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Abstract. We present a rigidity theorem for hyperbolic 3-manifolds M =
H3/Γ with a Kleinian surface group Γ in terms of the fundamental class [ωM ]

in the bounded cohomology H3
b (M ; R). Under some conditions, we show that

a homeomorphism ϕ : M −→ M between hyperbolic 3-manifolds M , M ′ are
bi-Lipschitz if the pseudo-norm ‖[ωM ] − ϕ∗([ωM′ ])‖ in H3

b (M ; R) is less than

the volume of a regular ideal simplex in the hyperbolic 3-space. We see that
the separation constant is best possible.

Let f : M −→ M ′ be a proper degree-one map between oriented hyperbolic
3-manifolds of finite volume. Gromov and Thurston [Th1, Chapter 6] proved that
f is properly homotopic to an isometry if and only if Vol(M) = Vol(M ′). In the
proof, they use the simplicial volume ‖[M ]‖ of M , that is, the simplicial norm of the
fundamental homology class [M ] of M . In this paper, we consider the case when
M is a hyperbolic 3-manifold M with the proper homotopy type equivalent to a
hyperbolic surface of finite area. Then, since the volume of M is infinite, we can
not use the volume as an invariant. So we use the fundamental class in bounded
cohomology instead of simplicial volume. The bounded cohomology H3

b (X, R) is
a homotopy invariant of a topological space X introduced by Gromov [Gr], which
has the naturally defined pseudo-norm ‖ · ‖, see Section 3. When M is an oriented
hyperbolic 3-manifold, we consider the 3-cocycle ωM : C3(M) −→ R such that,
for any singular 3-simplex σ : ∆3 −→ M , ωM (σ) is the oriented volume of the 3-
simplex straight(σ) obtained by straightening σ. It is a well know fact in hyperbolic
geometry that the supremum norm ‖ωM‖ of ωM is equal to the volume of a regular
ideal simplex v3 = 1.01494 . . . in H3. So ωM represents the fundamental bounded
cohomology class [ωM ] ∈ H3

b (M, R) of M with ‖[ω]‖ ≤ v3.
Throughout this paper, we denote by Σ an oriented complete hyperbolic surface

of finite area. Possibly Σ has parabolic cusps. We only consider the case that any
hyperbolic 3-manifolds M admits a proper homotopy equivalence ι : Σ −→ M ,
which is called a marking of M .

We prove the following theorem by using Connecting Lemma (Lemma 5.1) to-
gether with Ending Lamination Theorem [Mi, BCM].

Theorem A. Let M , M ′ be hyperbolic 3-manifolds with markings ι : Σ −→ M ,
ι′ : Σ −→ M ′ respectively. Suppose that either the (+) or (−)-end E of M with
respect to ι(Σ) is totally degenerate. If

(0.1) ‖ι∗([ωM ]) − ι′∗([ωM ′ ])‖ < v3
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holds in H3
b (Σ, R), then there exists a marking and orientation-preserving homeo-

morphism ϕ0 : M −→ M ′ and a neighborhood E of E such that ϕ0|E : E −→ E′ =
ϕ0(E) is bi-Lipschitz. In particular, ϕ0 defines the bijection between the components
of Ecusp and those of E′

cusp.

Here we say that the end E is totally degenerate if any genuine sub-end of E is
simply degenerate and set E

(′)
cusp = E(′) ∩ M

(′)
cusp. A genuine end of M is an end of

M with respect to a maximal cusp of M , see Section 1 for the strict definition.
Theorem A says that the fundamental bounded cohomology class keeps the data

of the placement of parabolic cusps in a neighborhood of a totally degenerate end.
Thus the following corollary is obtained immediately from Theorem A together
with Sullivan’s Rigidity Theorem [Su].

Corollary B. Under the assumptions in Theorem A including (0.1), suppose more-
over that all genuine ends of M are simply degenerate. Then ϕ is properly homo-
topic to an isometry. In particular, ι∗([ωM ]) = ι′∗([ωM ′ ]) in H3

b (Σ, R).

Now we consider the case when the data of the placement of parabolic cusps in
M is known in advance. Then ϕ define the bijection between the genuine ends E of
M and those of M ′, where E is possibly geometrically finite. Then, by reforming
Theorem A, we have the following result which asserts that the structure of M
is uniquely determined by the fundamental bounded cohomology class up to bi-
Lipschitz.

Theorem C. Let M be an oriented hyperbolic 3-manifold with a marking of Σ.
Suppose that there exists an orientation-preserving homeomorphism ϕ from M to
another hyperbolic 3-manifold M ′ inducing a bijection between the components of
Mcusp and those of M ′

cusp. If

(0.2) ‖[ωM ] − ϕ∗([ωM ′ ])‖ < v3

holds in H3
b (M, R), then ϕ is properly homotopic to a bi-Lipschitz map.

Remark 0.1 (Best possibility of separation constant). We refer to Soma [So2,
Theorem A], Ohshika-Miyachi [OM, Section 6], Farre [Far1, Corollary 1.5] and
so on for precedent results relating to our theorems. In those papers, theorems
similar to ours are obtained in suitable settings and under certain conditions with
some separation constants as v3 in (0.1) or (0.2). However, the practical values of
those constants are not presented there and they depend more or less on either the
geometric structure on M or the topological type of Σ. On the other hand, our
separation constant is not only concrete but also best possible. In fact, by [So3],
if at least one of genuine ends of M is simply degenerate, then ‖[ωM ]‖ = v3. In
contrast, if M ′ has no simply degenerate ends, then [ωM ′ ] = 0 in H3

b (M ′, R). So
we have

‖[ωM ] − ϕ∗([ωM ′ ])‖ ≤ ‖[ωM ]‖ + ‖ϕ∗([ωM ′ ])‖ = v3,

but ϕ is not properly homotopic to a bi-Lipschitz map since any simply degenerate
end is not bi-Lipschitz to a geometrically finite end.

Remark 0.2 (Volume rigidity). We use volume arguments in the proof of the
above theorems, which show that corresponding ends of E and E′ have the same
ending lamination. Then Ending Lamination Theorem implies that E and E′ are bi-
Lipschitz. This means that the latter half of our argument may not be consistent
with the title ’volume rigidity’ of our paper. It would be possible to prove our
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theorems only by using volume arguments as in [So4] together the classical (or
standard) theory of hyperbolic geometry by Thurston, for example see [Th1], [Th2,
Part 1]. However we relied on the established rigidify theorem by Minsky et al. for
ensuring completeness of our proofs.

The fundamental group π1(Σ) is naturally identified with a Fuchsian group Γ
in PSL2(R). We denote by R(p)(Γ) the set of representations ρ : Γ −→ PSL2(C)
which map each parabolic element of Γ to a parabolic element of PSL2(C). The
holonomy ρM : Γ −→ PSL2(C) of a hyperbolic 3-manifold M with a marking
ι : Σ −→ M is a discrete and faithful element of R(p)(Γ). We set R(p)(Γ) = R(Γ)
if Σ has no parabolic cusps. Farre [Far2] defined the bounded volume class [Vol(ρ)]
of ρ in H3

b (Γ, R) = H3
b (Σ, R). Then [Vol(ρM )] is equal to ι∗([ωM ]) if ρM is the

holonomy as above. In the case when Σ is a closed surface, he presented a rigidity
theorem in terms of [Vol(ρ)] for representations ρ ∈ R(Γ) such that ρ(Γ) contain
no parabolic elements. His rigidity theorem also concerns a separating constant
but it may depend on the topological type of Σ. Here we propose the following
question asking the existence of a concrete separating constant which is valid in
volume rigidity theorems of representations.

Question. Does there exist a concrete constant v > 0 satisfying the following
condition? If it exists, is it best possible?

Let ρ be any element of R(p) with ‖[Vol(ρ)] − [Vol(ρM )]‖ < v in H3
b (Γ, R). If

either the (+) or (−)-end of M with respect to ι(Σ) is totally degenerate, then ρ
is faithful and discrete. Moreover, if the both ends are totally degenerate, then ρ
and ρM are conjugate in PSL2(C).

1. Preliminaries

In this section, we present fundamental definitions and notations in forms suit-
able to our arguments. Refer to Thurston [Th1], Benedetti and Petronio [BP],
Matsuzaki and Taniguchi [MT] and so on for other notations concerning hyperbolic
geometry and to Hempel [He] for 3-manifold topology. For a closed subset A of a
metric space X = (X, d) and any r > 0, the r-neighborhood {y ∈ X | d(y,A) ≤ r}
of A is denoted by Nr(A, X) or Nr(A) for short.

