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Dynamics of microphase separation of an oil-water-surfactant system is investi-
gated by means of cell dynamical system approach on the basis of newly proposed
two-order-parameter time dependent Ginzburg-Landau model. For equal volumes
of oil and water, the time evolution of characteristic length scale of domains is inves-
tigated by changing the average surfactant concentration. The more the amount
of surfactant, the slower the dynamics. The results are analyzed by using the
crossover scaling assumption. Dynamic response of microemulsions to shear de-
formation is also investigated. Time evolution of anisotropic factor under steady
shear flow is studied by changing shear rate and total amount of surfactant. As
the surfactant concentration is increased, overshoot peak height of the anisotropic
factor increases.

1 Introduction

Microemulsions being mixture of oil, water and surfactant are known to ex-
hibit various interesting microstructures depending on the temperature or the
composition (1). When the concentration of surfactant is relatively large, they
show a rich variety of regularly ordered structures such as the cubic phase, the
hexagonal phase or the lamellar phase. By lowering the concentration of surfac-
tant and if the volumes of oil and water are not very different, microemulsions
form a bicontinuous structure where a multiply connected randomly oriented
monolayer of surfactants separate oil-rich and water-rich subvolumes with a
mesoscopic length scale (10 ~ 100nm).

There are several experimental evidences for the convoluted structure of
oil and water such as by measuring the conductivity (2) or the diffusivities of
molecules (3). A direct observation of the randomly intertwined structure by
using the freeze-fracture microscopy has been also reported (4). Several X-ray
and neutron scattering experiments showed that the structure factor of the bi-
continuous phase shows a peak at non-zero wavevector k indicating that there
is a structure on a length scale 2w /k (5). It is also found that for microemul-
sions containing equal volumes of oil and water, the peak position shifts to
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larger values of k and peak height diminishes as the surfactant concentration
is increased (6).

When one quenches a ternary system from a high temperature homoge-
neous phase where the system is uniformly mixed to a low temperature phase
where a certain structure appears, the average domain size increases in time
until it reaches the equilibrium size. Since the surfactants act to lower the in-
terfacial tension and the driving force for the phase separation is decreased, it
is natural to expect that the dynamics of domain growth becomes significantly
slower in the presence of surfactants. With this perspective, several people
have investigated the effect of added surfactants on the phase separation dy-
namics using different models. For instance, Kawakatsu et al. have proposed
a “hybrid model” where oil and water are represented by coarse-grained fields
and surfactants are treated microscopically (7), whereas Laradji et al. per-
formed molecular dynamics simulations (8). Both of these works have shown
that the system containing surfactants exhibits a slow non-algebraic growth of
the domains, in gontrast to the pure binary systems.

Qualitatively same results have been also reported in the other paper
by Laradji and his coworkers who proposed a phenomenological two-order-
parameter Ginzburg-Landau free energy associated with standard time depen-
dent Ginzburg-Landau (TDGL) equations (9). In their model, one of the order
parameters represents the local concentration difference between oil and wa-
ter, while the other one represents the local surfactant concentration. Recently,
Patzold and Dawson extended the model by Laradji et al. to incorporate the
hydrodynamic effects by coupling the TDGL equations to Navier-Stokes-type
equations (10). They found that, in the presence of the hydrodynamic inter-
actions, the crossover scaling exponent becomes different from that obtained
by Laradji et al (9).

However, it is criticized in the book by Gompper and Shick that the two-
order-parameter model by Laradji et al. is not well-defined, since the free energy
of configurations with large surfactant concentration at the oil/water interfaces
is not bounded from below (1). So far, quite general expression of two-order-
parameter Ginzburg-Landau model has been given also by Gompper and Shick
(1). In fact, the model by Laradji et al. can be considered as one of the special
cases of their expression with too much simplification. Because of the above
reasons, the quantitative study on the phase separation dynamics based on the
well-defined two-order-parameter model has not yet been done.

