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Non-positively curved spaces and groups
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Several notions of non-positively /negatively curved spaces

Class by Ql-inv | Product | coarse Baum-Connes
Geodesic Gromov Yes No Higson-Roe, Willett
0-hyperbolic
CAT(0) C-A-T No Yes Higson-Roe, Willett
Gromov F-O
Busemann | Busemann No Yes Higson-Roe, Willett
F-O
Systolic Chepoi No No Novikov: O-P
complex J-S, H R x R? cBC: F-O
Coarsely F-O Yes Yes F-O
Convex

J-S: Januszkiewich-Swiatkowski

O-P: Osajda-Przytycki

H: Haglund
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Relations

cplt Riem. Manifold
m1=0, Ksec<—1

ﬂ

CAT(-1) =———=CAT(0) ——

cplt Riem. Manifold

m1=0, Ksec <0

k(n)-systolic
n-dim simplicial cpx

ﬂ

0-hyperbolic Busemann Systolic cpx

/

Coarsely Convex
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Coarsely Convex Space

6/32



Some notations

» Let (X, d) be a metric space.

» For p,q € X, we denote by p,g := d(p, q) the distance
between p and q.
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Some notations

» Let (X, d) be a metric space.

» For p,q € X, we denote by p,g := d(p, q) the distance
between p and q.

Definition
f: X—>Yis

» an (\, k)-quasi-isometric embedding if

1

A
» C-surjective if Vy € Y,3x € Xs.t.y, f(x) < C.

» quasi-isometry if f is (A, k)-quasi-isometric embedding and
C-dense for some A, k, C.

X and Y are quasi-isometric if 3f: X — Y quasi-isometry .

—x,x — k< f(x),f(x) <Ax,x +k (¥x,x" € X).
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Geodesic and Quasi-geodesic

Definition
A map v: [a,b] » X is

» a geodesic if 7 is an isometry, that is ,

v(t),v(s) = |t—s| Vt,se[a,b]
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Geodesic and Quasi-geodesic

Definition
A map v: [a,b] » X is
» a geodesic if 7y is an isometry, that is |

’7(1'),’7(5) = |t - 5| Vt,s € [3, b]
» a (\, k)-quasi-geodesic if v is (A, k)-quasi-isometric
embedding, that is,
1 -
X|t —s|—k < v(t),y(s) < A|t—s|+k (Vt,se|a,b]).
Remark
A geodesic is a (1,0)-quasi-geodesic.
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Convexity of Metric

The metric d of X is convex <

V4i: [0, aj] — X geodesic segments (i = 1,2), Vt € [0, 1] we have
n(tai),ya(taz) < (1—t)71(0),72(0) + ty1(a1),72(a2) -

71(a1)

7(0) t m(ta1)
—

Remark: X is a Busemann space < (X, d) is a geodesic space and d is convex.
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Ql-invariance

Clearly this property is NOT Quasi-Isometry-invariant.

We want to make it Ql-invariant!
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Ql-invariance: Naive ldea

Naive Idea: Replace GEODESIC by (), k)-QUASI-GEODESIC
and introduce some constants E,C.

Vvi: [0, ai] = X (A, k)-quasi-geodesic (i = 1,2), VYt € [0,1] we
have

71(ta1),v2(ta2) < (1 —t)E71(0),72(0) + tE~y1(a1),v2(a2) + C.
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Ql-invariance: Naive ldea

Naive Idea: Replace GEODESIC by (), k)-QUASI-GEODESIC
and introduce some constants E,C.

Vvi: [0, ai] = X (A, k)-quasi-geodesic (i = 1,2), VYt € [0,1] we
have

71(ta1),v2(ta2) < (1 —t)E71(0),72(0) + tE~y1(a1),v2(a2) + C.

.-+ This does not work!

Consider R? with /-metric (so-called, Manhattan distance.)
dl((X,y)7 (X,7.y/)) = |X _X/| + |.y _y/|

There exist ‘ ‘FA—F - b Igo ns.
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“FAT"-bigon

“FAT -bigon in R? with /*-metric
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“FAT"-bigon

“FAT -bigon in R? with /*-metric

GOOD Geodesic BAD Geodesics
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IDEA

IDEA: Consider ONLY “GOOD" quasi-geodesics.
Theorem (Osajda-Przytycki)

Let X be a systolic complex.
Then X has a family of good geodesics.
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Coarsely Convex space

Definition
» Let X be a metric space.
»let A=>1 k=0, E>1, and C > 0 be constants.
» Let #: R>9 — R>( be a non-decreasing function.
» Let £ be a family of (), k)-quasi-geodesic segments.

