containing B(l) U B(3) as a core.

Step 1. For each component ¢,, of 6,2”, let V' (¢,) be the component of ]A)n with
Fn(cn) as a geodesic core and AP = F-Y(V(cy)). For any leaf @, of ﬁ"‘AE}“ let &
is a geodesic arc in V'(¢,) homotopic to fn(an) rel. Od,. Let 1, be the realization
of a component [,, of A, in in with lAn N A,(zl) # (). From the assumption on f,,, for
any component 3, of I, N £ (V(en)), fn(Bn) is a geodesic arc in V(c,,). See Figure
6.2. Since the annulus f,,*(V(c,)) geometrically converges to a parabolic cusp of

Yoo, lim lengthy, (3,) = lim length g (fn(8,)) = co. Let B, be the component of

//\\ ﬂA correbpondlng to ﬁn and ﬂ* the geodesic arc in V(cn) properly homotopic

to fn(ﬁn) rel. 8ﬁn, where )\n is the realization of )\, in E By Assumption 6.6,
either af = % or the cardinality of af N (Y is less than a constant my € N.

This implies that |lengthg(a}) — length E(B:m is uniformly bounded. Since f(5,)
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fﬂ(Fn) }"\!L(F\n)

Viep) 01
Fn(B2) ay
Fa(@n)
0

Figure 6.2. The face angles 61, 6> are nearly equal to .

is properly homotopic to B;; by a homotopy with uniformly bounded translation
distance. It follows that lim lengthy(5) = oo and hence 1im length (@) = oc.
n—oo

Since the radius of any meridian disk of V/(c;,) diverges, the face angle between
OV (¢,) and the boundary of H? at the cone points of V(c,) is arbitrarily small
for all sufficiently large n, where V(c,) is a component of the inverse image of
V(cy,) by the universal covering p : H® — M. This implies that a7 meets OV (c;,)
almost orthogonally. Thus the angle of & and fn(ﬁn \ Int@,,) at any point of
0az is arbitrarily close to 7. From this fact, we know that there exists a pseudo-
pleated map ﬁ(ll) : 5% — B bound by C® U and such that ﬁ(ll)(Ale)) is a
piecewise geodesic lamination in E with respect to §(2) E(S), where 1/,(1 ) is the
realization of v in S(1). Moreover, we may take f( so that it has a geometric limit

f(l) (1) — EOo properly homotopic to fOO

Step 2. For short, we set fnl) = fn and f(oé = j?oo. Let éoo be a component
of i)oo containing a component of ﬁoo and é the connected subsurface of i
geometrlcally convergmg to GoO and with geodesic boundary. Note that G #+
Fy if and only if IntG N C )N aFn is non-empty. See Figure 6.1 again. Since
fn\G G — F is mi-injective, foo|G G — F, is also mi-injective. Hence
I = Wl(foo)*(m(Goo)) is a surface sub-group of a Kleinian group m;(E). Since

both Uso| _ and ﬁo@|§:x\1nt 7., are realized by . if there existed a non-realizable
compact leaf los of Uso|g__, then loc would meet c? transversely and non-trivially.
In particular, (lo N ﬁoo) \ O consists of proper geodesic arcs disjoint from fio, U
Aoo , where .Ag,) is the union of parabolic cusps of f)oo corresponding to Jj. This
contradicts that F? is the smallest surface in the sense as above. It follows that
any element of ', represented by a compact leaf of Uy &.. 1s not parabolic. By
applying [Thl, Proposition 9.3.7] to the covering of E., with respect to I's,, one
can prove that there exists a pleated map ‘]/C\OO)G : éoo — F, properly homotopic
to foo| & rel. lioo and realizing Uso|g . Thus there exists a pseudo-pleated map
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72 5® . E bound by C® and such that f(Q)(VT(LQ)) is a piecewise geodesic

2 is the realization of v in ig).

laminations in £ with respect to B,(L ), where Uy,
Also in this case, one can suppose that fn 2) has a geometric limit f(oZ) : Zg,) — F

properly homotopic to foo.

Step 3. Again we set simply ﬁ(tz) = fn and f@) = ]?OO For any component ¢}, of
C$?) the boundary 0V (c,) is a Euclidean torus which is the union of annuli 4,, ; and
Ap o with 04, 1 = 04,2 =0V (c, )ﬁfn( n) Let an’i (i = 1,2) be any geodesic arc
in An,l connecting the components of 9A,, ; and homotopic rel. day, ; to a component
ol of Fu@) N V(e,). If lim length, (aj ;) = lim length, (o], ) = 0o, then
we have nler;O length E(aﬁ%_):oo oo by elementary h;;;;“obolic geometry, where o/ is

the geodesic arc in F homotopic to ]?n( ") rel. ﬁl(aa' ). Then one can apply an

TL
argument similar to Step 1. Next we consider the case that length, (a,;) is

uniformly bounded for one of i = 1,2, say i = 1. Suppose that En,A is the surface
obtained from 3, by cutting . off ( fn) L(V(c},)) and attaching A,, ;. Consider the

n

map fn A En A4 — E with fn Als, o4, fnlz \Int(F) 1 (V(cl,) and such that

fn A|An . + Ap,1 — E is the inclusion. We say that fn 4 1s the bulged map of fn
along A,, 1. See Figure 6.3. Then fn 4 has a geometric limit foo A E A— E

I Fa(En)
fn(zn,A) Vn((f'ln,) fooA ocA
geometric
= conver, gence
fn ()
Figure 6.3

with f°°vA|§oo,A\IntAoo,1 = f0°|im\1ntf;1(vgo)’ where A1 and V. are geometric
limits of A, 1 and V(¢},) respectively. Since

sup{width(A, 1)} < sup{length,,  (a ;)} < oo,

A1 is an annulus, where width(A,, 1) denotes the length of a shortest arc in A,, 1
connecting the components of A, 1. So one can regard that foo, A is the bulged
map of foo along Ao 1. Then one can apply an argument similar to Step 2. In
either case, fn is properly homotopic to a (real) pleated map ﬁ({g) : EA]S) — F such
that, for the realization ¥ of v in iﬁf’), ]/”;(LS) (f/\,(l?’)) is a geodesic lamination in F,
which contradicts that v is the ending lamination of £. Thus pe is not realizable
in F. O
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Remark 6.8. Arguments used in the proof of Lemma 6.7 work for certain hyperbolic-
like 3-manifolds for which ending laminations of simply degenerate ends are well
defined, for example locally CAT(—1)-spaces defined in the next subsection.

