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Several notions of non-positively/negatively curved spaces
　

Class by QI-inv Product coarse Baum-Connes
Geodesic Gromov Yes No Higson-Roe, Willett

δ-hyperbolic
CAT(0) C-A-T No Yes Higson-Roe, Willett

Gromov F-O
Busemann Busemann No Yes Higson-Roe, Willett

F-O
Systolic Chepoi No No Novikov: O-P
complex J-S, H R ˆ R2 cBC: F-O
Coarsely F-O Yes Yes F-O
Convex

J-S: Januszkiewich-Świątkowski H: Haglund
O-P: Osajda-Przytycki
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Relations

cplt Riem. Manifold
π1“0,KSecď´1

��

+3 cplt Riem. Manifold
π1“0,KSecď0

��
CAT(-1) +3

��

CAT(0)

��

kpnq-systolic
n-dim simplicial cpx

ks

��
δ-hyperbolic

%-

Busemann

��

Systolic cpx

qy
Coarsely Convex
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Some notations

§ Let pX , dq be a metric space.
§ For p, q P X , we denote by p, q :“ dpp, qq the distance

between p and q.

Definition
f : X Ñ Y is

§ an pλ, kq-quasi-isometric embedding if

1
λ
x , x 1 ´ k ď f pxq, f px 1q ď λ x , x 1 ` k p@x , x 1 P X q.

§ C -surjective if @y P Y , Dx P X s.t. y , f pxq ď C .
§ quasi-isometry if f is pλ, kq-quasi-isometric embedding and
C -dense for some λ, k ,C .

X and Y are quasi-isometric if Df : X Ñ Y quasi-isometry .

7 / 32



Some notations

§ Let pX , dq be a metric space.
§ For p, q P X , we denote by p, q :“ dpp, qq the distance

between p and q.

Definition
f : X Ñ Y is

§ an pλ, kq-quasi-isometric embedding if

1
λ
x , x 1 ´ k ď f pxq, f px 1q ď λ x , x 1 ` k p@x , x 1 P X q.

§ C -surjective if @y P Y , Dx P X s.t. y , f pxq ď C .
§ quasi-isometry if f is pλ, kq-quasi-isometric embedding and
C -dense for some λ, k ,C .

X and Y are quasi-isometric if Df : X Ñ Y quasi-isometry .

7 / 32



Some notations

§ Let pX , dq be a metric space.
§ For p, q P X , we denote by p, q :“ dpp, qq the distance

between p and q.

Definition
f : X Ñ Y is

§ an pλ, kq-quasi-isometric embedding if

1
λ
x , x 1 ´ k ď f pxq, f px 1q ď λ x , x 1 ` k p@x , x 1 P X q.

§ C -surjective if @y P Y , Dx P X s.t. y , f pxq ď C .
§ quasi-isometry if f is pλ, kq-quasi-isometric embedding and
C -dense for some λ, k ,C .

X and Y are quasi-isometric if Df : X Ñ Y quasi-isometry .

7 / 32



Some notations

§ Let pX , dq be a metric space.
§ For p, q P X , we denote by p, q :“ dpp, qq the distance

between p and q.

Definition
f : X Ñ Y is

§ an pλ, kq-quasi-isometric embedding if

1
λ
x , x 1 ´ k ď f pxq, f px 1q ď λ x , x 1 ` k p@x , x 1 P X q.

§ C -surjective if @y P Y , Dx P X s.t. y , f pxq ď C .
§ quasi-isometry if f is pλ, kq-quasi-isometric embedding and
C -dense for some λ, k ,C .

X and Y are quasi-isometric if Df : X Ñ Y quasi-isometry .

7 / 32



Some notations

§ Let pX , dq be a metric space.
§ For p, q P X , we denote by p, q :“ dpp, qq the distance

between p and q.

Definition
f : X Ñ Y is

§ an pλ, kq-quasi-isometric embedding if

1
λ
x , x 1 ´ k ď f pxq, f px 1q ď λ x , x 1 ` k p@x , x 1 P X q.

§ C -surjective if @y P Y , Dx P X s.t. y , f pxq ď C .
§ quasi-isometry if f is pλ, kq-quasi-isometric embedding and
C -dense for some λ, k ,C .

X and Y are quasi-isometric if Df : X Ñ Y quasi-isometry .

7 / 32



Geodesic and Quasi-geodesic

Definition
A map γ : ra, bs Ñ X is

§ a geodesic if γ is an isometry, that is ,

γptq, γpsq “ |t ´ s| @t, s P ra, bs

§ a pλ, kq-quasi-geodesic if γ is pλ, kq-quasi-isometric
embedding, that is,

1
λ
|t ´ s| ´ k ď γptq, γpsq ď λ|t ´ s| ` k p@t, s P ra, bsq.

Remark
A geodesic is a p1, 0q-quasi-geodesic.
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Convexity of Metric
The metric d of X is convex ô

@γi : r0, ai s Ñ X geodesic segments (i “ 1, 2), @t P r0, 1s we have

γ1pta1q, γ2pta2q ď p1 ´ tq γ1p0q, γ2p0q ` t γ1pa1q, γ2pa2q .

