A coarse Cartan－Hadamard theorem with application to the coarse Baum－Connes conjecture

FUKAYA Tomohiro深谷友宏

Tokyo Metropolitan university首都大学東京

Noncommutative Geometry and K－theory at Rits非可換幾何学 \＆K－理論 於 立命館大学
－The Fourth China－Japan Conference－

Based on the preprint

arXiv：1705．05588
with OGUNI Shin－ichi（尾國新一）

Table of contents

Non-positively curved spaces and groups
Several notions of non-positively/negatively curved spaces
Coarsely Convex Space
Convexity of Metric
Coarsely Convex spaces
Visual boundary
Gromov Product
Coarse Cartan-Hadamard Theorem
Application
Coarse Baum-Connes conjecture
Groups acting on a coarsely convex space
Semihyperoblic groups and some finiteness results
Topological dimension of the ideal boundary and cohomological dimension of the group

Non-positively curved spaces and groups

Coarsely Convex Space

Application

Groups acting on a coarsely convex space

Several notions of non-positively/negatively curved spaces

Class	by	Ql-inv	Product	coarse Baum-Connes
Geodesic δ-hyperbolic	Gromov	Yes	No	Higson-Roe, Willett
CAT(0)	C-A-T Gromov	No	Yes	Higson-Roe, Willett F-O
Busemann	Busemann	No	Yes	Higson-Roe, Willett F-O
Systolic complex	Chepoi J-S, H	No	No	Novikov: O-P CBC: F-O
Coarsely Convex	F-O	Yes	Yes	F-O

J-S: Januszkiewich-Świątkowski H: Haglund O-P: Osajda-Przytycki

Relations

Non-positively curved spaces and groups

Coarsely Convex Space

Application

Groups acting on a coarsely convex space

Some notations

- Let (X, d) be a metric space.
- For $p, q \in X$, we denote by $\overline{p, q}:=d(p, q)$ the distance between p and q.

Some notations

- Let (X, d) be a metric space.
- For $p, q \in X$, we denote by $\overline{p, q}:=d(p, q)$ the distance between p and q.

Definition
$f: X \rightarrow Y$ is

- an (λ, k)-quasi-isometric embedding if

$$
\frac{1}{\lambda} \overline{x, x^{\prime}}-k \leqslant \overline{f(x), f\left(x^{\prime}\right)} \leqslant \lambda \overline{x, x^{\prime}}+k \quad\left(\forall x, x^{\prime} \in X\right)
$$

- C-surjective if $\forall y \in Y, \exists x \in X$ s.t. $\overline{y, f(x)} \leqslant C$.
- quasi-isometry if f is (λ, k)-quasi-isometric embedding and C-dense for some λ, k, C.
X and Y are quasi-isometric if $\exists f: X \rightarrow Y$ quasi-isometry

Some notations

- Let (X, d) be a metric space.
- For $p, q \in X$, we denote by $\overline{p, q}:=d(p, q)$ the distance between p and q.

Definition
$f: X \rightarrow Y$ is

- an (λ, k)-quasi-isometric embedding if

$$
\frac{1}{\lambda} \overline{x, x^{\prime}}-k \leqslant \overline{f(x), f\left(x^{\prime}\right)} \leqslant \lambda \overline{x, x^{\prime}}+k \quad\left(\forall x, x^{\prime} \in X\right)
$$

- C-surjective if $\forall y \in Y, \exists x \in X$ s.t. $\overline{y, f(x)} \leqslant C$.
- quasi-isometry if f is (λ, k)-quasi-isometric embedding and C-dense for some λ, k, C.

Some notations

- Let (X, d) be a metric space.
- For $p, q \in X$, we denote by $\overline{p, q}:=d(p, q)$ the distance between p and q.