6.3. Irreversibility Lemma and CAT(—1)-ruled maps. Let f,, : ¥,, — E bea
pleated map realizing a hoop family H(f,) of ¥, and fy : ¥oo — Eoo a geometric
limit of f,,. If necessary replacing the hoop families H(f,,) of ,,, we may assume
that Y has no simple closed geodesics the f.,-images of which are freely homotopic
into parabolic cusps in E,. Then f, is properly homotopic to a normalized map
fgo : E"OO — F satisfying the properties given in Lemma 1.7. Then f, is also
properly homotopic to a normalized map f2 : ¥? — E rel. fn(ﬁn(Jo)) which
geometrically converges to fgo Let E,,(4) be the closure of the (a)-side component
of E\ f2(X?) for a = + and V, the union of components of E(cusp) meeting
Jid (Bn(JO)) non-trivially. Note that f,, itself may not be an embedding and f,,(%,,)
may wrap around V,. Then it would be difficult to distinguish the (+) and (—)-
sides of E with respect to f,,(2,) strictly. Since normalized maps have the bounded
geometry as in Subsection 1.2, one can define supervising maps ﬁn (Y — ZEL and
their limit Ao : ziﬁiin — Eboo,main just as for pleated maps in Subsection 6.1, see
the diagram (6.3). A lamination (resp. geodesic) u, in X° is the hn-image of a
geodesic lamination (resp. geodesic) pf in the hyperbolic surface X:f.

Let Voo be a geometric limit of V,,. A component V ; of Vi is of type I with
respect to f2 if A; = OVoo,i N Exg(4) is an annulus and of type II if it is not of
type I and A; = OV i N Eo(— is an annulus. Any other component of Vo, is of
type II1. See Figure 6.4. We say that a component V,, of V,, is of type I, II or II]

Py By Fon,Cou ) FolB2)

Eoo() \ L / Eoo(4)
/
DM

Dl

Voo,?)

Figure 6.4. Both V1 and V 2 are of type I, V¢ 3 is of type II, and Vi 4 is of type
II. V(- is a parabolic cusp of E(_) into which fgo,A(,)(l) is freely homotopic
for some component I of L_).

if V,, geometrically converges respectively to a component of V., of type I, II or
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III. Let fgo,A(,> : EZO,AH — E. be the bulged map of f3_ along the union A_,
of annuli OV ; N Eo -y for type II components Vi ; of V. Consider a maximal
union L_y of mutually disjoint simple closed geodesics in b3 such that, for

00, A(-)
any component [ of L_), fgo}A(_)

(1) is freely homotopic into a parabolic cusp of
Eoo(—y. Let fgo(f) : Zboo(f) — F be a normalized map obtained by reducing
fgo,A(,> along a homotopy from fgo7A(7)(L(_)) to parabolic cusps in Ey ). In
particular, Zl;o(—) is homeomorphic to ZZO,A(_) \L(,). See Figure 6.4 again. Let
f;:(,) : 21(7) — F be normalized maps geometrically converging to fgo(f). We say
that ffl(_) and fgo(_) are (—)-reduced normalized maps of f2 and f2 respectively.

Let Vy,(—) be the union of components of Eype meeting fZ(—)(EEz(—),(cusp)) non-
trivially and V(- a geometric limit of V,,(_). Note that V_) has no components
of type II with respect to fgo(_). This fact will be used in Case 3 of the proof of
Lemma 6.9.

The following lemma is a main result in this section.

Lemma 6.9 (Irreversibility Lemma). Under the assumptions as above, let n,, be a
disjoint union of simple closed geodesics in ZEL(?) supervised by a lamination nf, in
Y4 which geometrically converges to a sub-lamination ngo of Z/EO. Then there exists
a constant R > 0 such that the realization 7, of fz(f)(nn) i E is disjoint from

En—y \NR(ffL(f)(ZEz(f),(main))) for any n.

Intuitively this lemma means that pleated maps realizing 7,, as geodesic lamina-
tions in E do not diverge to any (—)-end of E,. Since we do not assume that ffl(f)
itself realizes 7, in E in contrast to Lemma 6.7, one can not use any argument
similar to that in Step 1 in the proof of the lemma. To overcome the defect, we
employ the notion of CAT(—1)-ruled maps introduced in [So3|, which were called
ruled wrappings there.

A simply connected geodesic metric space X is called a CAT(—1)-space if any
geodesic triangle A in X is not thicker than a comparison triangle A in H?, that
is, for any two points s and t in the edges of A and their comparison points s
and T in A, distx (s, t) < distg2 (s, 7). A metric space whose universal covering is a
CAT(—1)-space is called a locally CAT(—1)-space. See Bridson and Haefliger [BH]
for fundamental properties of such spaces.

