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Several notions of non-positively/negatively curved spaces
　

Class by QI-inv Product coarse Baum-Connes
Geodesic Gromov Yes No Higson-Roe, Willett

δ-hyperbolic
CAT(0) C-A-T No Yes Higson-Roe, Willett

Gromov F-O
Busemann Busemann No Yes Higson-Roe, Willett

F-O
Systolic Chepoi No No Novikov: O-P
complex J-S, H R ˆ R2 cBC: F-O
Coarsely F-O Yes Yes F-O
Convex

J-S: Januszkiewich-Świątkowski H: Haglund
O-P: Osajda-Przytycki
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Relations

cplt Riem. Manifold
π1“0,KSecď´1

��

+3 cplt Riem. Manifold
π1“0,KSecď0

��
CAT(-1) +3

��

CAT(0)

��

kpnq-systolic
n-dim simplicial cpx

ks

��
δ-hyperbolic

%-

Busemann

��

Systolic cpx

qy
Coarsely Convex
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Some notations

§ Let pX , dq be a metric space.
§ An isometry γ : ra, bs Ñ X is called a geodesic segment.
§ pX , dq is a geodesic space if any two points in X is connected

by a geodesic segment.
§ For p, q P X , we denote by p, q :“ dpp, qq the distance

between p and q.
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Convexity of Metric
Definition
The metric d of X is convex ô

@γi : r0, ai s Ñ X geodesic segments (i “ 1, 2), @t P r0, 1s we have

γ1pta1q, γ2pta2q ď p1 ´ tq γ1p0q, γ2p0q ` t γ1pa1q, γ2pa2q .

Remark: X is a Busemann space ô pX , dq is a geodesic space and d is convex.

γ2p0q

t

1 ´ t γ1pa1q

t
1 ´ t

γ2pa2q

γ1p0q γ1pta1q

γ2pta2q
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QI-invariance

Clearly this property is NOT Quasi-Isometry-invariant.

We want to make it QI-invariant!
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QI-invariance: Naive Idea

Naive Idea: Replace GEODESIC by pλ, kq-QUASI-GEODESIC
and introduce some constants E,C.

@γi : r0, ai s Ñ X pλ, kq-quasi-geodesic (i “ 1, 2), @t P r0, 1s we
have

γ1pta1q, γ2pta2q ď p1 ´ tqE γ1p0q, γ2p0q ` tE γ1pa1q, γ2pa2q ` C .

¨ ¨ ¨ This does not work!
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Example

§ R2 QI
– CaypZ2, tp1, 0q, p0, 1quq

QI
– pR2, l1q (l1: Manhattan metric)

§ For n P Zě0, define γn : Rě0 Ñ R2 by

γnptq :“

#

pt, 0q whenpt ď nq

pn, t ´ nq whenpt ą nqu

u

u

u

p0, 0q

γ0p2Enq

γ0pnq
γnp2Enq

pn, 0q “ γnpnq

@E ą 1 fixed, we have

γ0pnq, γnpnq ‚

´
1

2E
E γ0p2Enq, γnp2Enq ‚

“ 2n ´ n “ n Ñ 8
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§ This does not work because
there exists MANY QUASI-GEODESICS.

u

u
GOOD

u

u
BAD

§ IDEA: Consider ONLY “GOOD” quasi-geodesics.

Theorem (Osajda-Przytycki)
Let X be a systolic complex.
Then X has a family of good geodesics.
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Coarsely Convex space

Definition
§ Let X be a metric space.
§ Let λ ě 1, k ě 0, E ě 1, and C ě 0 be constants.
§ Let θ : Rě0 Ñ Rě0 be a non-decreasing function.
§ Let L be a family of pλ, kq-quasi-geodesic segments.

The metric space X is pλ, k ,E ,C , θ,Lq-coarsely convex, if L
satisfies the three conditions in the following slides.
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First: L-Connected

§ λ ě 1, k ě 0, E ě 1, C ě 0: constants.
§ L: a family of pλ, kq-quasi-geodesic segments.

(i) @p, q P X , Dγ P L with Domainpγq “ r0, as, s.t.
γp0q “ p, γpaq “ q.

p “ γp0q

q “ γpaq

γ P L
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Second: Coarsely Convex Inequality
§ λ ě 1, k ě 0, E ě 1, C ě 0: constants.
§ L: a family of pλ, kq-quasi-geodesic segments.

(ii) @γ, η P L with Domainpγq “ r0, as, Domainpηq “ r0, bs.
For u P r0, as, v P r0, bs, and 0 ď t ď 1, we have

γptuq, ηptvq ď p1 ´ tqE γp0q, ηp0q ` tE γpuq, ηpvq ` C .

ηp0q

t

1 ´ t
γpuq

t
1 ´ t

ηpvq

γp0q γptuq

ηptvq

γpaq

ηpbq
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Third: Regularity of Parameters
§ θ : Rě0 Ñ Rě0: a non-decreasing function.
§ L: a family of pλ, kq-quasi-geodesic segments.