Definition
$f: X \rightarrow Y$ is

- an (λ, k)-quasi-isometric embedding if

$$
\frac{1}{\lambda} \overline{x, x^{\prime}}-k \leqslant \overline{f(x), f\left(x^{\prime}\right)} \leqslant \lambda \overline{x, x^{\prime}}+k \quad\left(\forall x, x^{\prime} \in X\right)
$$

- C-surjective if $\forall y \in Y, \exists x \in X$ s.t. $\overline{y, f(x)} \leqslant C$.
- quasi-isometry if f is (λ, k)-quasi-isometric embedding and C-dense for some λ, k, C.
X and Y are quasi-isometric if $\exists f: X \rightarrow Y$ quasi-isometry

Some notations

- Let (X, d) be a metric space.
- For $p, q \in X$, we denote by $\overline{p, q}:=d(p, q)$ the distance between p and q.

Definition
$f: X \rightarrow Y$ is

- an (λ, k)-quasi-isometric embedding if

$$
\frac{1}{\lambda} \overline{x, x^{\prime}}-k \leqslant \overline{f(x), f\left(x^{\prime}\right)} \leqslant \lambda \overline{x, x^{\prime}}+k \quad\left(\forall x, x^{\prime} \in X\right)
$$

- C-surjective if $\forall y \in Y, \exists x \in X$ s.t. $\overline{y, f(x)} \leqslant C$.
- quasi-isometry if f is (λ, k)-quasi-isometric embedding and C-dense for some λ, k, C.
X and Y are quasi-isometric if $\exists f: X \rightarrow Y$ quasi-isometry .

Geodesic and Quasi-geodesic

Definition
A map $\gamma:[a, b] \rightarrow X$ is

- a geodesic if γ is an isometry, that is,

$$
\overline{\gamma(t), \gamma(s)}=|t-s| \quad \forall t, s \in[a, b]
$$

- a (λ, k)-quasi-geodesic if γ is (λ, k)-quasi-isometric embedding, that is,

Remark
A geodesic is a (1,0)-quasi-geodesic.

Geodesic and Quasi-geodesic

Definition
A map $\gamma:[a, b] \rightarrow X$ is

- a geodesic if γ is an isometry, that is,

$$
\overline{\gamma(t), \gamma(s)}=|t-s| \quad \forall t, s \in[a, b]
$$

- a (λ, k)-quasi-geodesic if γ is (λ, k)-quasi-isometric embedding, that is,

$$
\frac{1}{\lambda}|t-s|-k \leqslant \overline{\gamma(t), \gamma(s)} \leqslant \lambda|t-s|+k \quad(\forall t, s \in[a, b]) .
$$

Remark
A geodesic is a (1,0)-quasi-geodesic.

Convexity of Metric

The metric d of X is convex \Leftrightarrow
$\forall \gamma_{i}:\left[0, a_{i}\right] \rightarrow X$ geodesic segments $(i=1,2), \forall t \in[0,1]$ we have $\overline{\gamma_{1}\left(t a_{1}\right), \gamma_{2}\left(t a_{2}\right)} \leqslant(1-t) \overline{\gamma_{1}(0), \gamma_{2}(0)}+t \overline{\gamma_{1}\left(a_{1}\right), \gamma_{2}\left(a_{2}\right)}$.

Remark: X is a Busemann space $\Leftrightarrow(X, d)$ is a geodesic space and d is convex.

Ql-invariance

Clearly this property is NOT Quasi-Isometry-invariant.
We want to make it QI-invariant!

Ql-invariance

Clearly this property is NOT Quasi-Isometry-invariant.
We want to make it QI-invariant!

Ql-invariance: Naive Idea

Naive Idea: Replace GEODESIC by (λ, k)-QUASI-GEODESIC and introduce some constants E,C.
$\forall \gamma_{i}:\left[0, a_{i}\right] \rightarrow X(\lambda, k)$-quasi-geodesic $(i=1,2), \forall t \in[0,1]$ we have

$$
\overline{\gamma_{1}\left(t a_{1}\right), \gamma_{2}\left(t a_{2}\right)} \leqslant(1-t) E \overline{\gamma_{1}(0), \gamma_{2}(0)}+t E \overline{\gamma_{1}\left(a_{1}\right), \gamma_{2}\left(a_{2}\right)}+C .
$$

Consider \mathbb{R}^{2} with I^{1}-metric (so-called, Manhattan distance.)

There exist $-A-$ olgons.