Throughout this paper, we suppose that Γ is a torsion-free finitely generated
Kleinian group, that is, Γ is a discrete subgroup of PSL2(C) = Isom+(H3). Then
the quotient map p : H3 −→ M = H3/Γ is a universal covering and M has a
Riemannian metric so that p is locally isometric. Then M is called a hyperbolic
3-manifold.

Fundamental notations and definitions. For a µ > 0, the µ-thin part Mthin(µ)

of M is the set of points x ∈ M such that there exists a non-contractible loop l in M
of length ≤ 2µ and passing through x. The complement Mthick(µ) = M \IntMthin(µ)

is called the µ-thick part of M . By the Margulis Lemma [Th1, Corollary 5.10.2],
there exists a constant µ∗ > 0 independent of M , called a Margulis constant, such
that, for any 0 < µ ≤ µ∗, each component of Mthin(µ) is either an equidistant
tubular neighborhood of a simple closed geodesic, called a Margulis tube, in M or
a parabolic cusp of type Z or Z × Z. In this paper, we fix the constant µ with
0 < µ < µ∗ and set Mthick(µ) = Mthick and Mthin(µ) = Mthin for short. Let Mcusp

be the union of cuspidal components of Mthin and Mtube = Mthin \Mcusp. In other
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words, Mtube is the union of Margulis tube components of Mthin. We say that the
complement Mmain = M \ IntMcusp is the main part of M .

As was stated in the introduction, we suppose that Σ is an oriented hyper-
bolic surface of finite area. Let M be an oriented hyperbolic 3-manifold admit-
ting a marking ι : Σ −→ M , which is supposed to be a proper embedding with
ι(Σcusp) ⊂ Mcusp. Then each component of Mcusp is a Z-cusp. Let M(cusp) be the
union of components of Mcusp meeting ι(Σcusp) non-trivially. We consider a union
Mcusp∗ of components of Mcusp containing M(cusp) and set Mmain∗ = M \ Mcusp∗.
By Scott-McCullough’s Core Theorem [Sc, MC], there exists a compact connected
submanifold Cmain∗ of Mmain∗ such that (i) the inclusion Cmain∗ ⊂ Mmain∗ is a
homotopy equivalence, (ii) Cmain∗ ∩ V is a non-contractible annulus in ∂V for
any component V of Mcusp∗ and (iii) Cmain∗ ∩ V ′ = ∅ for any component V ′

of Mcusp \ Mcusp∗. A connected submanifold C∗ of M is called a finite core of
(M,Mcusp∗) if C∗ ∩ Mmain∗ = Cmain∗ and C∗ ∩ V is the union of geodesic rays
emanating from the points of Cmain∗ ∩ V for any component V of Cmain∗.

For a finite core C∗ of (M,Mmain∗), any component E of M \ IntC∗ is considered
to be a neighborhood of some end E of Mmain∗. Then E is called an end of M
with respect to the finite core C∗ or simply an end of M if it does not cause any
confusion. Note that ΣE = C∗ ∩ E is a properly embedded incompressible surface
in M . Any cusp in E of M disjoint from ΣE is called an accidental parabolic cusp of
E . We say that E is an genuine end of M if E has no accidental parabolic cusps. A
genuine end E is called geometrically finite if the finite core C∗ can be taken so that
C∗ is locally convex in a neighborhood of ΣE in M . According to Bonahon [Bo], if
a genuine end E is not geometrically finite, then there exists a sequence of closed
geodesics λ∗

n in E tending toward E and freely homotopic in E to a simple closed
curve λn in ΣE . Such a genuine end is called simply degenerate. Note that E is
homeomorphic to ΣE × [0,∞) when E is simply degenerate as well as geometrically
finite , see [Th1, Theorem 9.4.1] and [Bo, Corollaire C].

If we suppose that ι(Σ) is a degenerate finite core of M , then M has two ends
with respect to ι(Σ). One of them is called the (+)-end of M if it is adjacent to the
closure of the component of M \ ι(Σ) which is in the (+)-side of ι(Σ) with respect
to the orientation of M , and the other is the (−)-end

A finite core Cmax of M is maximal if Cmax meets all components of Mcusp non-
trivially. From the maximality of Cmax, an end E of M is genuine if and only if it
is an end with respect to Cmax. For any end Ei of M with respect to a finite core
C∗, a genuine end Eij is called a genuine sub-end of Ei if a neighborhood of Ei in M
contains a neighborhood of Eij . See Figure 1.1. A end of M is totally degenerate if
any genuine sub-end of E is simply degenerate.

2. Normalized maps tending toward simply degenerate ends

Suppose that M is a hyperbolic 3-manifold admitting a marking embedding
ι : Σ −→ M . In this section, we consider the case that the (+)-end E of M is totally
degenerate. Then there exists a sequence {fn}∞n=0 of pleated maps fn : Σn −→ E
satisfying the following conditions, where E is the neighborhood of E with respect
to ι(Σ). Here we set Emain = E ∩ Mmain, Ethick = E ∩ Mthick and so on.

• For a sufficiently large R > 0, NR(fn(Σn)) ∩ NR(fn+1(Σn+1)) ∩ Emain = ∅ (n =
0, 1, . . . ) and fn+1(Σn+1) is closer to E compared with fn(Σn).
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Figure 1.1. E1, E4 are genuine ends with respect to the finite core C∗. For i = 2, 3,
Vi is an accidental parabolic cusp of Ei. Ei1, Ei2 are genuine sub-ends of Ei.

• If fn(Σ) meets a component V of Etube non-trivially, then Σn contains a simple
geodesic loop l such that fn(l) is the geodesic core of V .

• Each fn is unwrapped with respect to any component V of Etube disjoint from
fn(Σn), that is, fn is properly homotopic to an embedding in E \ V .

These conditions imply that, if fn(Σn) ∩ V 6= ∅ for some component V of Etube,
then fm(Σm) ∩ V = ∅ for any m 6= n. If necessary passing to a subsequence of
{fn}, we may also assume the following.
• For any fn and any component V of Ecusp \ E(cusp), fn(Σn) ∩ V is an annulus,

where E(cusp) = E ∩ M(cusp). See Figure 2.1.

Figure 2.1. V1, V5 represent components of M(cusp), V2, V3 components of Etube

with geodesic cores c2, c3 and V4 an accidental cusp of E . Ni = NR(fi(Σi))∩Ethick

for i = 1, 2, 3. E1, E2 are simply degenerate sub-ends of E .

The preimage Fn = f−1
n (Ethick) is a sub-surface of Σn contained in Σn,thick such

that Σn \ IntFn is a deformation retract of Σn,thin. Modify the Riemannian metric
on Ethick in a small neighborhood of Nn = NR(fn(Σn)) ∩ Ethick so that ∂Nn is
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locally convex in Nn. By Freedman-Hass-Scott [FHS], there exists an embedding
hn : F (hn) −→ Nn which has least area among all piecewise smooth maps h′

F :
F −→ Nn properly homotopic to fn|Fn in Ethick and such that each component
of hF ′(∂F ′) is a simple geodesic loop in the Euclidean surface ∂Ethick. Let f̂n :
Σ̂n −→ E be the embedding satisfying the following conditions.

• The domain Σ̂n contains F̂n = F (hn) as a sub-surface and f̂n|
bFn

= hn|F (hn).
• Let C be a component of Σ̂n\IntF̂n. If f̂n(C) is contained in M(cusp), then f̂n(C)

is a totally geodesic parabolic cusp. If f̂n(C) lies in either an accidental cusp of
E or a component V of Etube, then f̂n(C) is a smoothly embedded ruled annulus
in V consisting of shortest arcs in V connecting the components of ∂V .

We say that f̂n is a normalized map associated with fn. Then Σ̂n has a piecewise
smooth Riemannian metric induced from the hyperbolic metric on E via f̂n. The
advantage of normalized maps over pleated maps is that f̂n are embeddings.

The following lemma is proved immediately from an argument of bounded ge-
ometry together with [Th1, Proposition 8.12.1].

Lemma 2.1. The following (1)–(3) hold, where constants means that they are
independent of n.