The metric space X is (\, k, E, C, 6, L)-coarsely convex, if L
satisfies the three +1 conditions in the following slides.
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+1: prefix-closed

L is prefix-closed, that is, for v: [0,a] —» X and 0 < b < a,

v e L= ~][0,b] € L.
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First: £-Connected

(i) Vp,q € X, 3y € L with Domain(vy) = [0, a], s.t.
7(0) = p, 7(a) = q.
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Second: Coarsely Convex Inequality

(ii) Vv,n € L with Domain(vy) = [0, a], Domain(n) = [0, b].
For 0 <t <1, we have

y(ta),n(tb) < (1 —t)E~(0),n(0) + tE~(a),n(b) + C.
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Third: Parameters

(iii) Yv,n € L with Domain(y) = [0, a], Domain(n) = [0, b].
For t € [0, a] and s € [0, b], we have

[t —s| < 0(~(0),1n(0) + v(t),n(s))-
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Third: Parameters

(iii) Yv,n € L with Domain(y) = [0, a], Domain(n) = [0, b].
For t € [0, a] and s € [0, b], we have

[t —s| < 0(~(0),1n(0) + v(t),n(s))-

Consider the case v(0) = 7(0) = O.

If v,n are geodesic, then by triangle inequality,

[t — s|=]7(0),~(t) — n(0),n(s)| < (t),n(s)
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Remark
If X is a

» Gromov hyperbolic space,
» Busemann space, or
» Systolic complex,

then we can take L a family of geodesic segments. Therefore the
third condition is satisfied.
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Basic properties

Proposition (Ql-invariant)

» Let X and Y be metric spaces.

» Suppose that X and Y are quasi-isometric.

Then X is coarsely convex < Y is coarsely convex.

Proposition (Stable under direct products)

» Let X and Y be metric spaces.

» Suppose that X and Y are coarsely convex

Then the direct product X x Y is coarsely convex.
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Examples

The following metric spaces are coarsely convex.
» Geodesic Gromov hyperbolic spaces.
» CAT(0)-spaces.

» Busemann spaces.
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Examples

The following metric spaces are coarsely convex.
» Geodesic Gromov hyperbolic spaces.
» CAT(0)-spaces.
» Busemann spaces.
» Systolic complexes (Osajda-Przytycki)
» Artin groups of (almost) large type (Osajda-Huang)

v

graphical C(6) small cancellation groups (Osajda-Prytuta)

Moreover, the direct products of the above spaces and groups are
coarsely convex!
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Visual boundary

» Let X be (A k, E, C,0, L)-coarsely convex space.

» A quasi-geodesic v: [0,0) — X is L-approximatable if
FH{vn} < L such that +, converges to « uniformly on
{0,1,...,/} for all I e N.

» We define

0X :={y:[0,00) — X : 7 is L-approximatable}/ ~

where v ~ n if sup{~(t),n(t) : t € [0,00)} < c0.
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Visual boundary

» Let X be (A k, E, C,0, L)-coarsely convex space.

» A quasi-geodesic v: [0,0) — X is L-approximatable if
FH{vn} < L such that +, converges to « uniformly on
{0,1,...,/} for all I e N.

» We define
0X :={y:[0,00) — X : 7 is L-approximatable}/ ~
where v ~ n if sup{~(t),n(t) : t € [0,00)} < c0.

Remark
If v(0) = n(0), then

sup{y(t),n(t) : t €[0,00)} < o0 < sup{~(t),n(t) : t€[0,00)} < C.
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Topology of 0X — Gromov Product

» Let X be (A k, E, C,0, L)-coarsely convex space.
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Topology of 06X — Gromov Product

v

Let X be (A k, E, C, 6, L)-coarsely convex space.

v

Choose a base point O € X.
Set LE = {v: [0,0) — X : L-approximatable,y(0) = O}.
For v,n € L§, we define

v

v

([m) :=sup{t: A(t),n(t) < C}.
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Topology of 06X — Gromov Product

» Let X be (\ k, E, C, 0, L)-coarsely convex space.

» Choose a base point O € X.

» Set L§ := {y: [0,00) — X : L-approximatable,y(0) = O}.
» For v,m € LF, we define

(v1n) = sup { ¢ : (O, n(0) < C}.

Y
(8)
C
@)
n(t)
Lemma (A)
def  ———F — def

v ~ 1< sup y(t),n(t) < oo < supy(t),n(t) < C< (yln) =
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Topology of 06X — Gromov Product

v

Let X be (A k, E, C, 0, L)-coarsely convex space.

v

Choose a base point O € X.
Set LE = {v: [0,0) — X : L-approximatable,y(0) = O}.
For v,n € LE, we define

v

v

(v1n) = sup { ¢ : (D), n(0) < C}.

Lemma (A)

def  ———— — def
v ~n < sup y(t),n(t) <o <= supy(t),n(t) < C<(yn) =
Lemma (B)

3D > 1st. Yy, m,€ € LE, (71€) = D~ min{(v[n), (n|€)}-
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Topology of 06X — Gromov Product

» Let X be (A k, E, C,0, L)-coarsely convex space.

» Choose a base point O € X.

» Set L§ = {v: [0,00) — X : L-approximatable,v(0) = O}.
» For v,n e L§, we define

(v1m) = sup { & 3(8),m(e) < C}.

Lemma (A)

7~ 0 E sup 3 (£),n(t) < 0 < sup 1(8), () < CE (7ln) =
Lemma (B)

D > 1s.t. Vy,m, & € LE, (v1€) = D~ min{(v]n), (n]€)}.