(iii) @γ, η P L with Domainpγq “ r0, as, Domainpηq “ r0, bs.
For t P r0, as and s P r0, bs, we have

|t ´ s| ď θp γp0q, ηp0q ` γptq, ηpsq q.

Consider the case γp0q “ ηp0q “ O.

O

ηpsq

γptq

If γ, η are geodesic, then by triangle inequality,

|t ´ s|“| γp0q, γptq ´ ηp0q, ηpsq | ď γptq, ηpsq

16 / 33



Third: Regularity of Parameters
§ θ : Rě0 Ñ Rě0: a non-decreasing function.
§ L: a family of pλ, kq-quasi-geodesic segments.

(iii) @γ, η P L with Domainpγq “ r0, as, Domainpηq “ r0, bs.
For t P r0, as and s P r0, bs, we have

|t ´ s| ď θp γp0q, ηp0q ` γptq, ηpsq q.

Consider the case γp0q “ ηp0q “ O.

O

ηpsq

γptq

If γ, η are geodesic, then by triangle inequality,

|t ´ s|“| γp0q, γptq ´ ηp0q, ηpsq | ď γptq, ηpsq

16 / 33



Remark
If X is a

§ Gromov hyperbolic space,
§ Busemann space, or
§ Systolic complex,

then we can take L a family of geodesic segments. Therefore the
third condition is satisfied.

17 / 33



Coarsely Convex

In the above definition, the family L satisfying (i), (ii), and (iii) is
called a system of good quasi-geodesic segments.

We say that a metric space X is coarsely convex if it is
pλ, k ,E ,C , θ,Lq-coarsely convex for some λ, k,E ,C , θ,L.
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Basic properties

Proposition (QI-invariant)

§ Let X and Y be metric spaces.
§ Suppose that X and Y are quasi-isometric.

Then X is coarsely convex ô Y is coarsely convex.

Proposition (Stable under direct products)

§ Let X and Y be metric spaces.
§ Suppose that X and Y are coarsely convex

Then the direct product X ˆ Y is coarsely convex.
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Examples

The following metric spaces are coarsely convex.
§ Geodesic Gromov hyperbolic spaces.
§ CAT(0)-spaces.
§ Busemann spaces.

Theorem (Osajda-Przytycki)
Systolic complexes are coarsely convex.

Theorem (Osajda-Huang, Osajda-Prytuła)
Artin groups of large type and graphical C p6q small cancellation
groups are systolic groups. i.e. Each of them acts geometrically on
a systolic complex. Especially, they are coarsely convex.

Moreover, the direct products of the above spaces and groups are
coarsely convex.
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Visual boundary

§ Let X be a coarsely convex space with the system of good
quasi-geodesic segments L.

§ We say that the map γ : Zě0 Ñ X is L-approximatable if
Dtγnu Ă L such that γn converges to γ uniformly on
t0, 1, . . . , lu for all l P Zě0.

§ We define

BX :“ tγ : Zě0 Ñ X : γ is L-approximatableu{ „

where γ „ η if supt γptq, ηptq : t P Zě0u ă 8.
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Gromov Product

§ Choose a base point O P X .
§ For γ, η : Zě0 Ñ X : L-approximatable, γp0q “ O, we define

pγ|ηq :“ sup
!

T : γpT q, ηpT q ď C
)

.

O
C

γ

η

γpT q

ηpT q
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Gromov Product

§ Choose a base point O P X .
§ For γ, η : Zě0 Ñ X : L-approximatable, γp0q “ O, we define

pγ|ηq :“ sup
!

T : γpT q, ηpT q ď C
)

.

O
C

γ

η

γpT q

ηpT q

We recall that C appears in the coarsely convex inequality:

γptuq, ηptvq ď p1 ´ tqE γp0q, ηp0q ` tE γpuq, ηpvq ` C .
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Gromov Product

§ Choose a base point O P X .
§ For γ, η : Zě0 Ñ X : L-approximatable, γp0q “ O, we define

pγ|ηq :“ sup
!

T : γpT q, ηpT q ď C
)

.

O
C

γ

η

γpT q

ηpT q

We define ρprγs, rηsq :“
1

pγ|ηq
. This is NOT metric.
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Lemma
DD ą 1 s.t. for γ, η, ξ: L-approximatable rays starting at O,

ρprγs, rξsq ď D maxtρprγs, rηsq, ρprηs, rξsqu

There is a standard recipe to deform ρ to a METRIC.

Proposition

DdBX :metric on BX & 0 ă Dϵ ď 1 s.t. @rγs, rηs P BX “ L8
O { „,

1
2Dϵ

ρprγs|rηsqϵ ď dBX prγs, rηsq ď ρprγs|rηsqϵ

Proposition
X is proper ñ BX is compact.
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Coarse Cartan-Hadamard Theorem
Let X be a proper coarsely convex space. The open cone over BX is

OBX :“ r0,8q ˆ BX {t0u ˆ BX

with metric: for t, s P r0,8q; x , y P BX

tx , sy :“ |t ´ s| ` mintt, sudBX px , yq

Theorem (coarse Cartan-Hadamard)

The “exponential” map

exp: OBX Q trγs Ñ γprptq
1
ϵ q P X

is coarsely homotopy equivalent map. Especially, OBX and X are
coarsely homotopy equivalent.