(1) There exists a constant a0 > 0 with Area(Σ̂n) ≤ a0.
(2) There exists a constant d0 > 0 with diam(C) ≤ d0 for any component C of

Σ̂n \ IntF̂n.
(3) For any d > 0, there exists a constant v0(d) > 0 with Vol(Nd(f̂n(Σ̂n))) < v0(d).

Again by an argument of bounded geometry, there exists a constant r = r(Σ) > 0
such that, for each n, Σ̂n contains a disjoint union H(f̂n) = λ1t· · ·tλm of mutually
disjoint simple loops satisfying the following conditions.

• For each component λj of H(f̂n), length
bΣn

(λj) < r.
• For each annulus component A of Σ̂n \ IntF̂n, A ∩Hn is the geodesic core of A.
• The closure G of each component of Σ̂n \ H(f̂n) has bounded geometry and the

Euler characteristic −1.
We say that H(f̂n) is an r-hoop family (for short hoop family) of Σ̂n.

3. Bounded cohomology and smearing chains on 3-manifolds

We denote by ∆n a regular n-simplex of edge length 1 in the Euclidean n-space.
Let C∗(X) be the dual space of the singular chain-complex C∗(X) of a topological
space X with real coefficient. Consider the subspace C∗

b (X) of C∗(X) consisting of
bounded cochains, that is, c ∈ Cn

b (X) means that

‖c‖ = sup {|c(σ)| | σ : ∆n −→ X is a singular n-simplex} < ∞.

Since the coboundary operator δn : Cn(X) −→ Cn+1(X) satisfies δn(Cn
b (X)) ⊂

Cn+1
b (X), the bounded cochain complex (C∗

b (X), δ∗b ) with δ∗b = δ∗|C∗
b (X) defines

the bounded cohomology

Hn
b (X, R) = Zn

b (X)/Bn
b (X)

with the pseudo-norm

‖α‖ = inf {‖c‖ | c is an element of Zn
b (X) with [c] = α}
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for α ∈ Hn
b (X, R), where Zn

b (X) = (δn
b )−1(0) and Bn

b (X) = δn−1
b (Cn−1

b (X)).

Suppose that M = H3/Γ is a hyperbolic 3-manifold as in Section 1. Then the
quotient map p : H3 −→ M is a locally isometric universal covering. A singular
k-simplex σ : ∆k −→ M is called straight if its lift σ̃ : ∆k −→ H3 to H3 is straight,
that is, σ̃ is the affine map with respect to the Euclidean structure on ∆3 and the
quadratic model on H3. For any singular k-simplex σ̃ : ∆k −→ H3, let straight(σ̃) :
∆k −→ H3 be the straight map with straight(σ̃(vj)) = σ̃(vj) for all vertices vj

(j = 0, 1, . . . , k) of ∆k. We note that the image straight(σ̃)(∆k) is a (possibly
degenerate) straight k-simplex in H3. For a singular k-simplex σ : ∆k −→ M , the
map straightM (σ) = p ◦ straight(σ̃) : ∆k −→ M is called the k-simplex obtained by
straightening σ, where σ̃ : ∆k −→ H3 is a lift of σ.

The oriented volume of a C1 singular 3-simplex σ : ∆3 −→ M is defined by

Vol(σ) =
∫

∆3
σ∗(ΩM ),

where ΩM is the volume form on M . We say that σ is non-degenerate if Vol(σ) 6= 0,
and positive (resp. negative) if Vol(σ) > 0 (resp. Vol(σ) < 0).

Let ωM be the 3-cocycle on M defined by

ωM (σ) = Vol(straightM (σ))

for any singular 3-simplex σ : ∆3 −→ M . Since |ωM (σ)| is less the volume v3

of a regular ideal 3-simplex in H3 for any singular 3-simplex σ : ∆3 −→ M , ωM

represents an element [ωM ] of H3
b (M, R) with ‖[ωM ]‖ ≤ v3. We say that [ωM ] is

the fundamental (bounded cohomology) class of M .
For any smooth manifold N , let C1(∆k, N) be the topological space of C1-maps

∆k −→ N with C1-topology. We denote by Ck(N) the R-vector space consisting
of Borel measures µ on C1(∆k, N) with the bounded total variation ‖µ‖ < ∞.
An element of Ck(N) is called a k-chain. The boundary operator ∂k : Ck(N) −→
Ck−1(N) is defined naturally. Thus we have the chain complex (C∗(N), ∂∗).

Now we consider the case of N = M . Take the base point x0 of H3 and suppose
that y0 = p(x0) is the base point of M . Let µHaar be a left-right invariant Haar
measure on PSL2(C), which is normalized so that, for any bounded Borel subset U
of H3,

(3.1) µHaar({α ∈ PSL2(C) |αx0 ∈ U}) = Vol(U).

From the invariance of µHaar, we know that the quotient map q : PSL2(C) −→
P (M) = Γ\PSL2(C) induces the measure µ̂Haar on the quotient space P (M). That
is, µ̂Haar(q(A)) is equal to µHaar(A) for any Borel subset A of PSL2(C) with A ∩
γA = ∅ if γ ∈ Γ \ {1}. For any point x ∈ H3 and a ∈ P (M), a •x denotes the point
of M defined by p(αx) for an α ∈ PSL2(C) with q(α) = a. Note that the point
does not depend on the choice of α ∈ q−1(a). Thus the map

• : P (M) × H3 −→ M

is well-defined. For any singular 3-simplex σ : ∆3 −→ H3 and a ∈ P (M), the
singular 3-simplex a •σ : ∆3 −→ M is defined by p ◦ (ασ) for an α ∈ PSL2(C) with
q(α) = a.

Let σ : ∆3 −→ H3 be a non-degenerate straight 3-simplex. Suppose that
smearM (σ) is the Borel measure on C1(∆3, M) introduced in [Th1, Section 6.1],
which satisfies the following conditions.
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• The support supp(smearM (σ)) is {a • σ | a ∈ P (M)}.
• For any closed non-empty subset X of P (M),

(3.2) smearM (σ)({a • σ | a ∈ X}) = µ̂Haar(X ).

We denote the inner center of the straight 3-simplex σ(∆3) in H3 by o(σ). For
any non-empty almost compact subset X of M , the restriction of smearM (σ) to
{a • σ | a ∈ P (M) with a • o(σ) ∈ X} is denoted by smearX(σ). By (3.1) and (3.2),
its total variation is

(3.3) ‖smearX(σ)‖ = Vol(X).

In particular, smearX(σ) is an element of C3(M). Set σ− = ρ◦σ for an orientation-
reversing isometry ρ on H3 with ρ(o(σ)) = o(σ). Consider the element zX(σ) of
C3(M) defined by

(3.4) zX(σ) =
1
2
(smearX(σ) − smearX(σ−)).

Then, by (3.2) and (3.3), we have ‖zX(σ)‖ = Vol(X) and

zX(σ)({a • σ | a ∈ P (M) with a • o(σ) ∈ X}) =
1
2
Vol(X).

For a Borel measure ω on C1(∆3, M), let supp(2)(w) be the subset of C1(∆2, M)
defined by

(3.5) supp(2)(w) =
{
τ |D

∣∣ τ ∈ supp(w) and D ∈ (∆3)(2)
}
,

where (∆3)(2) is the set of 2-faces of ∆3. By the definition, supp(∂3w) ⊂ supp(2)(w).
Let {f̂n}∞n=0 be the sequence of normalized maps f̂n : Σ̂n −→ E given in Section

2. For any m, n with m < n, we denote by E(f̂m, f̂n) the closure of the component
of E \ f̂m(Σ̂m) ∪ f̂n(Σ̂n) bounded by fm(Σ̂m) ∪ f̂n(Σ̂n).

Lemma 3.1. Under the notation as above, let X̂ = E(f̂m, f̂n). Then supp(∂3z
bX(σ))

is contained in supp(2)(zN2(∂ bX,M)(σ)) and ‖∂3z
bX(σ)‖ < 8v0(2) holds, where v0(2)

is the constant given in Lemma 2.1 (3).