Proposition
dd:metric on 0X & 0 <3Je < 1s.t. V[y],[n] € 0X = LE/ ~,

 (pom) e < (o)
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Coarse Cartan-Hadamard Theorem
Let X be a proper coarsely convex space. The open cone over 0X is

00X :=[0,00) x 0X/{0} x 0X
with metric: for t,s € [0,0); x,y € 0X
tx, sy := |t —s| + min{t, s}dox(x,y)

For (t,x) € [0,00) x 0X, we denote tx := [(t, x)].
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Coarse Cartan-Hadamard Theorem

Let X be a proper coarsely convex space. The open cone over 0X is
00X :=[0,00) x 0X/{0} x 0X

with metric: for t,s € [0,0); x,y € 0X
tx,sy = |t —s| + min{t,s}dox(x,y)

For (t,x) € [0,0) x 0X, we denote tx := [(t,x)].

Theorem (coarse Cartan-Hadamard)

Let X be a proper coarsely convex space. The “exponential” map

exp: 00X o t[y] — fy(r(t)%) e X

is coarsely homotopy equivalent map. Especially, O6X and X are
coarsely homotopy equivalent.

Here r: [0,00) — [0,00) is a contraction such that r(t) — o0 as t — 0.
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Application
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the Coarse Baum-Connes conjecture

> Y ! proper metric space
» KX.(Y) : coarse K-homology of Y
(ex. KXo(Z") = KXo (R") = K. (R™))
» C*(Y) : a C*-algebra constructed from Y, called Roe algebra,

which is a non-equivariant analog of the reduced group C*-algebra.

Conjecture (coarse Baum-Connes)
The following coarse assembly map is an isomorphism.

py: KXo (Y) = Ko(C*(Y)).
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coarse homotopy invariance

Proposition (coarse homotopy invariance)

The coarse Baum-Connes conjecture is coarse homotopy invariant,
that is, let X and Y be proper metric spaces, suppose

» X and Y are coarsely homotopy equivalent and,
» X satisfies the coarse Baum-Connes conjecture,

then so does Y.
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Coarse Baum-Connes conjecture

Corollary (of Main theorem)
Coarse Baum-Connes conjecture holds for proper coarsely convex
spaces, especially, for locally finite systolic complexes.
Example
The above corollary covers following spaces and groups.
» Proper Geodesic Gromov hyperbolic spaces.

» Proper CAT(0)-spaces, more generally, Busemann spaces.
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Coarse Baum-Connes conjecture

Corollary (of Main theorem)

Coarse Baum-Connes conjecture holds for proper coarsely convex
spaces, especially, for locally finite systolic complexes.

Example
The above corollary covers following spaces and groups.

v

Proper Geodesic Gromov hyperbolic spaces.

v

Proper CAT(0)-spaces, more generally, Busemann spaces.

» Artin groups of large types (NEW!).

v

graphical C(6)-small cancellation groups (NEW!).

v

Direct product of above spaces and groups (NEW!).

Remark
Osajda-Przytycki showed that Novikov conjecture for systolic
groups holds.
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Groups acting on a coarsely convex space

20/32



Semihyperbolic spaces and groups
Proposition (FO)

Let X be a coarsely convex space. Then X is semihyperbolic in the
sense of Alonso and Bridson ('95).
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Semihyperbolic spaces and groups

Proposition (FO)
Let X be a coarsely convex space. Then X is semihyperbolic in the
sense of Alonso and Bridson ('95).

Corollary (Aloso-Bridson, FO)

Let G be a group acting on a coarsely convex spaces X properly
and cocompactly by isometries. Then the following hold.

1. G is finitely presented and of type FPy.

2. G satisfies a quadratic isoperimetric inequality.

Corollary

The 3-dimensional discrete Heisenberg group never act
geometrically on any coarsely convex space

-~ It does not satisfy any quadratic isoperimetric inequality.
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Dimension of ¢G and cohomological dimension of G

We obtain a functional analytic characterization of the ideal
boundary, and obtain the following.
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Dimension of ¢G and cohomological dimension of G

We obtain a functional analytic characterization of the ideal
boundary, and obtain the following.

Proposition (Engel-Wulff, FO)

Let X be a coarsely convex space. Then X admits an expanding
and coherent combing in the sense of Engel and Wulff ('17). The
ideal boundary 0X is homeomorphic to the combing corona of X.

Corollary (Engel-Wulff, FO)

Let G be a group acting geometrically on a proper coarsely convex
space. If G admits a finite model for the classifying space BG, then

cd(G) = dim(3G) + 1.
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Problems

1. An asymptotic cone of a coarsely convex space X is a
CAT(0)-space? (It is true if X is a CAT(0)-space).
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Problems

1. An asymptotic cone of a coarsely convex space X is a
CAT(0)-space? (It is true if X is a CAT(0)-space).

2. Classify isometies Isom(X) on a coarsely convex space X.
(hyperbolic, elliptic, parabolic,...) (If X is d-hyperbolic, this is
done by analysing action on the boundary.)
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