Âă
γ2p0q

t

1 ´ t γ1pa1q

t
1 ´ t

γ2pa2q

γ1p0q γ1pta1q

γ2pta2q

Remark: X is a Busemann space ô pX , dq is a geodesic space and d is convex.
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QI-invariance

Clearly this property is NOT Quasi-Isometry-invariant.

We want to make it QI-invariant!
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QI-invariance: Naive Idea

Naive Idea: Replace GEODESIC by pλ, kq-QUASI-GEODESIC
and introduce some constants E,C.

@γi : r0, ai s Ñ X pλ, kq-quasi-geodesic (i “ 1, 2), @t P r0, 1s we
have

γ1pta1q, γ2pta2q ď p1 ´ tqE γ1p0q, γ2p0q ` tE γ1pa1q, γ2pa2q ` C .

¨ ¨ ¨ This does not work!
Consider R2 with l1-metric (so-called, Manhattan distance.)

d1ppx , yq, px 1, y 1qq :“ |x ´ x 1| ` |y ´ y 1|.

There exist “FAT”-bigons.
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“FAT”-bigon

“FAT”-bigon in R2 with l1-metric

x

x

GOOD Geodesic BAD Geodesics
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IDEA

IDEA: Consider ONLY “GOOD” quasi-geodesics.

Theorem (Osajda-Przytycki)
Let X be a systolic complex.
Then X has a family of good geodesics.
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Coarsely Convex space

Definition
§ Let X be a metric space.
§ Let λ ě 1, k ě 0, E ě 1, and C ě 0 be constants.
§ Let θ : Rě0 Ñ Rě0 be a non-decreasing function.
§ Let L be a family of pλ, kq-quasi-geodesic segments.

The metric space X is pλ, k ,E ,C , θ,Lq-coarsely convex, if L
satisfies the three `1 conditions in the following slides.
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`1: prefix-closed

L is prefix-closed, that is, for γ : r0, as Ñ X and 0 ď b ď a,

γ P L ùñ γ|r0, bs P L.
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First: L-Connected

(i) @p, q P X , Dγ P L with Domainpγq “ r0, as, s.t.
γp0q “ p, γpaq “ q.

p “ γp0q

q “ γpaq

γ P L

16 / 32



Second: Coarsely Convex Inequality

(ii) @γ, η P L with Domainpγq “ r0, as, Domainpηq “ r0, bs.
For 0 ď t ď 1, we have

γptaq, ηptbq ď p1 ´ tqE γp0q, ηp0q ` tE γpaq, ηpbq ` C .

Âă

ηp0q

t

1 ´ t
γpaq

t
1 ´ t

ηpbq

γp0q γptuq

ηptvq
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Third: Parameters
(iii) @γ, η P L with Domainpγq “ r0, as, Domainpηq “ r0, bs.

For t P r0, as and s P r0, bs, we have

|t ´ s| ď θp γp0q, ηp0q ` γptq, ηpsq q.

Consider the case γp0q “ ηp0q “ O.

γp0q “ O “ ηp0q

ηpsq

γptq
γpsq

If γ, η are geodesic, then by triangle inequality,

|t ´ s|“| γp0q, γptq ´ ηp0q, ηpsq | ď γptq, ηpsq
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Remark
If X is a

§ Gromov hyperbolic space,
§ Busemann space, or
§ Systolic complex,

then we can take L a family of geodesic segments. Therefore the
third condition is satisfied.
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Basic properties

Proposition (QI-invariant)

§ Let X and Y be metric spaces.
§ Suppose that X and Y are quasi-isometric.

Then X is coarsely convex ô Y is coarsely convex.

Proposition (Stable under direct products)

§ Let X and Y be metric spaces.
§ Suppose that X and Y are coarsely convex

Then the direct product X ˆ Y is coarsely convex.
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Examples

The following metric spaces are coarsely convex.
§ Geodesic Gromov hyperbolic spaces.
§ CAT(0)-spaces.
§ Busemann spaces.
§ Systolic complexes (Osajda-Przytycki)
§ Artin groups of (almost) large type (Osajda-Huang)
§ graphical C p6q small cancellation groups (Osajda-Prytuła)

Moreover, the direct products of the above spaces and groups are
coarsely convex!
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Visual boundary

§ Let X be pλ, k,E ,C , θ,Lq-coarsely convex space.
§ A quasi-geodesic γ : r0,8q Ñ X is L-approximatable if

Dtγnu Ă L such that γn converges to γ uniformly on
t0, 1, . . . , lu for all l P N.

§ We define

BX :“ tγ : r0,8q Ñ X : γ is L-approximatableu{ „

where γ „ η if supt γptq, ηptq : t P r0,8qu ă 8.