Proof. The volume of any (real) straight 3-simplex ∆ in H3 is less than v3 =
1.014916 . . . . On the other hand, since the volume of a 3-ball in H3 of radius one
is π(sinh 2− 2) = 5.11093 . . . , the radius of the inscribed ball in ∆ is less than one.
Let D be any element of (∆3)(2). For any a • σ with a • o(σ) ∈ X̂, there exists
b ∈ P (M) with b • o(σ−) ∈ N2(X̂,M) and such that a •σ|D = b •σ−|D. See Figure
3.1. Similarly, we have a • σ−|D = b • σ|D. In general, we can not expect that
b • o(σ−) is contained in X̂. However, if a • o(σ) ∈ X̂ \ N2(∂X̂,M), then b • o(σ−)
is an element of X̂. These facts imply that supp(∂3z

bX(σ)) ⊂ supp(2)(zN2(∂ bX,M)).

Since ∂X̂ = f̂m(Σ̂m) ∪ f̂n(Σ̂n), we have by Lemma 2.1 (3)

‖zN2(∂ bX,M)(σ)‖ = Vol(N2(f̂m(Σ̂m) ∪ f̂n(Σ̂n))) < 2v0(2).

Since ∆3 has four 2-faces, ‖∂3z
bX(σ)‖ < 4 · 2v0(2) = 8v0(2). ¤

Since the image τ(∆3) of any element τ = a • σ ∈ supp{z
bX(σ)} has ‘long tails’,

τ(∆3) is not necessarily contained in X̂ even if a • o(σ) is an element of IntX̂ such
that dist(a • o(σ), ∂X̂) is large. So we sometimes need to treat the body (inner
part) and tails (outer part) of τ(∆3) separately as in the next section.
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Figure 3.1

Remark 3.2. Let X be a topological space and Csing
∗ (X) the singular chain group

of X with real coefficients. The Gromov norm of an element c =
∑n

i=1 riσi of
Csing

q (X) is given by ‖c‖ =
∑n

i=1 |ri|. Let Cl1
∗ (X) be the norm completion of

Csing
∗ (X). Thus Cl1

∗ (X) is a Banach space consisting of elements c =
∑∞

i=1 riσi with
‖c‖ =

∑∞
i=1 |ri| < ∞. If an element c of Cl1(M) is a linear combination

∑∞
i=1 riσi of

straight 3-simplices σi : ∆3 −→ M , then c is identified with the element
∑∞

i=1 riδσi

of C3(M), where δσi is the Dirac measure on C1(∆3,M) at σi. Then the Gromov
norm

∑∞
i=1 |ri| of c is equal to the total variation of

∑∞
i=1 riδσi . There exists a

sequence {cn} of locally finite elements in Cl1
∗ (X) with cn =

∑∞
i=1 riσ

n
i consisting

of straight 3-simplices σn
i with

|Vol(σn
i ) − Vol(σ)| <

1
n

and such that {cn} weakly converges to zX(σ) and {∂3cn} weakly converges to
∂3zX(σ). For example see the map A∗ in [So1, Section 3]. In our arguments below,
we may use the usual locally finite singular 3-chain cn in Cl1(X) with sufficiently
large n instead of zX(σ) if necessary.

4. Linear isoperimetric inequality modulo hoop families

First we define a subdivision of hyperbolic straight simplices. Let ∆ be any
straight 3-simplex in H3 with real vertices v0, v1, v2, v3 and Vol(∆) > 1. Consider
the inscribed sphere S(∆) of ∆ and Si (i = 0, 1, 2, 3) the round sphere in H3

centered at vi and tangent to S(∆). Each Si intersects three edges of ∆. Let Ti be
the totally geodesic triangle in ∆ with the three intersection points as its vertices.
We denote by ∆i,out the closure of the component of ∆ \T0 ∪ · · · ∪T3 containing vi

and by ∆inn the closure of ∆\∆out, where ∆out = ∆0,out∪· · ·∪∆3,out. We say that
∆inn and ∆out are the inner and outer parts of ∆, respectively. See Figure 4.1. For
any small positive number ξ, say ξ < 1/100, there exists a simplicial triangulation
τ(∆, ξ) of ∆ satisfying the following conditions, where τ(∆, ξ)(i) denotes the subset
of τ(∆, ξ) consisting of i-simplices.
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Figure 4.1

• Each element of τ(∆, ξ)(3) is a straight simplex.
• For any e ∈ τ(∆, ξ)(1) with e ⊂ ∆inn, δ(ξ) ≤ length∆(e) ≤ ξ, where δ(ξ) is a

uniform constant with 0 < δ(ξ) < ξ.
• Each Ti is the underlying space of a subcomplex of

⋃2
i=0 τ(∆, ξ)(i). Each edge

αij of Ti is evenly divided by τ(∆, ξ)(0)|αij .
• For each edge βjk of ∆ connecting vj with vk, βjk ∩ ∆inn is evenly divided by

τ(∆, ξ)(0)|βjk∩∆inn .
• ∆out \

(
{v0, . . . , v3} ∪ T1 ∪ · · · ∪ T4

)
contains no elements of τ(∆, ξ)(0).

See Figure 4.2. In fact, such triangulations can be obtained from a fixed simplicial

Figure 4.2. The restriction of τ(∆, ξ) to a 2-face ∆2
j of ∆ in the Klein model. The

inner hexagonal part is ∆2
j ∩ ∆inn.

triangulation τ(∆∞, ξ) on a regular ideal 3-simplex ∆∞ in H3 satisfying the five
conditions as above, where the ideal simplices of ∆∞ are regarded as elements
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of τ(∆∞, ξ)(0). Since v3 − 0.015 < Vol(∆) < v3, there exists a κ-bi-Lipschitz
map α : ∆∞,inn −→ ∆inn for some uniform constant κ close to one such that
α(τ(∆∞, ξ)(0)|∆∞,inn) extends to a triangulation τ(∆, ξ)|∆inn on ∆inn satisfying the
required conditions. We set τ(∆, ξ)inn = τ(∆, ξ)|∆inn and τ(∆, ξ)out = τ(∆, ξ)|∆out .

Suppose that σ′ ∈ supp(smearM (σ)) and σ′
− ∈ supp(smearM (σ−)) are 3-simplices

with σ′|∆2
j

= σ′
−|∆2

j
for some 2-face ∆2

j of ∆. Then, for any element D of τ(∆, ξ)(2)|∆2
j
,

we have

(4.1) σ′|D − σ′
−|D = 0.

Let {f̂n}∞n=0 be the sequence of normalized maps f̂n : Σ̂n −→ E given in Section
2. For simplicity, we only consider here the pair f̂0, f̂1. Our argument works for any
pair f̂m, f̂n with m < n. By Lemma 2.1 (2), one can define an (ideal) triangulation
τi (i = 0, 1) on Σ̂i satisfying the following conditions, where H(f̂i) (i = 1, 0) is a
hoop family of Σ̂i.

(T1) Each element v of τ
(0)
i is either a point of H(f̂i) or an ideal point of Σ̂i. See

Figure 4.3.
(T2)

⋃
τ

(1)
i contains H(f̂i).

(T3) For any component l of H(f̂i), l ∩
⋃

τ
(0)
i consists of just two points.

(T4) The cardinality of τi is uniformly bounded.
(T5) There exists a uniform constant d1 > 0 such that the d1-neighborhood of any

point x of F (f̂i) = f̂−1
i (Ethick) contained in star(v) for some v ∈ τ

(0)
i , where

star(v) is the union
⋃

α IntDα for all elements Dα of τi with v as a common
vertex.

We say that τi is a normalized triangulation on Σ̂i with respect to H(f̂i).

Figure 4.3. The shaded region represents f̂−1
i (Ethin).

Let H(f̂i) ∩ f̂−1
i (Ethin) = H(f̂i)tube. We consider the unions of closed curves

(4.2) Ĥi = f̂i(H(f̂i)) and Ĥi,tube = f̂i(H(f̂i)tube)

in E.
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For simplicity, throughout the remainder of this section, we set f̂i(Σ̂i) = f̂i(Σ)
and f̂i(τi) = {f̂i(σ); σ ∈ τi}. A singular 2-simplex σ : ∆2 −→ f̂i(Σ) is called a
2-simplex with respect to f̂i(τi) mod Ĥi,tube if, for any edge e of ∆2, either σ(e) is
an element of f̂i(τ

(0)
i ∪ τ

(1)
i ) (possibly an ideal vertex) or the restriction σ|e is an

immersion into Ĥi,tube connecting two points of f̂i(τ
(0)
i ). In the latter case f̂i(e) is

not necessarily contained in f̂i(τ
(0)
i ∪ τ

(1)
i ). In either case, σ|e is called a 1-simplex

with respect to f̂i(τi) mod Ĥi,tube. Since f̂i(Σ) is not necessarily a closed surface,
any simplicial 2-cycle on f̂i(Σ) with respect to f̂i(τi) mod Ĥi,tube is supposed to
represent a class of the locally finite homology group H loc.f.