Another aspect of the dynamics of microemulsions is related to the struc-
tural change in response to externally applied perturbations. The rheological
properties of microemulsions has been theoretically investigated by Mundy et
al. using a single-order-parameter TDGL model (11) and later extended by
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Pitzold and Dawson who also performed computer simulations (12). Here the
~ only order parameter describes the concentration difference between oil and
water and the presence of surfactants is taken into account through surface
tension parameter. (This point will be discussed later.) In Ref. (12), authors
showed that the microemulsions behave in an essentially non-Newtonian man-
ner. As discussed in the paper by Patzold and Dawson (12), the next step in
the computational study of the rheology of microemulsions is to include the
surfactant concentration field. Generally speaking, for a ternary mixture, it is
natural to characterize the system in terms of two independent concentration
variables.

In the this paper, we shall propose a new minimum two-order-parameter
Ginzburg-Landau model in which the above problems are removed but still
expresses the essential features of the ternary system. Our model intrinsically
includes the preferred value of the surfactant concentration when surfactant
molecules aggregate. Moreover we required in our model that when surfactants
aggregate at the interface, the interfacial tension becomes very small. Using
the proposed model, we numerically study the dynamics of phase separation
(13) and also investigate the dynamic response of microemulsions to shear
deformation (14). Here we pay attention to the case where the volumes of oil
and water are equal.

This paper is constructed as follows. In Sec. 2, after reviewing the model
by Laradji et al., we present our model and discuss its physical meanings. In
Sec. 3, we describe our simulation method which is essentially based on the
cell dynamical system approach. Sec. 4 gives the results for the dynamics of
phase separation, whereas Sec. 5 gives that for the dynamic response to shear
deformation. This paper ends with discussions in Sec. 6.

2 Two-Order-Parameter Model

In this section, we shall first review the two-order-parameter model proposed by
Laradji et al. (9). In their model, the local concentration difference between oil
and water is described by 1(r) and the local surfactant concentration measured
from a certain reference value is denoted as p(7). Their model is

Fp = / dr [d(VY)? — ayp® + uyp® + bp® + g9p?p® — sp(VY)?], (1)

where d, a, u, b, g and s are positive constants. The term bp? prevents the
surfactants from forming clusters. The local coupling term gy?p? guarantees
that the local surfactant concentration remains small in the bulk where |¢|
is large. The last non-local coupling term —sp(V1)? favors the surfactants
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to sit at oil/water interfaces. As mentioned in the introduction, however,
this free energy functional is not bounded from below for positive values of
s (1). Although Pétzold and Dawson reported that they did not find any
numerical instabilities within the parameter values they used (10), we observed
a diverging tendency of the surfactant concentration at the oil/water interfaces
as we decreased the simulation mesh size. The finite value of p is supported
only by the non-zero simulation mesh size. This is obviously not reasonable
from the point of view of solving continuous partial differential equations.
Moreover, we found that the domains do not flow globally in the presence of
a convective macroscopic flow within their model. This problem also seems to
be related to the model intrinsic singular behavior at the oil/water interfaces.

Here we propose a different two-order-parameter Ginzburg-Landau free
energy functional which has no drawbacks mentioned above. What we have
required in our model are that (i) the profiles of 4 and p at oil/water interfaces
‘do not depend on the average values of ¢ and p (denoted hereafter as 3 and
B, respectively) and that (ii) the coarse-graining dynamics of 1 based on the
free energy becomes slow when the amplitude of p at the interface takes a
certain saturated value. The newly proposed minimum model which fulfills
these requirements is

F = /d'r [w(vz¢)2 +d(VQ/))2 _ a¢2 +u¢4 + ep2(p_ ps)z _ SP(V’IP)Z] ,
(2)