Ql-invariance: Naive Idea

Naive Idea: Replace GEODESIC by (λ, k)-QUASI-GEODESIC and introduce some constants E,C.
$\forall \gamma_{i}:\left[0, a_{i}\right] \rightarrow X(\lambda, k)$-quasi-geodesic $(i=1,2), \forall t \in[0,1]$ we have

$$
\overline{\gamma_{1}\left(t a_{1}\right), \gamma_{2}\left(t a_{2}\right)} \leqslant(1-t) E \overline{\gamma_{1}(0), \gamma_{2}(0)}+t E \overline{\gamma_{1}\left(a_{1}\right), \gamma_{2}\left(a_{2}\right)}+C
$$

... This does not work!
Consider \mathbb{R}^{2} with I^{1}-metric (so-called, Manhattan distance.)

$$
d_{1}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right| .
$$

There exist "FAT"-bigons.

"FAT"'-bigon

"FAT"-bigon in \mathbb{R}^{2} with I^{1}-metric

GOOD Geodesic BAD Geodesics

"FAT"'-bigon

"FAT"-bigon in \mathbb{R}^{2} with I^{1}-metric
GOOD Geodesic BAD Geodesics

IDEA: Consider ONLY "GOOD" quasi-geodesics.

Theorem (Osajda-Przytycki)
Let X be a systolic complex. Then X has a family of good geodesics.

Coarsely Convex space

Definition

- Let X be a metric space.
- Let $\lambda \geqslant 1, k \geqslant 0, E \geqslant 1$, and $C \geqslant 0$ be constants.
- Let $\theta: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}_{\geqslant 0}$ be a non-decreasing function.
- Let \mathcal{L} be a family of (λ, k)-quasi-geodesic segments.

The metric space X is $(\lambda, k, E, C, \theta, \mathcal{L})$-coarsely convex, if \mathcal{L} satisfies the three +1 conditions in the following slides.

+1 : prefix-closed

\mathcal{L} is prefix-closed, that is, for $\gamma:[0, a] \rightarrow X$ and $0 \leqslant b \leqslant a$,

$$
\gamma \in \mathcal{L} \Longrightarrow \gamma \mid[0, b] \in \mathcal{L}
$$

First: \mathcal{L}-Connected
(i) $\forall p, q \in X, \exists \gamma \in \mathcal{L}$ with $\operatorname{Domain}(\gamma)=[0, a]$, s.t. $\gamma(0)=p, \gamma(a)=q$.

Second: Coarsely Convex Inequality

(ii) $\forall \gamma, \eta \in \mathcal{L}$ with $\operatorname{Domain}(\gamma)=[0, a]$, Domain $(\eta)=[0, b]$. For $0 \leqslant t \leqslant 1$, we have

$$
\overline{\gamma(t a), \eta(t b)} \leqslant(1-t) E \overline{\gamma(0), \eta(0)}+t E \overline{\gamma(a), \eta(b)}+C .
$$

Third: Parameters

(iii) $\forall \gamma, \eta \in \mathcal{L}$ with $\operatorname{Domain}(\gamma)=[0, a], \operatorname{Domain}(\eta)=[0, b]$. For $t \in[0, a]$ and $s \in[0, b]$, we have

$$
|t-s| \leqslant \theta(\overline{\gamma(0), \eta(0)}+\overline{\gamma(t), \eta(s)})
$$

Consider the case $\gamma(0)=\eta(0)=0$.

If γ, η are geodesic, then by triangle inequality,

$$
|t-s|=|\overline{\gamma(0), \gamma(t)}-\overline{\eta(0), \eta(s)}| \leqslant \overline{\gamma(t), \eta(s)}
$$

Third: Parameters

(iii) $\forall \gamma, \eta \in \mathcal{L}$ with $\operatorname{Domain}(\gamma)=[0, a], \operatorname{Domain}(\eta)=[0, b]$. For $t \in[0, a]$ and $s \in[0, b]$, we have

$$
|t-s| \leqslant \theta(\overline{\gamma(0), \eta(0)}+\overline{\gamma(t), \eta(s)})
$$

Consider the case $\gamma(0)=\eta(0)=0$.