2 (f̂i(Σ), R).
The following lemma shows a sort of linear isoperimetric inequality for f̂i(τi)

mod Ĥi,tube.

Lemma 4.1. There exists a uniform integer L0 > 0 satisfying the following con-
dition. Let ĉ = ê1 + ê2 + · · · + ên be any contractible 1-cycle on f̂i(Σ) such that
each êj is a 1-simplex with respect to f̂i(τi) mod Ĥi,tube. Then ĉ bounds a simpli-
cial 2-chain ŵ of disk type on f̂i(Σ) with respect to f̂i(τi) mod Ĥi,tube such that
‖ŵ‖ ≤ L0‖ĉ‖.

Proof. Let D be an (abstract) 2-disk bounded by ĉ and let g : D −→ f̂i(Σ) be
a continuous map extending ĉ. If necessary deforming g by homotopy rel. ĉ, we
may assume that D has a simplicial decomposition τ̂ such that, for each element
∆ of τ̂ , the restriction g|∆ is a simplex on f̂i(Σ) with respect to f̂i(τi) mod Ĥi,tube.
Then D is divided to sub-disks D1, . . . , Dk0 , D′

1, . . . , D
′
l0

with k0, l0 ≤ ‖ĉ‖ = n and
satisfying the following conditions.

• For each k = 1, . . . , k0, IntDk is a component of IntD \ g−1(Ĥi).
• For each l = 1, . . . , l0, D′

l is the closure of a component of D \D1 ∪ · · · ∪Dk0 . In
the degenerate case, D′

l is an arc connecting two vertices of ĉ.

See Figure 4.4. We may assume that, if b′ = Dk∩D′
l is an arc connecting two vertices

of ĉ, then g|b′ is an immersion. It is possible unless g(b′) is a single point. Otherwise,
one can divide ĉ into two contractible 1-cycles ĉ1 and ĉ2 with ‖ĉ1‖+ ‖ĉ2‖ = ‖ĉ‖ by
pinching ĉ along g|b′ , which reduces the proof to the case of contractible 1-cycles
with smaller Gromov norm.

Let D = D1 ∪ · · · ∪Dk0 and D′ = D′
1 ∪ · · · ∪D′

l0
. Suppose that Dk is a ‘polygon’

consisting of edges bk,1, . . . , bk,mk
and arcs b′k,1, . . . , b

′
k,mk

such that g(Intbk,u) ⊂
f̂i(Σ) \ Ĥi and g(b′k,u) ⊂ Ĥi for u = 1, . . . ,mk. Note that b′k,u possibly consists of a
single point. Set B′

k = b′k,1 ∪ · · · ∪ b′k,mk
. Any element of τ̂ (1)|Dk

not in B′
k connects

distinct components of B′
k. The number of such elements is at most 2mk − 3 up to

proper homotopy on (Dk, g−1(Ĥi)∩Dk). By the property (T3) on τi, any property
homotopy class contains at most five elements of τ̂ (1)|Dk

. See Figure 4.5 for the case
with maximal edges. Then we have #(τ̂ (1)|Dk

\ τ̂ (1)|B′
k
) ≤ 5(2mk − 3) ≤ 10mk − 15

and hence #(τ̂ (2)|Dk
) ≤ 10mk − 14. So the inequality #(τ̂ (2)|D) ≤

∑k0
k=1(10mk −

14) < 10n holds. Since each vertex of τ̂ |Dk
not in ∂D is end points of at least

two elements of τ̂ (1)|Dk
\ τ̂ (1)|B′

k
, #(τ̂ (0)|D\∂D) ≤

∑k0
k=1 5(2mk − 3) < 10n. Since

#(τ̂ (0)|D′\∂D) = #(τ̂ (0)|D\∂D), we have #(τ̂ (0)|D′) < 10n + n = 11n. It follows
that #(τ̂ (2)|D′) < 11n. Thus L0 = 10 + 11 = 21 is our desired uniform integer. ¤
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Figure 4.4. Simplicial decompositions of D2 and D′
3 with m2 = 7, #(τ̂ (0)|∂D2) = 16

and #(τ̂ (0)|∂D′
3
) = 15. Each square dot p is a point contained in an element e of

τ̂ (1)|D′
3

with p 6∈ τ̂ (0)|D′
3

and g(p) ∈ f̂i(τ
(0)
i )|

bHi,tube
.

Figure 4.5. The five blue segments in Dk represent properly homotopic elements of
τ̂ (1)|Dk

whose g-images are distinct edges of f̂i(τi).

5. Connection of smearing 3-chains with normalized triangulations

Now we suppose that the constant R given in Section 2 is at least 4 and prove the
following connecting lemma, which plays an important role in the proof of Theorem
A.

Lemma 5.1 (Connecting Lemma). Let σ : ∆3 −→ H3 be a straight 3-simplex with
Vol(σ) > 1 and X̂ = E(f̂0, f̂1). Then there exists a 3-chain z on M satisfying the
following conditions.
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(1) z = z
bX(σ) + â, where â is a 3-chain on M with ‖â‖ ≤ b0 for some uniform

constant b0 > 0.
(2) For i = 0, 1, there exists a simplicial 2-cycle w(τi) on f̂i(Σ) with respect to

f̂i(τi) mod Ĥi,tube representing the fundamental class of f̂i(Σ) and satisfying

∂3z = Vol(σ)(w(τ1) − w(τ0)).

In the case when f̂i(Σ) ∩ Ecusp 6= ∅, we deform f̂i temporarily by replacing the
(totally geodesic) parabolic cusps of f̂i(Σ) by cusps of constant Gaussian curvature
> −1. The modified map is still denoted by f̂i. Since r ≥ 4, one can choose such
cusps so that N4(f̂0(Σ)) ∩ N4(f̂1(Σ)) = ∅. See Figure 5.1. For i = 0, 1, let L4,i

Figure 5.1

be the closure of the component of N4(f̂i(Σ)) \ f̂i(Σ) contained in X̂ and let Ŷ be
the closure of X̂ \ (L4,0 t L4,1). The intersection Fi = L4,i ∩ Ŷ is the union of
components of ∂L4,i adjacent to Ŷ .

Let wk (k = 2, 3) be any k-chain with supp(w3) ⊂ supp(zM (σ)) and supp(w2) ⊂
supp(2)(zM (σ)). See (3.5) for the definition of supp(2)(·). We denote by w3(ξ0)
the 3-chain obtained by replacing each 3-simplex σ′ of supp(w3) with the sum∑

D∈τ(σ,ξ0)(3)
σ′|D. The subdivision w2(ξ0) of w2 is defined similarly. By (4.1),

(∂3w3)(ξ0) = ∂3(w3(ξ0)). So one can denote it as ∂3w3(ξ0). For any closed subset
A of M , we denote by wk|A the sub-chain of wk consisting of σ′ ∈ supp(wk) whose
inner center o(σ′) is contained in A. In particular, zM (σ)|A = zA(σ). We denote
(∂3w3)|A by ∂3w3|A shortly.

Proof of Lemma 5.1. The proof is done in five steps. Figure 5.2 illustrates our
process schematically, where w1

z−−→ w2 means that ∂3z = w2 − w1.

Step 1. For i = 0, 1, we set ui(ξ0) = zN2( bfi(Σ))∪L4,i
(σ)(ξ0). Let σ′′ be any element

of supp(zM (σ)(ξ0)) with o(σ′′) ∈ N2(f̂i(Σ))∩L4,i. See Figure 5.3, where the center
region represents N2(f̂1(Σ)) ∩ L4,1. Note that σ′′ is represented as σ′|D for some
σ′ ∈ supp(zM (σ)) and D ∈ τ(σ, ξ0)(3). From the definition of τ(∆, ξ0) together
with elementary hyperbolic geometry, one can prove that distM (o(σ′′), o(σ′)) < 2.
Here ‘2’ is not essential. We just need a positive uniform constant. Then o(σ′)
is contained in N2(f̂i(Σ)) ∪ L4,i and hence σ′′ ∈ supp(ui(ξ0)|

bX). Note that the
point o(σ′) is not necessarily an element of L4,i, which is the reason why we use
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Figure 5.2. The union of blue segments represents zξ0 , that of blues and reds does
ẑξ0 , and that of greens does â.

zN2( bfi(Σ))∪L4,i
(σ)(ξ0) but not zL4,i(σ)(ξ0) to define ui(ξ0). See Figure 5.3. By

Lemma 3.1,

∂3zL4,i(σ)(ξ0) =
(
∂3zL4,i(σ)|N2(Fi)

)
(ξ0) +

(
∂3zL4,i(σ)|N2( bfi(Σ))

)
(ξ0).