Here r : r0,8q Ñ r0,8q is a contraction such that rptq Ñ 8 as t Ñ 8.
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the Coarse Baum-Connes conjecture

§ Y：proper metric space
§ KX‚pY q：coarse K -homology of Y

(ex. KX‚pZnq – KX‚pRnq – K‚pRnq)

§ C˚pY q：a C˚-algebra constructed from Y , called Roe algebra,
which is a non-equivariant analog of the reduced group C˚-algebra.

Conjecture (coarse Baum-Connes)
The following coarse assembly map is an isomorphism.

µY : KX‚pY q Ñ K‚pC˚pY qq.
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Corollary (of Main theorem)
Coarse Baum-Connes conjecture holds for proper coarsely convex
spaces, especially, for locally finite systolic complexes.

Example
The above corollary covers following spaces and groups.

§ Proper Geodesic Gromov hyperbolic spaces.
§ Proper CAT(0)-spaces, more generally, Busemann spaces.
§ Artin groups of large types (NEW!).
§ graphical C p6q-small cancellation groups (NEW!).
§ Direct product of above spaces and groups (NEW!).

Remark
Osajda-Przytycki showed that Novikov conjecture for systolic
groups holds.
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Proof of Corollary: Coarse Homotopy Invariance
Since exp: X Ñ OBX is a coarsely homotopy equivalent map,
following diagram is commutative and two vertical arrows are
isomorphisms.

KX‚pOBX q

œexp˚–

��

µOBX// K‚pC˚pOBX qq

exp˚–

��
KX‚pX q

µX // K‚pC˚pX qq

Theorem (Higson-Roe)
Coarse Baum-Connes conjecture for open cones over compact
metrizable spaces (especially, OBX ) holds.

QED.
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Sketch of the proof of Main Theorem
We follow Higson-Roe’s argument (for Gromov hyperbolic space)

STEP1 Show “ log” is a coarse homotopy inverse of exp.

log : Imagepexpq Q x ÞÑ tϵrγs P OBX

where t :“ O, x and γ P L8
O s.t. γptq “ x .

Remark: exp is not necessarily coarsely surjective.

STEP2 Construct an appropriate map

r : X Ñ Imagepexpq

and show this is coarsely homotopy equivalent map.

Remark
Unlike Gromov hyperbolic space, Imagepexpq is not necessarily
quasi-convex subset.
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Coarse Equivalence
Let X ,Y be metric spaces and f : X Ñ Y be a map

§ f is bornologous if Dρ : r0,8q Ñ r0,8q s.t.

@p, q P X , f ppq, f pqq ă ρp p, q q.

§ f is proper if B Ă Y : bounded ñ f ´1pBq: bounded
§ f is coarse if f is proper and bornologous.

Let f , g : X Ñ Y maps.
§ f and g are close if DC ą 0, @p P X , f ppq, gppq ă C .

X and Y are coarsely equivalent if Df : X Ñ Y , Dg : Y Ñ X s.t.
1. f and g are coarse maps,
2. g ˝ f is close to idX ,
3. f ˝ g is close to idY .
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Coarsely Homotopy Equivalent
f , g : X Ñ Y : coarse maps

Definition
f and g are coarsely homotopic if
DZ “ tpx , tq : 0 ď t ď Txu Ă X ˆ Rě0, Dh : Z Ñ Y : coarse map,
s.t.

1. the map X Q x ÞÑ Tx P Rě0 is bornologous,
2. hpx , 0q “ f pxq, and
3. hpx ,Txq “ gpxq.

X and Y are coarsely homotopy equivalent if
Df : X Ñ Y , Dg : Y Ñ X s.t.

1. f and g are coarse maps,
2. g ˝ f is coarsely homotopic to idX ,
3. f ˝ g is coarsely homotopic to idY .

33 / 33



Coarsely Homotopy Equivalent
f , g : X Ñ Y : coarse maps

Definition
f and g are coarsely homotopic if
DZ “ tpx , tq : 0 ď t ď Txu Ă X ˆ Rě0, Dh : Z Ñ Y : coarse map,
s.t.

1. the map X Q x ÞÑ Tx P Rě0 is bornologous,
2. hpx , 0q “ f pxq, and
3. hpx ,Txq “ gpxq.

X and Y are coarsely homotopy equivalent if
Df : X Ñ Y , Dg : Y Ñ X s.t.

1. f and g are coarse maps,
2. g ˝ f is coarsely homotopic to idX ,
3. f ˝ g is coarsely homotopic to idY .

33 / 33


	Non-positively curved spaces and groups
	Several notions of non-positively/negatively curved spaces

	Coarse Cartan-Hadamard Theorem
	Convexity of Metric
	Coarsely Convex spaces
	Visual boundary
	Gromov Product
	Main Theorem

	Application
	Coarse Baum-Connes conjecture
	Corollary of Main Theorem

	Sketch of the Proof of Main Theorem
	Appendix