Definition 6.10 (CAT(—1)-rulded maps). Let § be a union of simple closed
geodesics in E and let f : ¥ — E be a homotopy equivalence embedding with
0N f(X) = 0 and such that f(X) is closer to the end &£ of E compared with §. Sup-
pose that p : Z — M\ § is the covering associated to f.(m1 (X)) C 7 (M\J) and Z
is the metric completion of Z. By [So3], Z,, is a locally CAT(—1)-space. Then p is
uniquely extended to a branched covering p,, : Z — M branched over . A proper
homotopy equivalence p : ¥ — Z is called a CAT(—1)-ruled map (for short a ruled
map) realizing a lamination y in ¥ if, for any leaf [ of 1, p(I) is a geodesic in Z and,
for any component A of ¥\ y, the restriction p|a : A — Z is a ruled map. Note
that ¥ is a locally CAT(—1)-space with respect to the metric induced from that
on Z via p. Let {l,} be a sequence of simple closed geodesics in ¥ geometrically
converging to . By the Ascoli-Arzela Theorem, ruled maps p,, : ¥ — Z realizing
I, uniformly converge to a ruled map p realizing p as n — oo if p is not the ending
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lamination of an end of Z. Strictly, since Z is not locally compact at any point
of Z\ Z, one can not apply the Ascoli-Arzeld Theorem directly. We consider a
uniformly convergence limit r : ¥ — M of r,, = Do p, : ¥ — M. Since any r,
are liftable to p,, in Z, r is also liftable to the limit p of p,, in Z. In the case when
r(X) is contained in E, we may regard that r is a map to E. Thenr : ¥ — FE
is called a ruled map realizing u in (F,d) with respect to f and § is the branching
locus of r. We also say that the image p(l) of a closed geodesic [ in Z is a closed
geodesic in (F,d). Note that p(l) is a piecewise geodesic loop with respect to the
original hyperbolic metric on E all vertices of which are contained in §.

Now we are ready to prove Irreversibility Lemma.

Proof of Lemma 6.9. For simplicity, we suppose that f2_ : ¥’ — E itself is a
(—)-reduced normalized map and set V,(_y = V, and V() = Voo. Then Vy, has
no components of type II with respect to fgo. If oo is a compact sub-lamination
of Moo which is an ending lamination of some (—)-end £ of Ew, then by [Thl,
Proposition 9.3.8] there exists a component Fgoﬂ- of ¥ such that p. is a full
lamination of F?_ , and fgo(Fgm) excises from F, a neighborhood E ; of £ ;

00,1
which is homeomorphic to Fgm X (—00,0]. Since £ ; is a simply degenerate end,
there exists a simple closed geodesic oo ; In Eo ; such that distg, (5o, fgo(Eboo))
is sufficiently large. Let Lo, be the union of all such o ; and L,, the union of closed
geodesics in E geometrically converging\ to Loo. If fgo(Eio) has other components

Féi ; such that 2 (F é'(’) ;) excises from Eo, (—)-side submanifolds E’ ; homeomor-
phic to Féz,j X (—00,0]. Let foo,j : F\éoj — Ex be a pleated map realizing noc|p7_ -
Since the sequence { fg(E';lvmain)} escapes from any bounded neighborhood of the
boundary OF in E, the end & ; of E/_ . is not geometrically finite. Thus there

00,J 00,j
exists a simple closed geodesic d., ; in E._ ; with 67 ;N fooj(ﬁéo]) = () which is
closer to &£, ; compared with fooj(ﬁéoj) and dist g, (0%, f2(2°.)) is sufficiently
large. Let L, be the union of all such ¢/, ; and L;, the union of closed geodesics
in E geometrically converging to L’ . We set A, = Lo UL’ . One can suppose
that A, is a disjoint union of simple closed geodesics in E., if necessary slightly
modifying the Riemannian metric on E., in a small neighborhood of A ..

Let A,, be the union of L, U L, and the geodesic cores of all components of V.
We denote by f,F : £} — F an embedded proper homotopy equivalence such that
A,, is contained in the (—)-component of E'\ f;F (). Let r,, : 3,, — FE be a ruled
map realizing 7,, as a union of geodesics in the locally CAT(—1)-space (E, A,,) with
respect to f,;. Let 7,, be the realization of 1, in ¥,, and 7, = 7,(7,,). If 7, is
disjoint from A,, for all sufficiently large n, then each component of 7, is a closed
geodesic of the hyperbolic manifold F rather than that of (F,A,). Then it is not
hard to have a constant R > 0 satisfying the conditions of this lemma.

We next suppose that 7, intersects only the geodesic cores of components V,, of
V,, of type III. For such V,,, let A, 1, A, 2 be the annuli in OV,, with A, 1 N A, 2 =
AV, N f2(2°). Since lim width(A, 1) = lim width(4,2) = oo, one can show
as Step 3 in the proof of Lemma 6.7 that, for the realization 7, of n, in E, the
restriction 1, N Ep(main) 1S contained in the r-neighborhood of 7,; in E for some
constant r > 0 independent of n. Thus there exists our requiring constant R > 0.
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So it suffices to get a contradiction under the assumption that 7, meets a com-
ponents of A,, other than the geodesic cores of components of V,, of type III. Let
Too © Yoo — FEo be a geometric limit of r,, which realizes a geometric limit
ni of NF in Es. We need to consider the following three cases, where we set

~

Esxw=ExNEy

Case 1. 7, N L,, # 0 for infinitely many n. Let F ; be a component of 3, such
that roo (7|7 ) meets a component do i of Log non-trivially. Then there exists
a subsurface fnl of ¥, with geodesic boundary such that Tn|1ntfn . geometrically
converges t0 ro|7_ . Since distg (ds,i f2,(22.)) is sufficiently lafge, there exists

a component Fgoﬂ- of »’_ such that 12 > is properly and freely homotopic to

T‘X"fw,i in Eoo. See Figure 6.5. Since 7o has a compact sub-lamination .