Strictly, for any 3-chain w on M and any subset A of M , ∂3w|A means (∂3w)|A.

Figure 5.3. The case of o(σ′) ∈ N2(f̂1(Σ)) \ L4,1.

In general, (∂3w)|A is not equal to ∂3(w|A). Take a small ε > 0 arbitrarily. Since
IntN2(f̂i(Σ)) ∩N2(Fi) = ∅, ∂3(ui(ξ0)|

bX) is represented as the sum

∂3(ui(ξ0)|
bX) = (∂3zL4,i(σ)|N2(Fi))(ξ0) + ti(ξ0)

such that ti(ξ0) is the sub-chain of ∂3(ui(ξ0)|
bX) consisting of 2-simplices σ′′ ∈

supp(∂3(ui(ξ0)|
bX)) with o(σ′′) ∈ IntN2(f̂i(Σ)) or equivalently o(σ′′) ∈ Nε(f̂i(Σ)) if

ξ0 = ξ0(ε) > 0 is taken sufficiently small. See Figure 5.2.
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Step 2. Since N2(Fi) ∩ IntN2(∂X̂) is empty,

supp(∂3zL4,i∪bY (σ)|N2(Fi)) = supp(∂3z
bX(σ)|N2(Fi)) = ∅.

So, we have ∂3zL4,i(σ)|N2(Fi) = −∂3z
bY (σ)|N2(Fi). Here we consider a chain homo-

topy zFi between ∂3zL4,i(σ)|N2(Fi) and its subdivision (∂3zL4,i(σ)|N2(Fi))(ξ0). Since
N2(Fi) ⊂ N6(f̂i(Σ)), there exists a 3-chain zFi consisting of 3-simplices whose inner
centers are contained in N2(Fi) and satisfying

∂3zFi = −(∂3zL4,i(σ)|N2(Fi))(ξ0) + ∂3zL4,i(σ)|N2(Fi)

= −(∂3zL4,i(σ)|N2(Fi))(ξ0) − ∂3z
bY (σ)|N2(Fi)

and
‖zFi

‖ ≤ 3‖∂3zL4,i
(σ)|N2(Fi)(ξ0)‖ ≤ 3n0(ξ0)‖∂3zL4,i

(σ)|N2(Fi)‖
= 3n0(ξ0)Vol(N2(Fi)) ≤ 3n0(ξ0)v0(6),

(5.1)

where n0(ξ0) is the cardinality of τ(∆, ξ0)(3), v0(6) is the constant given in Lemma
2.1 (3) and ‘3’ means that the triangular prism ∆2 × [0, 1] is divided into three
3-simplices. Consider the 3-chain

(5.2) zξ0 = u0(ξ0)|
bX − zF0 + z

bY (σ) + zF1 + u1(ξ0)|
bX .

See Figure 5.2 again. Since zξ0 consists of 3-simplices whose inner centers are
contained Nε(X̂),

supp(∂3zξ0) ⊂ supp(2)
(
zξ0 |Nε( bf0(Σ))tNε( bf1(Σ))

)
.

By (5.1),

‖zξ0 − z
bY (σ)‖ = ‖u0(ξ0)|

bX‖ + ‖zF0‖ + ‖zF1‖ + ‖u1(ξ0)|
bX‖

≤ 2n0(ξ0)v0(2) + 6n0(ξ0)v0(6)

= 2n0(ξ0)(v0(2) + 3v0(6)).
(5.3)

In the following two steps, we will define 3-chains ẑ0 and ẑ1 with ∂3ẑi = vw(τi)−
ti(ξ0) (i = 0, 1) for some constant v > 0, which is shown to equal Vol(σ) in Step 5.

Step 3. By (5.2), ∂3zξ0 |Nε( bfi(Σ)) = ∂3(ui(ξ0)|
bX)|Nε( bfi(Σ)). Let wi,inn, wi,out be

the 2-sub-chains of ∂3zξ0 |Nε( bfi(Σ)) corresponding to elements of τ(∆, ξ0)
(2)
inn and

τ(∆, ξ0)
(2)
out respectively. Since ∂2(∂3zξ0|Nε( bfi(Σ))) = 0, ∂2wi,inn = −∂2wi,out. By

the geometrical boundedness of normalized maps in thick parts, we may assume
that there exists a projection pri : N2ε(f̂i(Σ)) −→ f̂i(Σ) which is 2-Lipschitz on
N2ε(f̂i(Σ)) ∩ Ethick and with pri(N2ε(f̂i(Σ)) ∩ Ethin) ⊂ f̂i(Σ) ∩ Ethin if necessary
replacing ε by a smaller positive number, where ‘2’ is taken as a constant greater
than 1. Here one can retake ξ0 > 0 if necessary so that diam(σ′(∆2)) < ε for any
2-simplex σ′ in wi,inn. Since o(σ′) ∈ Nε(f̂i(Σ)), it follows that σ′(∆2) is contained
in N2ε(f̂i(Σ)). Then there exists a 3-chain zi,inn on N2ε(f̂i(Σ)) with

(5.4) ∂3zi,inn = pri∗(wi,inn) + pi − wi,inn,

where pi is the product simplicial complex isomorphic to ∂2wi,inn × [0, 1] and with
∂2pi = ∂2wi,inn − ∂2(pri∗(wi,inn)). By Lemma 2.1 (3),

‖pi‖ ≤ 2‖∂2wi,inn‖ ≤ 2 · 3‖wi,inn‖ ≤ 2 · 3 · 4‖zξ0 |N2ε( bfi(Σ))‖

≤ 24n0(ξ0)Vol(N2(f̂i(Σ))) ≤ 24n0(ξ0)v0(2),
(5.5)
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where ‘2’ means that any rectangle is divided into two 2-simplices, ‘3’ any 2-simplex
has three edges, and ‘4’ any 3-simplex has four 2-faces. We retake ξ0 > 0 sufficiently
small if necessary so that the diameter of pri(σ′(∆2))∩Ethick for any 2-simplex σ′ in
wi,inn is less than the constant d1 given in (T5). By (5.4) together with a standard
argument of simplicial approximation of homology theory (for example see Spanier
[Sp, Section 3.4]), we know that there exists a simplicial 2-chain ŵi,inn on f̂i(Σ) and
a simplicial 3-chain ẑi,inn on N2ε(f̂i(Σ)) with respect to f̂i(τi) mod Ĥi,tube such that
∂3ẑi,inn = ŵi,inn + p̂i−wi,inn, where p̂i is the product simplicial complex isomorphic
to pi with ∂2p̂i = ∂2wi,inn−∂2ŵi,inn. See Figure 5.4 (a). Since any triangular prism

Figure 5.4

is divided into three 3-simplices, one can choose the 3-chain ẑi,inn so that

(5.6) ‖ẑi,inn‖ ≤ 3‖wi,inn‖ ≤ 12n0(ξ0)v0(2)

holds. See Figure 5.5.

Step 4. If necessary replacing wi,out by a usual locally finite singular 2-chain as
in Remark 3.2, we may assume that ∂2wi,out is a locally finite sum of 1-cycles
ciα. Suppose that ciα is represented as e1 + · · · + en for e1, . . . , en ∈ W

(1)
i,out, where

Wi,out is the minimum simplicial complex containing the terms of wi,out. From
the construction of wi,out, there exist isosceles hyperbolic 2-simplices ∆1, . . . , ∆n ∈
W

(2)
i,out which have a common vertex v0 and such that the sum ∆(ciα) = ∆1+· · ·+∆n

is a 2-chain satisfying ∂2∆(ciα) = ciα. See Figure 5.4 (b). Thus ciα is a 1-cycle in
∂2wi,inn = −∂2wi,out contractible in E. Since f̂i(Σ) is incompressible in E, ∂2ŵi,inn

is also a locally finite sum of 1-cycles ĉiα contractible in f̂i(Σ). By Lemma 4.1,
ĉiα bounds a simplicial 2-chain ŵ(ciα) of disk type in f̂i(Σ) with respect to f̂i(τi)
mod Ĥi,tube such that ‖ŵ(ciα)‖ ≤ L0‖ĉiα‖ ≤ L0‖ciα‖. Let ŵi,out be the sum of all
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Figure 5.5. The gray region represents N2ε(f̂1(Σ)). Each white dot represents a
1-cycle either in ∂2w1,inn = −∂2w1,out or in ∂2ŵ1,inn = −∂2ŵ1,out.