If γ, η are geodesic, then by triangle inequality,

$$
|t-s|=|\overline{\gamma(0), \gamma(t)}-\overline{\eta(0), \eta(s)}| \leqslant \overline{\gamma(t), \eta(s)}
$$

Remark

If X is a

- Gromov hyperbolic space,
- Busemann space, or
- Systolic complex,
then we can take \mathcal{L} a family of geodesic segments. Therefore the third condition is satisfied.

Basic properties

Proposition (Ql-invariant)

- Let X and Y be metric spaces.
- Suppose that X and Y are quasi-isometric.

Then X is coarsely convex $\Leftrightarrow Y$ is coarsely convex.

Proposition (Stable under direct products)

- Let X and Y be metric spaces.
- Suppose that X and Y are coarsely convex

Then the direct product $X \times Y$ is coarsely convex.

Examples

The following metric spaces are coarsely convex.

- Geodesic Gromov hyperbolic spaces.
- CAT(0)-spaces.
- Busemann spaces.

Systolic complexes (Osajda-Przytycki)

- Artin groups of (almost) large type (Osajda-Huang)
- granhical C(6) small cancellation grouns (Osajda-Prytuła)

Moreover, the direct products of the above spaces and groups are coarsely convex!

Examples

The following metric spaces are coarsely convex.

- Geodesic Gromov hyperbolic spaces.
- CAT(0)-spaces.
- Busemann spaces.
- Systolic complexes (Osajda-Przytycki)
- Artin groups of (almost) large type (Osajda-Huang)
- graphical $C(6)$ small cancellation groups (Osajda-Prytuła)

Moreover, the direct products of the above spaces and groups are coarsely convex!

Examples

The following metric spaces are coarsely convex.

- Geodesic Gromov hyperbolic spaces.
- CAT(0)-spaces.
- Busemann spaces.
- Systolic complexes (Osajda-Przytycki)
- Artin groups of (almost) large type (Osajda-Huang)
- graphical $C(6)$ small cancellation groups (Osajda-Prytuła)

Moreover, the direct products of the above spaces and groups are coarsely convex!

Visual boundary

- Let X be ($\lambda, k, E, C, \theta, \mathcal{L})$-coarsely convex space.
- A quasi-geodesic $\gamma:[0, \infty) \rightarrow X$ is \mathcal{L}-approximatable if $\exists\left\{\gamma_{n}\right\} \subset \mathcal{L}$ such that γ_{n} converges to γ uniformly on $\{0,1, \ldots, I\}$ for all $I \in \mathbb{N}$.
- We define

$$
\begin{aligned}
& \quad \partial X:=\{\gamma:[0, \infty) \rightarrow X: \gamma \text { is } \mathcal{L} \text {-approximatable }\} / \sim \\
& \text { where } \gamma \sim \eta \text { if } \sup \{\overline{\gamma(t), \eta(t)}: t \in[0, \infty)\}<\infty
\end{aligned}
$$

Visual boundary

- Let X be ($\lambda, k, E, C, \theta, \mathcal{L})$-coarsely convex space.
- A quasi-geodesic $\gamma:[0, \infty) \rightarrow X$ is \mathcal{L}-approximatable if $\exists\left\{\gamma_{n}\right\} \subset \mathcal{L}$ such that γ_{n} converges to γ uniformly on $\{0,1, \ldots, I\}$ for all $I \in \mathbb{N}$.
- We define

$$
\partial X:=\{\gamma:[0, \infty) \rightarrow X: \gamma \text { is } \mathcal{L} \text {-approximatable }\} / \sim
$$

where $\gamma \sim \eta$ if $\sup \{\overline{\gamma(t), \eta(t)}: t \in[0, \infty)\}<\infty$.

Remark

If $\gamma(0)=\eta(0)$, then
$\sup \{\overline{\gamma(t), \eta(t)}: t \in[0, \infty)\}<\infty \Leftrightarrow \sup \{\overline{\gamma(t), \eta(t)}: t \in[0, \infty)\}<C$.