Fo(22) B
/ 5o ree (o) Fro i (" b (F2
P e TeaF) | R
‘ D,
() _
Soo,v, <-omeoe 600,1’ ° Too(Foc 1) fb ( )
|
g )

Figure 6.5. The lower ‘--»’ means that the corresponding part of 7o, (X4,) does not
remain in E

contained in Fgo , s a maximal lamination, which is also a sub-lamination of vy.
Here a lamination \ in a hyperbolic surface S is called mazimal if S\ X contains
no simple closed geodesics. Since 7, is realizable in the locally CAT(—1)-space
(Foo, As), the sub-lamination Ji,, of 7, corresponding to jis is also realizable.
By applying Lemma 6.5 to ,, and f? instead of f,,, f’, one can show that i__ is a
sub-lamination of 7. Since (E, A, ) has an end which has a neighborhood isometric
to a neighborhood of £ in E, 7, is a geometric limit of ending laminations 7,, in
(En,Ay). Then we have a contradiction by applying the locally CAT(—1)-space
version of Lemma 6.7 to (E,A,). See Remark 6.8.

Case 2. 7 N L, # ( for infinitely many n. Let F ; be a component of Yoo

such that re (T |7 7 ) meets a component d ; of L. Note that reo | 7 realizes
Noo|Fa ; @S @ geodesm lammatlon A in (Bo, A 00)- On the other hand, food realizes
No| 2, as a geodesic lamination A5, in Ee. Since Foo J(F ;) N A =0, one can
regard X:o as a geodesic lamination in (EOO,AOO). However, since roo(F;o)j) N
foo’ J(ﬁéo j) = 0, X; # X(”;O This contradicts the fact that two geodesic laminations
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in the same proper homotopy class coincide with each other in the locally CAT(—1)-
space (Eoo,As). See Figure 6.5 again.

Case 3. Suppose that 7, meets the geodesic core ¢, of some component V,, of
V,, other than of type III, which geometrically converges to a component V., of
Vso. Since Vs has no components of type II with respect to f2, the (+)-side

annulus A, in 9V, with respect to r,(X,) geometrically converges to the (+)-

side annulus A (4) in OV with respect to 7o (¥oc). Note that A4 is contained
in EOO. Consider the bulged maps 7, 4 : in,A — E,, of r, along Ay (4, which
geometrically converge to the bulged map oo 4 : Yoo,4 — Eoo Of 7o, along Aso(4)-
The metrics on A,,(1) and Ao+ induced respectively from E and Eo via r, 4 and
Tso,4 are Euclidean, see Step 3 in the proof of Lemma 6.7 for bulged maps. So the
induced metrics on in, 4 and im A are neither hyperbolic nor locally CAT(—1).
Since X4, geometrically converges to X4 ., there exist hyperbolic metrics on
3.4 and Yoo 4 K-bi-Lipschitz to their induced metrics respectively for some K >
1. Let 7, 4, Un,a be the realizations of 7, and v, in in,A with respect to the
hyperbolic’ metrics, which geometrically converge to laminations 7, 4 and Voo
in Yoo 4 Tespectively. Since nk, is a sub-laminations of 2 , by Assumption 6.6 7,
goes across the annulus r,;*(V,,). This implies that the length of any component of
7, N7y (V,,) diverges and hence the length of any component of 7, 4 N r;h(Vn)
also diverges. It follows from this fact that both 7, 4 and ¥ 4 contain the closed
geodesic Ty in Yoo 4 corresponding to the parabolic cusp of V., as a common
compact leaf. Let do 4 be a simple loop of foq A meeting A4y homotopically
essentially and such that the 7o s-image of d 4 is freely homotopic in Eoo to a
closed geodesic do,. Let &, be the closed geodesic in E geometrically converging to
0o and let 7, : f]n — F be a ruled map realizing 7,, as a union of closed geodesics
in the locally CAT(—1)-space (E, ﬁn), where A, = (Ap \ ¢n) U dp. Intuitively,
?n(fln) is obtained by pushing out the surface 7, 4(3, 4) with the ring &,. See
Figure 6.6. Since v is the ending lamination of the end £ of (E,ﬁn)7 Up 1s not

Eo

Tn,A(En?A) Too,A(Eoo,A)

An(+)

T LA (Eoo )
geometric
convergence
_— Too(Coo)

Figure 6.6
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realized by 7, as a geodesic lamination in (E,A,) in contrast to 5,. The ruled
map 7, geometrically converges to a limit ruled map Poo t B0 — FEoo with the
branching locus Aoo = Ay Uds and the realizations 7,, of f 1 and 7, of v in E
also geometrically converge to laminations 7, and Vs, in Eoo respectively. From
our construction, we know that ro, 4 is properly homotopic to 7o in Eo. The
ruled map 7, realizes 7o as a geodesic lamination in (Fu, 300) Let ¢, be the
closed geodesic in f)oo corresponding to €. Here we note that 7 (€ ) meets do
non-trivially. Otherwise 7o (Coo) would be a closed geodesic in Eo, rather than
that in (Eo, ﬁoc) and freely homotopic into the parabolic cusp V. By applying
an argument similar to that in the proof of Lemma 6.5 to r, 4 and 7, one can
show that both 7)., and 7., contain ¢, as a compact leaf. Then one can get a
contradiction by using the locally CAT(—1)-space version of Lemma 6.7. The loop
Coo here corresponds to pio, of Lemma 6.7 in the case where i is a closed geodesic
in Yo
By Cases 1-3, we have our requiring contradiction, which completes the proof.
O

6.4. Geometric limits of earthquakes. In this subsection, we present the notion
and fundamental properties of earthquakes introduced by Thurston, see [Ker, Th2]
for details.