ŵ(ci,α)’s. Then, as (5.5),

‖ŵi,out‖ ≤ L0

∑
α

‖ciα‖ ≤ L0‖ciα‖ = L0‖∂2wi,out‖ = L0‖∂2wi,inn‖

≤ 4L0n0(ξ0)v0(2).

Thus ŵi = ŵi,inn + ŵi,out is a locally finite simplicial 2-cycle on f̂i(Σ) with respect
to f̂i(τi) mod Ĥi,tube with ‖ŵi‖ ≤ 4(L0 + 1)n0(ξ0)v0(2).

Consider the 3-chain θ(ciα) obtained by suspending the 2-sphere cycle ∆(ciα)−
p̂(ciα)+ŵ(ciα) with a vertex o(ciα). See Figure 5.5 again. Then we have ∂3θ(ciα) =
∆(ciα) + p̂(ciα) − ŵ(ciα) and ‖θ(ciα)‖ ≤ (L0 + 3)‖ciα‖. Here ‘3 (= 2 + 1)’ means
that ‖p̂(ciα)‖ ≤ 2‖ciα‖ and ‖δ(ciα)‖ ≤ ‖ciα‖. Let ẑi,out be the sum of all θ(ciα)’s.
Then

(5.7) ‖ẑi,out‖ ≤
∑
α

(L0 + 3)‖ciα‖ ≤ 4(L0 + 3)n0(ξ0)v0(2).

We set ẑi = ẑi,inn + ẑi,out. By (5.6) and (5.7),

(5.8) ‖ẑi‖ ≤ 12n0(ξ0)v0(2) + 4(L0 + 3)n0(ξ0)v0(2) ≤ 4(L0 + 6)n0(ξ0)v0(2).

In the last step, we will construct a 3-chain z satisfying the conditions (1) and
(2) of this lemma.

Step 5. Let ẑxi0 be the 3-chain defined by ẑξ0 = −ẑ0 + zξ0 + ẑ1. See Figure 5.2. It
follows from the definition that

∂3ẑξ0 = ŵ1 − ŵ0.
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Consider the 3-chain â defined by â = ẑξ0 − z
bX(σ) = ẑ0 + zξ0 + ẑ1 − z

bX(σ). See
Figure 5.2. Since X̂ \ Ŷ ⊂ N2(f̂0(Σ)) ∪N2(f̂1(Σ)), by (5.3) and (5.8)

‖â‖ ≤ ‖z
bX\bY (σ)‖ + ‖ẑ0‖ + ‖zξ0 − z

bY (σ)‖ + ‖ẑ1‖

≤ Vol(X̂ \ Ŷ ) + 8(L0 + 6)n0(ξ0)v0(2) + 2n0(ξ0)(v0(2) + 3v0(6))

< 2v0(2) + (8(L0 + 6) + 2)n0(ξ0)v0(2) + 6n0(ξ0)v0(6) =: b0.

In the case of f̂i(Σ) ∩ Ecusp 6= ∅, we deform z by a projection in Ecusp sending
f̂i(Σ)∩Ecusp to the totally geodesic cusps in Ecusp without moving f̂i(Σ)∩ ∂Ecusp.
See the Ecusp-part in Figure 5.1. The deformation is accomplished by a chain
homotopy consisting of 3-simplices each of which has a 2-face belonging to f̂0(τ

(2)
0 )∪

f̂1(τ
(2)
1 ). This shows (1).

Note that

zM (σ) = (z
bX(σ) + â) + (zM\Int bX(σ) − â) = ẑξ0 + (zM\Int bX(σ) − â).

See Figure 5.6. By our construction of ẑξ0 , the boundary ∂3ẑξ0 has the form

Figure 5.6. The union of blue segments represents z
bX(σ)+ â = ẑξ0 and that of reds

does zM\Int bX(σ) − â.

v(w(τ1)−w(τ0)) for some v > 0. From the definition (3.4) of zM (σ) and (3.3), zM (σ)
represents the class Vol(σ)[M ] of the locally finite homology group H loc.f.

3 (M, R).
It follows that v = Vol(σ). Thus z = ẑξ0 satisfies the condition (2) and hence it is
our desired 3-chain. This completes the proof of Lemma 5.1. ¤

6. Proofs of Theorems A and C

First we recall the necessary conditions in Theorem A. Suppose that M , M ′ are
oriented hyperbolic 3-manifolds with markings ι : Σ −→ M and ι′ : Σ −→ M ′

which satisfy

(0.1) ‖ι∗([ωM ]) − ι′∗([ωM ′ ])‖ < v3

in H3
b (Σ, R). Since both M and M ′ are homeomorphic to Σ × R, there exists an

orientation preserving homeomorphism ϕ : M −→ M ′ such that ϕ ◦ ι is properly
homotopic to ι′. So (0.1) is rewritten as

(0.2) ‖[ωM ] − ϕ∗([ωM ′ ])‖ < v3

in H3
b (M, R). Here we consider the case that (+)-end E of M is totally degenerate.

Let E be the neighborhood of E with respect to ι(Σ) and set E′ = ϕ(E).
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For any piecewise smooth proper homotopy equivalences fi : Σ −→ M (i = 0, 1),
there exists a piecewise smooth proper continuous map Z : Σ × [0, 1] −→ E with
f0 = Z|Σ×{0} and f1 = Z|Σ×{1}. Here Σ is equal to Σ as a surface but it has the
orientation opposite to that on Σ. Then the bounding volume Volbd(Z) of Z is
defined by

Volbd(Z) =
∫

Σ×[0,1]

Z∗(ΩE),

where ΩE is the volume form on E. It is a standard fact in homology theory that
Volbd(Z) is independent of the choice of the extension Z of f1 and f2. Thus one can
set Volbd(Z) = Volbd(f0, f1). From the definition, Volbd(f1, f0) = −Volbd(f0, f1)
holds.

Now we are ready to prove Theorem A.

Proof of Theorem A. Recall that M(cusp) is the union of components of Mcusp meet-
ing ι(Σcusp) non-trivially. We denote by Ecusp∗ the union of components V of Ecusp

such that ϕ(V ) is freely homotopic into E′
cusp in E′. In particular, E(cusp) is a sub-

union of Ecusp∗. One can retake the homeomorphism ϕ so that E′
cusp∗ = ϕ(Ecusp∗)

is a union of components of E′
cusp. Let C∗ be a finite core of M which meets each

component of Ecusp∗ non-trivially and is disjoint from Ecusp \ Ecusp∗.
For any sub-end E[ of E with respect to C∗, let E[ be the closure of the component

of E \C∗ adjacent to E[. Since E is totally degenerate, so is E[. Consider a sequence
{f̂n}∞n=0 of normalized maps f̂n : Σ̂[

n −→ E[ satisfying the conditions given in
Section 2, where any Σ̂[

n admits a marking ιn : Σ[ −→ Σ̂[
n for a fixed complete

hyperbolic surface Σ[ of finite area. Note that Σ[ is not homeomorphic to Σ when
Ecusp∗ 6= E(cusp) or equivalently the (+)-end E is not genuine. Let H(f̂n) be a
hoop family of Σ̂[

n, see (4.2). Suppose that τn is a triangulation on Σ[ such that
τ̂n = ιn(τn) is a normalized triangulation with respect to H(f̂n), which satisfies the
conditions (T1)–(T5) given in Section 4. We consider the union ĤE[ =

⋃∞
n=0 Ĥn of

Ĥn = f̂n(H(f̂n)). Let N (ĤE[) be a tubular neighborhood of ĤE[ in M consisting of
mutually disjoint tubular neighborhoods with Vol(N (ĤE[)) =

∑∞
n=0 N (Ĥn) < ∞.