Topology of ∂X - Gromov Product

- Let X be $(\lambda, k, E, C, \theta, \mathcal{L})$-coarsely convex space.
- Choose a base point $O \in X$.
- Set $\mathcal{L}_{O}^{\infty}:=\{\gamma:[0, \infty) \rightarrow X: \mathcal{L}$-approximatable, $\gamma(0)=O\}$.
- For $\gamma, \eta \in \mathcal{L}^{\infty}$, we define

$$
(\gamma \mid \eta):=\sup \{t: \overline{\gamma(t), \eta(t)} \leqslant C\} .
$$

Topology of ∂X - Gromov Product

- Let X be $(\lambda, k, E, C, \theta, \mathcal{L})$-coarsely convex space.
- Choose a base point $O \in X$.
- Set $\mathcal{L}_{O}^{\infty}:=\{\gamma:[0, \infty) \rightarrow X: \mathcal{L}$-approximatable, $\gamma(0)=O\}$.
- For $\gamma, \eta \in \mathcal{L}^{\infty}$, we define

$$
(\gamma \mid \eta):=\sup \{t: \overline{\gamma(t), \eta(t)} \leqslant C\} .
$$

Topology of ∂X - Gromov Product

- Let X be $(\lambda, k, E, C, \theta, \mathcal{L})$-coarsely convex space.
- Choose a base point $O \in X$.
- Set $\mathcal{L}_{0}^{\infty}:=\{\gamma:[0, \infty) \rightarrow X: \mathcal{L}$-approximatable, $\gamma(0)=0\}$.
- For $\gamma, \eta \in \mathcal{L}_{O}^{\infty}$, we define

$$
(\gamma \mid \eta):=\sup \{t: \overline{\gamma(t), \eta(t)} \leqslant C\}
$$

Topology of ∂X - Gromov Product

- Let X be ($\lambda, k, E, C, \theta, \mathcal{L})$-coarsely convex space.
- Choose a base point $O \in X$.
- Set $\mathcal{L}_{O}^{\infty}:=\{\gamma:[0, \infty) \rightarrow X: \mathcal{L}$-approximatable, $\gamma(0)=O\}$.
- For $\gamma, \eta \in \mathcal{L}_{0}^{\infty}$, we define

$$
(\gamma \mid \eta):=\sup \{t: \overline{\gamma(t), \eta(t)} \leqslant C\}
$$

Topology of ∂X - Gromov Product

- Let X be $(\lambda, k, E, C, \theta, \mathcal{L})$-coarsely convex space.
- Choose a base point $O \in X$.
- Set $\mathcal{L}_{O}^{\infty}:=\{\gamma:[0, \infty) \rightarrow X: \mathcal{L}$-approximatable, $\gamma(0)=O\}$.
- For $\gamma, \eta \in \mathcal{L}_{O}^{\infty}$, we define

$$
(\gamma \mid \eta):=\sup \{t: \overline{\gamma(t), \eta(t)} \leqslant C\} .
$$

Lemma (A)
$\gamma \sim \eta \stackrel{\text { def }}{\Leftrightarrow} \sup \overline{\gamma(t), \eta(t)}<\infty \Leftrightarrow \sup \overline{\gamma(t), \eta(t)} \leqslant C \stackrel{\text { def }}{\Leftrightarrow}(\gamma \mid \eta)=\infty$

Topology of ∂X - Gromov Product

- Let X be $(\lambda, k, E, C, \theta, \mathcal{L})$-coarsely convex space.
- Choose a base point $O \in X$.
- Set $\mathcal{L}_{O}^{\infty}:=\{\gamma:[0, \infty) \rightarrow X: \mathcal{L}$-approximatable, $\gamma(0)=O\}$.
- For $\gamma, \eta \in \mathcal{L}_{0}^{\infty}$, we define

$$
(\gamma \mid \eta):=\sup \{t: \overline{\gamma(t), \eta(t)} \leqslant C\}
$$

Lemma (A)
$\gamma \sim \eta \stackrel{\text { def }}{\Leftrightarrow} \sup \overline{\gamma(t), \eta(t)}<\infty \Leftrightarrow \sup \overline{\gamma(t), \eta(t)} \leqslant C \stackrel{\text { def }}{\Leftrightarrow}(\gamma \mid \eta)=\infty$
Lemma (B)
$\exists D>1$ s.t. $\forall \gamma, \eta, \xi \in \mathcal{L}_{O}^{\infty},(\gamma \mid \xi) \geqslant D^{-1} \min \{(\gamma \mid \eta),(\eta \mid \xi)\}$.