where w, d, a, u, e, p; and s are positive constants. First we have added the
term w(V24)? which prevents the model from becoming unbounded. Next we
replaced the local potential of p with a double-minimum potential ep?(p—ps)?
which allows the coexistence of the two bulk states, i.e., p = 0 and p = p,.
The physical meaning of these two states are as follows. The state p = 0
corresponds to the case in which the system is locally occupied either by oil
or water. There are no surfactants in the considered local volume. The state
p = ps corresponds to the case in which the local volume is occupied only
by surfactants. The quantity p, can be considered to represent the density
of condensed hydrocarbon chains of surfactants when they self-assemble. It is
likely that in any type of surfactant aggregates, the density of hydrocarbon
chains does not change appreciably. It should be noted here that we did not
include any gradient term of p, say (Vp)?. This is physically reasonable since
the energy cost due to the direct attachment between hydrocarbon chains and
oil molecules or between hydrophilic head and water molecules is small. As
regards the coupling terms, the local coupling term g¥?p? in Eq. (1) has been
dropped out, whereas only the non:local coupling term —sp(V1h)? is left here.
Due to the latter term, the state with p = ps tends to occupy the narrow region
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around the oil/water interfaces. It is also essential in microemulsions that the
interfacial tension vanishes when the interface is saturated with surfactants
(15; 16). For this reason, we chose the values of parameters to satisfy the
relation d = sps, which plays an essential role for our requirement (ii) in the
model. We believe that Eq. (2) is one of the minimum models which is sufficient
to grasp the essential properties of microemulsions. Another possibility of the
model will be discussed in the last section.

For the time evolution of ¥ (7, t) and p(r,t), we assume the standard TDGL
equations. Both 1 and p are conserved quantities. Since we later consider the
case that there is a macroscopic flow v, TDGL equations acquire a convective
term and become

O OF

5+ V() = M¢V2ﬁ +ny (7, ), (3)
o oF
a¢ TV (09) = M,V () (4)

Here M,, and M, are transport coefficients, and 7, and 7, represent thermal
noise which satisfy the fluctuation-dissipation theorem: (7y() (7, t)ny(p) (7', 1))
= —2kgT My, V?8(r — r')é(t — t'), where kp is the Boltzmann constant and
T is the temperature. As regards the macroscopic flow in Egs. (3) and (4),
here we only consider a simple shear flow v;(r) = yy,vy = v, = 0, where the
shear rate 4 is the time derivative of the strain 7. By inserting Eq. (2) into
Egs. (3) and (4), the time evolution equations can be explicitly written as

%”t- —q'ry%% + MyV? [=2a9) + 4uyp® + 2wV
—2(d — sp) V2 + 25(V9p) - (V)] + 1y (7, ¢), (5)

% — 922 4 M,V [2ep(o~ )20 — ) — (VW] + 1,(r ). (6)
In the present work, we have entirely ignored the hydrodynamic inter-
actions which might play an important role in microemulsions. One of the
realistic systems which corresponds to our model is a binary homopolymer
mixture containing diblock copolymers (17). Since we have not included the
hydrodynamic interactions, our model lacks a bare viscous time scale. Never-
theless, we can chose the model intrinsic time scale as the inverse of the initial
growth rate of the most unstable mode. The wavevector dependent initial
growth rate is defined as

T = MKy (), 7
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where we have introduced the spatial Fourier transform of #(r,t) as ¢y (t) =
[ drip(r,t) exp(ik - ). Since the typical time scale for surfactants to assemble
at the oil/water interfaces is long compared to that of initial phase ordering
process, we neglect here the effect of surfactants on A(k). Hence we have

A(k) = —2M,, (wk® + dk* — ak?), (8)
where k = |k|. The most unstable mode k = ko which maximizes A(k) is

s —d+Vd?+3aw '
K2 = = . 9)

Thus the typical time scale 7y in our model is given by 79 = 1/A(ko).

3 Cell Dynamical System Approach

In order to solve the above time evolution equations, we used the cell dynam-
ical system (CDS) approach proposed by Oono et al. (18). The CDS model
is a space-time discrete model to describe a phenomena at the mesoscopic
level and proved to be an efficient algorithm for numerical simulations. Here
we restricted ourselves to a two-dimensional system. Accordingly, the space
coordinate is specified by the lattice point 1 = (ng,ny) in an L x L square
lattice. We also impose periodic boundary conditions. The CDS equations
corresponding to Egs. (5) and (6) are

Y(n,t+1) =9p(n,t) - "ynyé,,,zp(n,t) + M¢Y~7ZI(n,t) + Cyn(n,t), (10) -

p(n,t +1) = p(n,t) — Ynydep(n, t) + MV2 T (n,t) + Cpon (n,t),  (11)

where Z(n,t) and J(n,t) are the discrete thermodynamic forces given by

I(n,t) = —Atanht) + 9 + W(V2)2p — (D — Sp)VZp + S(V¥) - (Vp), (12)