Let X% be the supervising hyperbolic surface given in Subsection 6.1. For a given
simple closed geodesic I in ¥, let ¥’ be the hyperbolic surface obtained from Xf \ [
by the path-metric completion. The boundary of ¥/ consists of two copies of I.
For any ¢t > 0, let ¥y; be the hyperbolic surface obtained by gluing the boundary
components of ¥ with left twist of distance ¢. Then the identity of X\ [ induces
a locally isometric map Qy : Pk \ | — Xy. Let [; be the closed geodesic in Xy
corresponding to the boundary components of ¥/. Consider a simple geodesic arc «
in ¥ meeting [ transversely. Let ), be the piecewise geodesic path in ¥y obtained
by connecting the components of Qy(« \ ) with left directed immersed arcs in I
of length ¢. Suppose that « is either a closed geodesic or a geodesic line. Then we
denote by oy the geodesic in X;; which is covered by a geodesic line in the universal
covering space H? with end points the same as those of a lift of . See Figure 3 in
[Ker]. We say that ay; is the straightened geodesic arc in 3y obtalned from «. When
0 is a sub-segment of «, (3 is the sub-segment of ay; in ¥y; obtained by straightening
By, A marking qy : ¥4 — ¥y associated with Qy is a homeomorphism such that,
for any simple closed geodesic o meeting [ transversely, gy («) is freely homotopic
to the straightened geodesic loop a4 in Xy, Such a homeomorphism is determined
uniquely up to homotopy. Thus the pair (X4, ¢#;) of the hyperbolic surface ¥y; with
the marking g uniquely determines an element of the Teichmiiller space Teich(X).
We say that @y is the left Finchel-Nielsen twist along tl.

Definition 6.11 (Left earthquakes). For any measured lamination w in %! with
compact support, consider a sequence of weighted simple closed geodesics t,[, in
¥ converging to w as measured laminations. Then the sequence of the left Finchel-
Nielsen twists Qy,;, converges to a locally isometric map Q. : X% \ w — Xf
uniformly on any compact subset of %%\ w for some hyperbolic surface £, see
[Ker, Section II] and [Th2] for details. We say that Q. is the left earthquake
associated with w.

The map @, satisfies the following properties.
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., does not depend on the choice of the sequence t,l,, converging to w.

e Let o(w) be the union of compact leaves of w. Then @Q,, is uniquely extended to
a continuous map on X%\ o(w), which is still denoted by Q..

e For any strongly simple geodesic arc o meeting w transversely, the sequence of
the piecewise geodesic arc atvn ;, converges uniformly to a piecewise geodesic arc
aY in Xf. Here we say that a is strongly simple if a is contained in a simple
geodesic line in Xf. The straightened geodesic arc in ZE, obtained from o is
denoted by a,.

e A marking g, : X% — ¥ associated with @, is defined by the manner as in the

case of gy. Then (Einlﬂ7 qs,1, ) converges to (X% ¢q,) in Teich(X?).

Theorem 6.12 ([Ker, Theorem 2|, [Th2, Sections III.1.5—-7]). For any element
(3, q) in Teich(X?), there exists a unique measured lamination w on X% with compact
support and satisfying (£,q) = (29, q,) in Teich(X?).

Suppose that E' = p(F) is a neighborhood of a simply degenerate end £’ of M’
whose ending lamination v/ is the same as v via . Let )\, be a maximal lamination
in %, realized by f, and let g/, : 3(g/,) — FE’ be a pleated map realizing the
lamination A}, in 3(g/,) corresponding to A, via ¢.

There exists a homeomorphism ¢, : ¥,, — ¥(g),) such that g}, o ¢, is properly
homotopic to o f,. Let Ay, : £ — 5, and &/, : 7 — %(g/,) be homeomorphisms
as in (6.3). Denote the domains of T, and E;L by L8high and Y8V respectively if we
need to distinguish them. Let ¢, : 2fPigh — $8oW he the homeomorphism defined
by g, = iAL;lfl 0 pp © ﬁn Then we have the following diagram which is commutative
up to proper homotopy.

Ehhigh hn Zn fn E

(6.4) qnl lw, ls@

sHow s ¥(gl,) —— B
! 9n

n

By Theorem 6.12, there exists a unique measured lamination w, on L#&" such
that (39°%, ¢,) = (3% ,qu,). Let woe be a geometric limit of w,, in LM with
limit transverse measure and &, the sub-lamination of ws, consisting of leaves [
such that, for any open geodesic segment o in X%8" meeting | transversely and
non-trivially, the transverse measure of ., on « is infinite. Possibly &y, is empty.
For any lamination X in 28" the geodesic lamination isotopic to g,(A) in X#HoW
is denoted by g, (\)*. Then w!°Y = g, (w,)* is the measured laminations in 28"
with the measure induced from that on w,, via g,.

Lemma 6.13. Let o, 8 and /™ (n=1,2,...) are strongly simple geodesic arcs
in YOER sych that both Int o and Int 3 meet the same leaf | of Do transversely and
non-trivially and 8™ geometrically converges to 3. Then the straightened geodesic
arcs o, = qp(a)* and ﬂ,(l") = ¢, (B")* contain sub-arcs geometrically converging
to the same connected lamination ae, in DMV,

Proof. By the fourth property of earthquakes preceding Theorem 6.12, one can
suppose that w,, consists of a single geodesic loop. First we consider the case that,
for any sub-arc o' of a with Int o/ NI # () and any sufficiently large n, o’ Nw,, has a
point (™) such that the transverse measure of w, on {z(™} diverges to co but that
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on o \ {z(™} is uniformly bounded. Then we have an arc 7" in w, connecting
(") with a point y,(Ln) of 8™ Nw,. In the other case, there exists a point (™) in
Int o\ wy, satisfying the following conditions.

e (") converges to a point of a N 1.

e For the components o™+, oM~ of o \ {m(”)}, the transverse measure of w,, on

a™=* diverges to co.