Topology of ∂X - Gromov Product

- Let X be ($\lambda, k, E, C, \theta, \mathcal{L})$-coarsely convex space.
- Choose a base point $O \in X$.
- Set $\mathcal{L}_{O}^{\infty}:=\{\gamma:[0, \infty) \rightarrow X: \mathcal{L}$-approximatable, $\gamma(0)=O\}$.
- For $\gamma, \eta \in \mathcal{L}_{0}^{\infty}$, we define

$$
(\gamma \mid \eta):=\sup \{t: \overline{\gamma(t), \eta(t)} \leqslant C\}
$$

Lemma (A)
$\gamma \sim \eta \stackrel{\text { def }}{\Leftrightarrow} \sup \overline{\gamma(t), \eta(t)}<\infty \Leftrightarrow \sup \overline{\gamma(t), \eta(t)} \leqslant C \stackrel{\text { def }}{\Leftrightarrow}(\gamma \mid \eta)=\infty$
Lemma (B)
$\exists D>1$ s.t. $\forall \gamma, \eta, \xi \in \mathcal{L}_{O}^{\infty},(\gamma \mid \xi) \geqslant D^{-1} \min \{(\gamma \mid \eta),(\eta \mid \xi)\}$.
Proposition
$\exists d$:metric on $\partial X \& 0<\exists \epsilon \leqslant 1$ s.t. $\forall[\gamma],[\eta] \in \partial X=\mathcal{L}_{O}^{\infty} / \sim$,

$$
\frac{1}{2}\left(\frac{1}{D(\gamma \mid \eta)}\right)^{\epsilon} \leqslant d([\gamma],[\eta]) \leqslant\left(\frac{1}{(\gamma \mid \eta)}\right)^{\epsilon}
$$

Coarse Cartan-Hadamard Theorem

Let X be a proper coarsely convex space. The open cone over ∂X is

$$
\mathcal{O} \partial X:=[0, \infty) \times \partial X /\{0\} \times \partial X
$$

with metric: for $t, s \in[0, \infty) ; x, y \in \partial X$

$$
\overline{t x, s y}:=|t-s|+\min \{t, s\} d_{\partial x}(x, y)
$$

For $(t, x) \in[0, \infty) \times \partial X$, we denote $t x:=[(t, x)]$.
Theorem (coarse Cartan-Hadamard)
Let X be a proper coarsely convex space. The "exponential" map

is coarsely homotopy equivalent map. Especially, $\mathcal{O} \partial X$ and X are coarsely homotopy equivalent.

Coarse Cartan-Hadamard Theorem

Let X be a proper coarsely convex space. The open cone over ∂X is

$$
\mathcal{O} \partial X:=[0, \infty) \times \partial X /\{0\} \times \partial X
$$

with metric: for $t, s \in[0, \infty) ; x, y \in \partial X$

$$
\overline{t x, s y}:=|t-s|+\min \{t, s\} d_{\partial x}(x, y)
$$

For $(t, x) \in[0, \infty) \times \partial X$, we denote $t x:=[(t, x)]$.
Theorem (coarse Cartan-Hadamard)
Let X be a proper coarsely convex space. The "exponential" map

$$
\exp : \mathcal{O} \partial X \ni t[\gamma] \rightarrow \gamma\left(r(t)^{\frac{1}{\epsilon}}\right) \in X
$$

is coarsely homotopy equivalent map. Especially, $\mathcal{O} \partial X$ and X are coarsely homotopy equivalent.

Here $r:[0, \infty) \rightarrow[0, \infty)$ is a contraction such that $r(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Non-positively curved spaces and groups

Coarsely Convex Space

Application

Groups acting on a coarsely convex space

the Coarse Baum-Connes conjecture

- Y : proper metric space
- $K X_{\bullet}(Y)$: coarse K-homology of Y

$$
\left(\text { ex. } K X_{\bullet}\left(\mathbb{Z}^{n}\right) \cong K X_{\bullet}\left(\mathbb{R}^{n}\right) \cong K \cdot\left(\mathbb{R}^{n}\right)\right)
$$

- $C^{*}(Y):$ a C^{*}-algebra constructed from Y, called Roe algebra, which is a non-equivariant analog of the reduced group C^{*}-algebra.