Remark
If γp0q “ ηp0q, then

supt γptq, ηptq : t P r0,8qu ă 8 ô supt γptq, ηptq : t P r0,8qu ă C .
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Topology of BX – Gromov Product

§ Let X be pλ, k,E ,C , θ,Lq-coarsely convex space.
§ Choose a base point O P X .
§ Set L8

O :“ tγ : r0,8q Ñ X : L-approximatable, γp0q “ Ou.
§ For γ, η P L8

O , we define

pγ|ηq :“ sup
!

t : γptq, ηptq ď C
)

.
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Lemma (A)
γ „ η

def
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def
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Lemma (B)
DD ą 1 s.t. @γ, η, ξ P L8

O , pγ|ξq ě D´1 mintpγ|ηq, pη|ξqu.

Proposition
Dd :metric on BX & 0 ă Dϵ ď 1 s.t. @rγs, rηs P BX “ L8

O { „,

1
2

ˆ

1
Dpγ|ηq

˙ϵ

ď dprγs, rηsq ď

ˆ

1
pγ|ηq

˙ϵ

.
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Coarse Cartan-Hadamard Theorem
Let X be a proper coarsely convex space. The open cone over BX is

OBX :“ r0,8q ˆ BX {t0u ˆ BX

with metric: for t, s P r0,8q; x , y P BX

tx , sy :“ |t ´ s| ` mintt, sudBX px , yq

For pt, xq P r0,8q ˆ BX , we denote tx :“ rpt, xqs.

Theorem (coarse Cartan-Hadamard)

Let X be a proper coarsely convex space. The “exponential” map

exp: OBX Q trγs Ñ γprptq
1
ϵ q P X

is coarsely homotopy equivalent map. Especially, OBX and X are
coarsely homotopy equivalent.

Here r : r0,8q Ñ r0,8q is a contraction such that rptq Ñ 8 as t Ñ 8.
24 / 32
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Non-positively curved spaces and groups

Coarsely Convex Space

Application

Groups acting on a coarsely convex space
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the Coarse Baum-Connes conjecture

§ Y：proper metric space
§ KX‚pY q：coarse K -homology of Y

(ex. KX‚pZnq – KX‚pRnq – K‚pRnq)

§ C˚pY q：a C˚-algebra constructed from Y , called Roe algebra,
which is a non-equivariant analog of the reduced group C˚-algebra.

Conjecture (coarse Baum-Connes)
The following coarse assembly map is an isomorphism.

µY : KX‚pY q Ñ K‚pC˚pY qq.
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coarse homotopy invariance

Proposition (coarse homotopy invariance)
The coarse Baum-Connes conjecture is coarse homotopy invariant,
that is, let X and Y be proper metric spaces, suppose

§ X and Y are coarsely homotopy equivalent and,
§ X satisfies the coarse Baum-Connes conjecture,

then so does Y .

Proposition (Higson-Roe)
Open cones over compact metrizable spaces satisfy coarse
Baum-Connes conjecture.

Corollary (of Main theorem)
Coarse Baum-Connes conjecture holds for proper coarsely convex
spaces, especially, for locally finite systolic complexes.
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Coarse Baum-Connes conjecture

Corollary (of Main theorem)
Coarse Baum-Connes conjecture holds for proper coarsely convex
spaces, especially, for locally finite systolic complexes.

Example
The above corollary covers following spaces and groups.

§ Proper Geodesic Gromov hyperbolic spaces.
§ Proper CAT(0)-spaces, more generally, Busemann spaces.
§ Artin groups of large types (NEW!).
§ graphical C p6q-small cancellation groups (NEW!).
§ Direct product of above spaces and groups (NEW!).

Remark
Osajda-Przytycki showed that Novikov conjecture for systolic
groups holds.
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Semihyperbolic spaces and groups

Proposition (FO)
Let X be a coarsely convex space. Then X is semihyperbolic in the
sense of Alonso and Bridson (’95).

Corollary (Aloso-Bridson, FO)
Let G be a group acting on a coarsely convex spaces X properly
and cocompactly by isometries. Then the following hold.

1. G is finitely presented and of type FP8.

2. G satisfies a quadratic isoperimetric inequality.

Corollary
The 3-dimensional discrete Heisenberg group never act
geometrically on any coarsely convex space
7 It does not satisfy any quadratic isoperimetric inequality.
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1. G is finitely presented and of type FP8.

2. G satisfies a quadratic isoperimetric inequality.

Corollary
The 3-dimensional discrete Heisenberg group never act
geometrically on any coarsely convex space
7 It does not satisfy any quadratic isoperimetric inequality.
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Dimension of BG and cohomological dimension of G

We obtain a functional analytic characterization of the ideal
boundary, and obtain the following.

Proposition (Engel-Wulff, FO)
Let X be a coarsely convex space. Then X admits an expanding
and coherent combing in the sense of Engel and Wulff (’17). The
ideal boundary BX is homeomorphic to the combing corona of X .

Corollary (Engel-Wulff, FO)
Let G be a group acting geometrically on a proper coarsely convex
space. If G admits a finite model for the classifying space BG , then

cdpG q “ dimpBG q ` 1.
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Problems

1. An asymptotic cone of a coarsely convex space X is a
CAT(0)-space? (It is true if X is a CAT(0)-space).

2. Classify isometies IsompX q on a coarsely convex space X .
(hyperbolic, elliptic, parabolic,...) (If X is δ-hyperbolic, this is
done by analysing action on the boundary.)
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