See Figure 6.7 (a). Note that, since w,, is a geodesic loop, a,/ and @(In)v are piecewise

Y bhigh B «
y™ \ z(n) Wy,
~] =
*
| |
| /
()
(a)
low n
EJ ﬂl(L ) - aoo Oy — Qo
(n)
AN \; ——
— %x
s — T
g i
(b) g o,
Figure 6.7

geodesic arcs with only finitely many vertices. In either case, we have a geodesic arc
~{™ in B8O corresponding to 7™ and connecting points 2" of a, and y\™ of L.
We denote by o, B the components of an\{x%")} and B \{y%")} respectively.
From standard facts on earthquakes (for example see Corollary 3.4, Proposition 3.5

and Lemma 3.6 in [Ker]), we have lengthzmow(a%n)i) — 00, lengthsuow (BF) —

oo and sup,, {lengthyiow ('y,(L"))} < 00. Moreover, both a, and 85" contain sub-
arcs centered at 3:%"), y,(ln) respectively which geometrically converge to the same
connected lamination ., in X8V, See Figure 6.7 (b).

Intuitively, this fact is explained as follows. Let p : H? — X8°% be the universal
covering and a,,, BT(L") geodesic lines in H? with p(a,) D «a, and p(Br(Ln)) D @(Ln).
One can choose these geodesic lines so that their end point sets da, and 857(1”)
converge to the end point set dd, of the same leaf o of p~1 (T ). See Figure 3
in [Ker| again. O

Here we note that that oo is possibly a single closed geodesic in 280,

Lemma 6.14. Let A be a component of o, consisting of a single compact leaf.
Then Ap, = gn(N)* geometrically converges to a simple closed geodesic in ytlow

Proof. Again one can suppose that w, consists of a single geodesic loop. For a
small & > 0, let N'(\) be the e-neighborhood of X in X.8hh Since ) is isolated in
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Woo, One can choose € so that Do, NON(A) = @) and any leaf of w, NA(\) connects a
component b of ON(A\) with the other component. See Figure 6.8. So the invariant

Figure 6.8. View from the side. The shaded region represents A/(\).

transverse measure wy, (b) is equal to wy,(A), where we suppose that w,(A) = 0 if
w, = A. Let \Y be the piecewise geodesic loop in ¥#°% obtained from \ by the
earthquake @, . From the definition of Y,

lengthzmow ()\X) = lengthzhhigh(A) + wp, ()\)

Since bN©oo = 0, woo (b) < 0o. This shows that sup,{w,(A)} = sup,,{wn(b)} < oco.
Since A, is a closed geodesic freely homotopic to AY in X% the length of ), is

uniformly bounded and hence \,, geometrically converges to a simple closed geodesic
in Rolow, O

7. PROOF OF THEOREM B

In this section, we will prove Theorem B under the notations and conditions as
in Section 6. Then ¢ : M — M’ is an orientation and cusp-preserving homeomor-
phism such that E' = ¢(FE) is a neighborhood of a simply degenerate end of M’
with the ending lamination v/ corresponding to v via .

7.1. Boundedness of volume difference. For any non-contractible and non-
peripheral simple loop I of ¥, we denote by [* the closed geodesic in ¥ freely
homotopic to I. Let f,, : ¥, — FE be pleated maps tending toward £ and realizing
the hoop families H(f,) = En(Hhhigh)* of ¥, supervised by a fixed hoop family
Hohigh of »Ehigh - Suppose that ¢/, : X(g,) — E’ is the pleated map realizing
the union 7/, of closed geodesics corresponding to ¢, (H(f))* in X!,. Then 7, is
supervised by n/f = g, (Hieh)* in ¥8°% See (6.4) for the homeomorphisms ¢,, and
¢n. Here we use H(f,) and 7/, respectively instead of A, and A/, there. In a similar
manner, for pleated maps f/ : ¥/ — E’ tending toward £’ and realizing the hoop
families H(f)) = B;(Hmow)* of X/ | one can define pleated maps g, : X(g,) — E
realizing the union 7,, of closed geodesics corresponding to ¢, L(H(f.))* in .
The following lemma plays a crucial role in the proof of Theorem B.
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Lemma 7.1 (Volume Difference Boundedness Lemma). There exist hoop-realizing
pleated maps fn, : X, — E and f] : ¥/ — E as above with respect to which
at least one of the following (V1) and (V2) holds, where ¢; : ¥(g.) — E’ and
9i : 3(g;) — E (i = 0,n) are pleated maps realizing 1 and n; respectively.

(V1) sup{ Vol"(fo, fn) — VoI" (g5, 1) } < cc.
(V2) sup{Vol"(f;, fn) — Vol*!(go, gn) } < oo.

Here we suppose that (V1) does not hold for any such f,,’s. Then one can assume
that

(7.1) Tim (Vol™(fo, fn) = VoI" (g5, g7,)) = o0

if necessary passing to a subsequence. We will define pleated maps f), : &/ — E’
and g, : X(gn) — FE satisfying (V2) by using the maps f,, g/, with (7.1).

Proof. Let foo : ¥oo — FEo be a geometric limit of f,. One can retake f, so
that fo is properly homotopic in E, to a (—)-reduced normalized map, see the
paragraph preceding Lemma 6.9 for such maps.