Conjecture (coarse Baum-Connes)
The following coarse assembly map is an isomorphism.

$$
\mu_{Y}: K X_{\bullet}(Y) \rightarrow K_{\bullet}\left(C^{*}(Y)\right)
$$

coarse homotopy invariance

Proposition (coarse homotopy invariance)
The coarse Baum-Connes conjecture is coarse homotopy invariant, that is, let X and Y be proper metric spaces, suppose

- X and Y are coarsely homotopy equivalent and,
- X satisfies the coarse Baum-Connes conjecture, then so does Y.

Proposition (Higson-Roe)
Open cones over compact metrizable spaces satisfy coarse Baum-Connes conjecture.

Corollary (of Main theorem)
Coarse Baum-Connes conjecture holds for proper coarsely convex spaces, especially, for locally finite systolic complexes.

coarse homotopy invariance

Proposition (coarse homotopy invariance)
The coarse Baum-Connes conjecture is coarse homotopy invariant, that is, let X and Y be proper metric spaces, suppose

- X and Y are coarsely homotopy equivalent and,
- X satisfies the coarse Baum-Connes conjecture, then so does Y.

Proposition (Higson-Roe)

Open cones over compact metrizable spaces satisfy coarse Baum-Connes conjecture.

Corollary (of Main theorem)
Coarse Baum-Connes conjecture holds for proper coarsely convex spaces, especially, for locally finite systolic complexes.

coarse homotopy invariance

Proposition (coarse homotopy invariance)

The coarse Baum-Connes conjecture is coarse homotopy invariant, that is, let X and Y be proper metric spaces, suppose

- X and Y are coarsely homotopy equivalent and,
- X satisfies the coarse Baum-Connes conjecture, then so does Y.

Proposition (Higson-Roe)

Open cones over compact metrizable spaces satisfy coarse Baum-Connes conjecture.

Corollary (of Main theorem)
Coarse Baum-Connes conjecture holds for proper coarsely convex spaces, especially, for locally finite systolic complexes.

Coarse Baum-Connes conjecture

Corollary (of Main theorem)
Coarse Baum-Connes conjecture holds for proper coarsely convex spaces, especially, for locally finite systolic complexes.

Example

The above corollary covers following spaces and groups.

- Proper Geodesic Gromov hyperbolic spaces.
- Proper CAT(0)-spaces, more generally, Busemann spaces.
- Artin groups of large types (NEW!).
- graphical C(6)-small cancellation groups (NEW!).
- Direct product of above spaces and groups (NEW!)

Remark
Osajda-Przytycki showed that Novikov conjecture for systolic groups holds.

Coarse Baum-Connes conjecture

Corollary (of Main theorem)

Coarse Baum-Connes conjecture holds for proper coarsely convex spaces, especially, for locally finite systolic complexes.

Example

The above corollary covers following spaces and groups.

- Proper Geodesic Gromov hyperbolic spaces.
- Proper CAT(0)-spaces, more generally, Busemann spaces.
- Artin groups of large types (NEW!).
- graphical $C(6)$-small cancellation groups (NEW!).

[^0]
Coarse Baum-Connes conjecture

Corollary (of Main theorem)

Coarse Baum-Connes conjecture holds for proper coarsely convex spaces, especially, for locally finite systolic complexes.

Example

The above corollary covers following spaces and groups.

- Proper Geodesic Gromov hyperbolic spaces.
- Proper CAT(0)-spaces, more generally, Busemann spaces.
- Artin groups of large types (NEW!).
- graphical C(6)-small cancellation groups (NEW!).
- Direct product of above spaces and groups (NEW!).

Coarse Baum-Connes conjecture

Corollary (of Main theorem)

Coarse Baum-Connes conjecture holds for proper coarsely convex spaces, especially, for locally finite systolic complexes.

Example

The above corollary covers following spaces and groups.