Note that the normal radius of any components of N (Ĥn) converges to zero as
n → ∞. From the definition of C∗, we know that any accidental cusp of E[ does
not correspond to any cusp of M ′ via ϕ. So, if necessary removing finitely many
entries from {f̂n}, one can suppose that, for each component l of ĤE[ , ϕ(l) is
not freely homotopic into M ′

cusp. Thus we have a continuous map ψ : M −→ M ′

satisfying the following conditions.
(P1) ψ|M\N ( bH

E[ ) = ϕ|M\N ( bH
E[ ).

(P2) For each component l of ĤE[ , ψ(l) is a closed geodesic in M ′.
Consider a piecewise totally geodesic map f ′∗

n : Σ′∗
n −→ M ′ properly homotopic

to ψ ◦ f̂n : Σ̂[
n −→ M ′ and satisfying the following conditions.

• For any v ∈ τ
(0)
n , f ′∗

n (v) = ψ ◦ f̂n(v).
• For any e ∈ τ

(1)
n , f ′∗

n (e) is a geodesic segment in E′ homotopic to ψ ◦ f̂n(e) rel.
∂e.

• For any ∆ ∈ τ
(2)
n , f ′∗

n (∆) is a totally geodesic triangle in E′ bounded by f ′∗
n (∂∆).

Now we need to consider the following two cases.
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Case 1. E[ has no accidental cusps.
Let σ : ∆3 −→ H3 be any straight simplex in H3 with Vol(σ) > 1. For any n ∈ N,

suppose that â0,n is the connecting 3-chain given in Lemma 5.1 (1) associated with
X̂ = E[(f̂0, f̂n) such that ‖â0,n‖ is less than a constant b0 > 0 independent of n.
Moreover, for the 3-chain z0,n = z(0, n)+ â0,n on E, ∂3z0,n = Vol(σ)(w(τn)−w(τ0))
holds, where w(τnj ) (j = 0, 1) is the 2-cycle on f̂nj (Σ̂

[
nj

) as in Lemma 5.1 (2).

There exists the 2-cycle S(τn) on Σ[ with respect to τn mod H(f̂n)tube satisfying
f̂n∗(S(τn)) = w(τn). Then straight(ψ∗(z0,n)) is a locally finite 3-chain on M ′ with

∂3 straight(ψ∗(z0,n))

= Vol(σ)(straight(ψ ◦ f̂n)∗(S(τn)) − straight(ψ ◦ f̂0)∗(S(τ0)))

= Vol(σ)((f ′∗
n )∗(S(τn)) − (f ′∗

0 )∗(S(τ0))).

Here the equality straight(ψ ◦ f̂n)∗(S(τn)) = (f ′∗
n )∗(S(τn)) is proved by the fact

that f ′∗
n is a piecewise totally geodesic map defined as above. It follows that

ωM ′(ψ∗(z0,n)) = Vol(straight(ψ∗(z0,n))) = Vol(σ)Volbd(f ′∗
0 , f ′∗

n ).

Hence we have
ωM ′(ψ∗(z(0, n))) = ωM ′(ψ∗(z0,n)) − ωM ′(ψ∗(â0,n))

≤ Vol(σ)Volbd(f ′∗
0 , f ′∗

n ) + b0v3.
(6.1)

Consider any bounded 3-cocycle η on M satisfying

(6.2) [ωM ] − ϕ∗([ωM ′ ]) = [ωM ] − ψ∗([ωM ′ ]) = [η] in H3
b (M, R).

Then there exists a bounded 2-cochain c ∈ C2
b (M) with ωM − ψ∗ωM ′ + δ2c = η.

Let E ′[ be the end of E′ with respect to ϕ(C∗) which corresponds to E[ via
ϕ. Suppose that E ′[ were either geometrically finite or non-genuine or a simply
degenerate end with ending lamination different from the ending lamination ν of E .
Since ν is a connected full lamination of Σ[, if necessary passing to a subsequence,
we may assume that {f ′∗

n } either converges uniformly to a pleated map f ′∗
∞ : Σ[ −→

M ′ realizing ν or diverges to an end of M ′ opposite to E ′[. In either case, B =
sup{Volbd(f ′∗

0 , f ′∗
n )} < ∞. By (6.1) together with Lemma 3.1,

‖η‖ ≥ (ωM − ψ∗ωM ′ + δ2c)(z(0, n))
‖z(0, n)‖

≥ Vol(σ)(Vol(E[(f̂0, f̂n)) − B) − b0v3 − 8‖c‖v0(2)

Vol(E[(f̂0, f̂n))
.

Since lim
n→∞

Vol(E[(f̂0, f̂n)) = ∞, we have ‖η‖ ≥ Vol(σ) and hence ‖η‖ ≥ v3 by

letting Vol(σ) → v3. Since η is any element of Z3
b (M) satisfying (6.2), it follows

that ‖[ωM ] − ϕ∗([ωM ′ ])‖ ≥ v3. This contradicts (0.2). Thus E ′[ must be a simply
degenerate end of M ′ with the ending lamination equal to ν via ϕ.
Case 2. E[ has an accidental cusp.

Let E[
1, . . . , E[

k (k ≥ 2) be the genuine sub-ends of E[ and νi (i = 1, . . . , k) the
ending lamination of E[

i . Then ν1 ∪ · · · ∪ νk is realized as a geodesic lamination
in Σ[. Let Λ[ be a maximal union of simple closed geodesic in Σ[ disjoint from
ν1 ∪ · · · ∪ νk. Then, for any component l of Λ[, ιn(l) is homotopic to a component
of Ĥn,tube in Σ̂[

n (see Figure 4.3) corresponding to a accidental cusp V of E[ and
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hence V ⊂ Ecusp \ Ecusp∗. From the definition of Ecusp∗, ϕ(ιn(l)) is realized as a
geodesic loop in E′[. It follows that ν1 ∪ · · · ∪ νk ∪ Λ[ is a maximal lamination in
Σ[ realized in E′[. As in Case 1, this gives a contradiction. Thus Case 2 does not
occur.

By the results of Cases 1 and 2, we have known that Ecusp∗ = Ecusp, E′
cusp∗ =

E′
cusp and any genuine sub-end of E and the corresponding genuine sub-end of E ′

are simply degenerate ends with the same ending lamination. Then, by Ending
Lamination Theorem [Mi, BCM], ϕ is properly homotopic rel. M \ IntE to a home-
omorphism ϕ0 : M −→ M ′ such that ϕ0|E : E −→ E′ is bi-Lipschitz. ¤

Proof of Theorem C. From our assumption, one can choose the homeomorphism
ϕ : M −→ M ′ so that ϕ(Mcusp) = M ′

cusp. Let E be a neighborhood of any genuine
end E of M . Then E′ = ϕ(E) is a neighborhood of the genuine end E ′ of M ′

corresponding to E via ϕ. If both E and E ′ are geometrically finite, then it is
well known that ϕ|E : E −→ E′ is properly homotopic rel. ∂E to a bi-Lipschitz
map from E to E′, see for example [Th1, Subsection 8.3] and Epstein-Marden
[EM] for more details. So it suffices to consider the case when at least one of
E and E ′, say E , is simply degenerate. Let p(′) : M̃ (′) −→ M (′) be the covering
associated with π1(E(′)) ⊂ π1(M (′)) and ϕ̃ : M̃ −→ M̃ ′ a lift of ϕ. Then M̃ (′) has
a submanifold Ẽ(′) such that the restriction p(′)|

eE(′) is an isometry onto E(′). Since
p∗([ωM ] − ϕ∗([ωM ′ ])) = [ω

fM
] − ϕ̃∗([ω

fM ′ ]), by (0.2)

‖[ω
fM

] − ϕ̃∗([ω
fM ′ ])‖ ≤ ‖[ωM ] − ϕ∗([ωM ′ ])‖ < v3.

By applying Theorem A to the genuine ends of M̃ and M̃ ′ adjacent to Ẽ and Ẽ′

respectively, ϕ̃|
eE : Ẽ −→ Ẽ′ is properly homotopic rel. ∂Ẽ to a bi-Lipschitz map

and hence ϕ|E : E −→ E′ is so rel. ∂E. Combining these facts, one can show that
ϕ is properly homotopic to a bi-Lipschitz map. ¤
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