Recall that h, : Sish — 5 R/ . ¥How _, $(g') are supervising mark-
ings satisfying Assumption 6.6 and w, is the measured lamination on Y™t with
(oo g,,) = (Xhish g, ) for g, = ﬁ;;l ° Yn o h, : Yihigh __ yilow apq G, :
yohigh _, yithieh “see (6.4). Let wo be a geometric limit of w, with limit trans-
verse measure and W, the sub-lamination of ws, with infinite transverse measure.
First we consider the case when G is contained in H™&h (possibly Gs, = ) and
hence each component of &y, is an isolated closed geodesic. Then, by Lemma 6.14,
the length of each component of #;, is uniformly bounded. Thus, by setting g7 = f7,
fi = gj (j = 0,n) and supposing H(f;) = ), one can prove that (7.1) implies (V2).
So we may assume that G is not a subset of H™eh We denote by /(@u) the
union of loop components of &y, and by 72 a geometric limit of /% in LW,

Now we will show that @ \ £(©s) is a sub-lamination of 8 . Since i, is a
full lamination, if it did not hold, then there would exist a non-compact leaf * of
Goo \ /(Do) meeting a leaf of v, transversely and non-trivially. If 1% N Hfhish =£ ),

fhigh

then /% meets a component li] of H transversely and non-trivially. By applying

Lemma 6.13 with a C li,, ™ C Vi 1% C B, one can prove that /3 and 1%
have a common connected lamination 7. Since 7 is realizable in E’_, so is 7/.

This contradicts Lemma 6.7 and hence ¢ N Hiek — (. Thus the closure Zh of
[% in Xfhigh contains a component th of H™igh a5 a compact leaf, which is also

Bhigh s

a leaf of @s. Take a simple geodesic loop 7# in X meeting my; with either

one or two points and disjoint from H"igh \ mtjq. Since 77 meets [ transversely
and non-trivially, again by Lemma 6.13 the geometric limit v/ of v/ = ¢, (7%)*
and /% have a common connected sub-lamination y/%. We may assume that p'%
is minimal, that is, ;Lffo contains no proper sub-lamination. Suppose that ;450 did
meet /% transversely. If p/2 is a simple geodesic loop, then we know from v/ > /&
that 77’5 has a sub-arc contained in a small regular neighborhood of u/% in yhlow
and winding around g2 arbitrarily many times. See Figure 7.1. This contradicts
that 7/f meets 1’2 at most two points. If y/% is not a simple closed geodesic, then
it follows from the minimality of p/% that any leaf of u/% meets n transversely
infinitely may times for all sufficiently large n. As in the previous case, this also
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e B

LS

Figure 7.1. Since p/% meets 1’2 transversely, it also does /¥ with intersection angles
bounded away from zero for all sufficiently large n.

gives a contradiction Thus #/2 U2 is a lamination in X#°%. Since 7’4 is maximal
in 9% and pf has no isolated leaves, u/% is a sub-lamination of 7’2 as well as
of V5. It also contradicts Lemma 6.7. Thus we have shown that Ts \ /(@) is a
sub-lamination of v/ .

Suppose that f/ : ¥/ — E’ is a pleated map realizing the hoop family H(g),) =
ﬁ/n(thoW)* of 3(g,). Then one can take a hoop family H(f)) of X! such that
fL(H(f)) is a union of closed geodesics in E’ freely homotopic to g/, (H(g.,)).
Since lengthp, (g,(H(gy,))) = lengthy, y(H(gy,)) is uniformly bounded, for any
component F(g;,) of ¥(g;,) \ H(g,,), the restriction g, |r(, ) geometrically converges
to a partial pleated map gl |y ) @ F(gh) — El such that F(gl,)main is K-
bi-Lipschitz to F(g},)main for some constant K > 1 independent of n. The map
9ol F(g2) is properly homotopic in £l to a continuous map ¢f, : F,, — E7, such
that ¢ (F) is a union of two totally geodesic ideal triangles in E_. Since f}|r:
also realizes F), as a union of two totally geodesic ideal triangles in E’ (see for
example Figure 2.1 in [Th3]), f;,(F}, i) is arbitrarily close to G, (t6 (Fi main));
where ¢}, : N, ,, — E' is a locally bi-Lipschitz embedding defined as ¢ in (6.1).
See also (6.3). So there exists a constant C; > 0 with

(7.2) IVo1™(gy,, f7)| < Ch.

Let ni be a geometric limit of 7% = ¢;'(H"%)* in & Then we know
that 7%, does not meet Wy, transversely. Otherwise, there would exist a leaf 1%
of nf, which meets @y, transversely and non-trivially. Then, for the component
I8 = q,(18)* of HfoW, Jim_lengthyson (I5) = oo, a contradiction. Let 'Hmow be
the union of components l’h of H#°% such that g, !(I/f)* are either disjoint from
Woo \ ¥(Wo) or contained in ¢(Ds). One can assume that Hb 2% is independent
of n and hence may set thow HB‘OW if necessary passing to a subsequence.
Note that the restriction qn|2hh1gh\ N(@..) 18 homotopic to a bi-Lipschitz map onto
its image, where A (Qs) is a small regular neighborhood of Ty, in L8Meh. Thus,
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hlow

for ng,n = g, (Hy )", 1ength(n8m) is uniformly bounded. This shows that ngvn
geometrically converges to a disjoint union 7]8_’00 of simple closed geodesics in XAhigh,
each component of which is a loop component of 7% . Any component of nf_ \778700
is a sub-lamination of @, \ #(©s) and hence of /4.

Recall that g, : 3(g,) — FE is a pleated map realizing 7,,. Since we supposed

in advance that f., is properly homotopic to a (—)-reduced normalized map, by
Irreversibility Lemma (Lemma 6.9) there exists a constant Cy > 0 with

Vol®(f,,, gn) > —Co.
From this fact together with (7.1) and (7.2),

VOlbd(f67 frlz) - VOlbd(QOa gn)
= Vol® (£}, gb) + Vol* (g4, gl,) + Vol*Y(gh,, f1)
— VoI*(go, fo) — VoI®*(fo, fn) — VoI (f1. gn)

< Vol (f5, 96) — Vol (g0, fo) — (Vo1"*(fo, fn) — VoI**(g5, 1,))
+Co+Cy — —0 (n— o0).