- Proper Geodesic Gromov hyperbolic spaces.
- Proper CAT(0)-spaces, more generally, Busemann spaces.
- Artin groups of large types (NEW!).
- graphical C(6)-small cancellation groups (NEW!).
- Direct product of above spaces and groups (NEW!).

Remark

Osajda-Przytycki showed that Novikov conjecture for systolic groups holds.

Non-positively curved spaces and groups

Coarsely Convex Space

Application

Groups acting on a coarsely convex space

Semihyperbolic spaces and groups

Proposition (FO)
Let X be a coarsely convex space. Then X is semihyperbolic in the sense of Alonso and Bridson ('95).

Corollary (Aloso-Bridson, FO)
Let G be a group acting on a coarsely convex spaces X properly and cocompactly by isometries. Then the following hold.

1. G is finitely presented and of type FP
2. G satisfies a quadratic isoperimetric inequality.

Corollary

The 3-dimensional discrete Heisenberg group never act geometrically on any coarsely convex space

It does not satisfy any quadratic isoperimetric inequality.

Semihyperbolic spaces and groups

Proposition (FO)

Let X be a coarsely convex space. Then X is semihyperbolic in the sense of Alonso and Bridson ('95).

Corollary (Aloso-Bridson, FO)

Let G be a group acting on a coarsely convex spaces X properly and cocompactly by isometries. Then the following hold.

1. G is finitely presented and of type $F P_{\infty}$.
2. G satisfies a quadratic isoperimetric inequality.

Corollary

The 3-dimensional discrete Heisenberg group never act geometrically on any coarsely convex space
\because It does not satisfy any quadratic isoperimetric inequality.

Dimension of ∂G and cohomological dimension of G

We obtain a functional analytic characterization of the ideal boundary, and obtain the following.

> Proposition (Engel-Wulff, FO)
> Let X be a coarsely convex space. Then X admits an expanding
> and coherent combing in the sense of Engel and Wulff ('17). The ideal boundary ∂X is homeomorphic to the combing corona of X.

> Corollary (Engel-Wulff, FO)
> Let G be a group acting geometrically on a proper coarsely convex space. If G admits a finite model for the classifying space $B G$, then

$$
\operatorname{cd}(G)=\operatorname{dim}(\partial G)+1
$$

Dimension of ∂G and cohomological dimension of G

We obtain a functional analytic characterization of the ideal boundary, and obtain the following.
Proposition (Engel-Wulff, FO)
Let X be a coarsely convex space. Then X admits an expanding and coherent combing in the sense of Engel and Wulff ('17). The ideal boundary ∂X is homeomorphic to the combing corona of X.

Corollary (Engel-Wulff, FO)
Let G be a group acting geometrically on a proper coarsely convex space. If G admits a finite model for the classifying space $B G$, then
$\operatorname{cd}(G)=\operatorname{dim}(\partial G)+1$.

Dimension of ∂G and cohomological dimension of G

We obtain a functional analytic characterization of the ideal boundary, and obtain the following.

Proposition (Engel-Wulff, FO)

Let X be a coarsely convex space. Then X admits an expanding and coherent combing in the sense of Engel and Wulff ('17). The ideal boundary ∂X is homeomorphic to the combing corona of X.

Corollary (Engel-Wulff, FO)
Let G be a group acting geometrically on a proper coarsely convex space. If G admits a finite model for the classifying space $B G$, then

$$
\operatorname{cd}(G)=\operatorname{dim}(\partial G)+1
$$

Problems

1. An asymptotic cone of a coarsely convex space X is a CAT(0)-space? (It is true if X is a CAT(0)-space).
2. Classify isometies $\operatorname{Isom}(X)$ on a coarsely convex space X.
(hyperbolic, elliptic, parabolic,...) (If X is δ-hyperbolic, this is
done by analysing action on the boundary.)

Problems

1. An asymptotic cone of a coarsely convex space X is a CAT(0)-space? (It is true if X is a CAT(0)-space).
2. Classify isometies $\operatorname{Isom}(X)$ on a coarsely convex space X. (hyperbolic, elliptic, parabolic,...) (If X is δ-hyperbolic, this is done by analysing action on the boundary.)

[^0]: Remak
 Osajda-Przytycki showed that Novikov conjecture for systolic groups holds.