This implies (V2). O

7.2. Proofs of Theorem B and Corollary C. In this subsection, we suppose
that 7% is a geodesic triangulation on X.f satisfying the conditions (T1)-(T5) in
Section 3 and 7, is the geodesic triangulation on ¥,, supervised by 7.

The proof of Theorem B is similar to those of Lemmas 3.3 and 3.4.

Proof of Theorem B. By Lemma 7.1, if necessary replacing F with E’, we may
assume that there exists a sequence { f,,} of pleated maps to E satisfying

(7.3) Vol*(fo, fn) < VoI"(g),g,) + C

for some constant C' > 0. Let f; (j = 0,n) be a normalized map whose image is
contained in the 1-neighborhood Ni(f;(X)) of f;(¥) in E, see Definition 1.6. If
fj(Z) wraps around a component V of Eiype, then by Lemma 1.5 there exists a
solid torus Vj in E with 0Vy C N1(f;(2)), Vo D V and Vol(Vp) < Area(X(f;)). By
this fact together with Proposition 8.12.1 in [Thl] (see also Lemma 1.7 (3)), one

can show that [Vol®(f;, fj)| is uniformly bounded. It follows from (7.3) that there
exists a constant C’ > 0 satisfying

(7.4) Vol(E(fo, fn)) = VoI®(fo, fu) < VoI™(gb, g4) + C".

Let v : M — M’ be a continuous map satisfying the conditions (P1) with
Vol(N(ﬁE)) < oo and (P2) in Subsection 3.2. In particular, ¢ is properly ho-
motopic to ¢ rel. M \ IntE. We will show that ¢ satisfies the w-upper bound
condition on E.

Recall that the closure of the component of F \fO(E) adjacent to £ is denoted by
E"‘(]?O). For any almost compact 3-dimensional submanifold X of E+(}\b), there ex-
ists n € N such that X C E(fo, fn) = X. By Lemma 3.2, for any straight 3-simplex
o : A® — H3 with Vol(o) > 1, there exists a 3-chain @g,, on X with [[do.n| < bo
and such that zq,, = 2¢(0) +do,n is a 3-chain with d32¢, = Vol(o)(w(7,) —w(7)),
where w(r;) (j = 0,n) is the fundamental 2-cycle on j?J(E) given in Lemma 3.2 (2).
Let f]’»* : ¥ — E’ be the piecewise totally geodesic map defined from 1) o fj and
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satisfying the conditions given in the paragraph preceding Lemma 3.3. Then we
have war (1 (20.n)) = Vol(o)Vol* (£, 1) as (3.7). Since g} realizes H(f;) in E',
the bending locus of g} in ¥(g;) is homeomorphic to a lamination in ¥; obtained
from 7; by spinning its vertices around H(f;). So there exists a 3-chain ¢; in E
consisting of ideal straight 3-simplices the number of which is at most 3mg and
satisfying dsc; = f7*(¥) — g;(¥) as 2-cycles. Here ‘3’ means that the triangular
prism A2 x [0,1] is divided into three 3-simplices. By the property (T4) of 7; in
Section 3, there exists mg € N independent of j such that the number of elements
of TJ@) is not greater than myg. Since [Vol?d( 7,95)1 < 3mows for j = 0,n, it follows
from (7.4) that

war (. (20,)) = Vol@)Vol™ (5, £12) > Vol(@)(Vol**(gh, g1,) — 6movs)
> Vol(o)(Vol(X) — 6movs — C").
On the other hand,

wn (i (20,n)) = wanr (Yu(25(0))) + warr (Y (@o,n)) < wirr (Yi(25(0))) + 2bovs.
This shows that N
wir (Y« (25 (0))) > Vol(o)Vol(X) — co,
where ¢y = v3(6movs + C’ 4 2bg). Since moreover

~

Vol(o)Vol(X) = Vol(o) ||z (0)| = wm (25 (0)),
we have
wi (P« (2£(0))) = wm (25 (0)) = co.
Thus 1) satisfies the w-upper bound condition on E* (fy). Since Vol(E\IntE* (f5)) <

oo and Vol(N(Hg)) < oo, ¢ as well as ¢ satisfies the w-upper bound condition on
FE. This completes the proof. O

Proof of Corollary C. Suppose that ¢ : M — M’ preserves the end invariants. Let
C be a finite core of M and C’ = ¢(C). Then one can suppose that ¢|c : C — C’
is a bi-Lipschitz map. For any end £ of M, let E be the neighborhood of £ with
respect to C and E' = p(F). If £ is simply degenerate, then by Theorems A and
B ¢|g : E — E' is properly homotopic rel. 9E to a bi-Lipschitz map ¢%. When
£ is geometrically finite, consider the domains Qr, Qr: of discontinuity of Kleinian
groups I', I with H3/T' = M and H3/T" = M’ respectively. Since ¢ preserves
the conformal structure on geometrically finite end, ¢|g is properly homotopic rel.
OF to a bi-Lipschitz map 4,0?3 which is extended to a conformal map from Op to
Og/, where Og, Ops are the components of Qr/T" and Qr/ /T adjacent to F and E’
respectively. Then the map ¢’ : M — M’ defined by ¢'|c = ¢|c and ¢'|g = ¢’ is
a bi-Lipschitz map the lift ¢’ : H® — H? of which is extended to a quasi-conformal
map P, on Sgo such that the restriction @ |o. : Qr — Qpv is conformal. By
Sullivan’s Rigidity Theorem [Su|, @, is a conformal map. It follows that ¢’ and
hence ¢ are properly homotopic to an isometry. O
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