T(n.t) = Bplp— p) (20— ps) — 55(V4)2, (13)

respectively. The “tanh” termin Eq.(12) is introduced for the sake of numerical
stability (18). In the above equations, the discretized differential operators are
defined as V¢ = (8z¢,0yd) = 3 [¢(ne + 1,ny) — d(ne — 1,ny),d(ng,ny +1) —
d(ng,ny — 1)] and V2¢ = (1/2) 3 $(nearest-neighbor cells)

+ (1/4) T ¢(next-nearest-neighbor cells) — 3¢, respectively. (¢ denotes either
¢ or p.) The noise terms in Egs. (10) and (11) are given by n(n,t) =
ns) (nz+1,my,t)— ng(c’) (ng, 1y, t) + 771(,’) (ng,ny +1,t) — 773(,’) (ng, Ny, t), where ng)
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Figure 1: Time evolutions of ¢ and p for p = 0.1. The left and right column shows the
spatial distribution of 1 and p fields, respectively. Dark area denotes the region of higher
values of ¥ and p. Notice that the typical time scale is 79 & 5.0 x 102.

and ng) are random numbers uniformly distributed in the interval [—1,1] and
Cyy(p) are the noise amplitudes taken as independent parameters in CDS (19).
The noise perturbations are important in order to accelerate the evolution

processes and prevent domains from freezing (10).

In our simulations, we fixed the parameters to L = 128, A = 1.3, W = 0.2,
D =05 8=05 E =025 p, = 1 My = M, =005, Cy = C, =
0.02 and 3 = 0, whereas p has been changed as p = 0.1,0.2,0.3,0.4 and
0.5. Notice that our parameter choice satisfies D = Sp, which ensures the
interfacial tension to vanish when p = p,. The initial distributions of ¢ and p
are specified by a random uniform distribution in the range [1) — 0.01, 1 +0.01]
and [p — 0.01,p + 0.01], respectively. With our choice of parameters, the most
unstable mode is ky = 0.51 (Eq. (9)) and the typical time scale is 79 & 5.0 x 10?.

In the presence of the shear flow, we required a boundary condition such
that ¢(ng,ny,t) = ¢(ngy +iL 4+ vjL,n, + jL,t) holds for arbitrary integers 4
and j (20). Before the shear flow is applied, Egs. (10) and (11) are numerically
solved up to 5 x 10° time steps. After this process, we apply the shear flow
with 4 =2 x 107%, 5x 107, 1 x 1072 and 2 x 1073, In Sec. 5, the time origin
is taken as the instance when the shear flow is turned on. Notice that the
investigated shear ranges from the weak to the medium shear (y7p = 0.1 ~ 1).
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Figure 2: Time evolutions of 9 and p for p = 0.4. The same with Fig.1.

4 Dynamics of Phase Separation

In this section, we discuss the result of the dynamics of phase separation in
the absence of shear flow, i.e., ¥ = 0. The typical time evolutions of ¢ and
p are depicted in Figs. 1 and 2 for p = 0.1 and p = 0.4, respectively. For a
quantitative discussion, we have calculated the average domain size of 1 in
the following way. First a discrete Fourier transform of 4(n,t) is defined by
P (t) = Yop ¥(n,t)exp(ik - n) with k = 27n/L and n € {0,1,---,L — L}2.
The structure factor is given by S(k,t) = (41, (t)¥_p(t)), where the average is
over the ensemble of systems. In this paper, we calculated the time dependent
(inverse) characteristic length scale defined by (21)

| ko KIS (R, 1)
a Ek;ﬁg |k|”28(k,t) :

This expression provides better estimation of the characteristic length scale
than that obtained by using the spherically averaged structure factor (21). In
Fig. 3, (k(t)) is plotted as a function of time step for different values of p for the
noiseless case (Cy = C, = 0). Each line corresponds to a single run. By turning
off the coupling between 1 and p, we have also included the result of ordinary
spinodal decomposition which exhibits the well-known ¢~'/% evolution. The
estimated most unstable mode kg is consistent with our simulation result. We
recover the following features which have been also found in the previous works.
(i) In the presence of surfactants, evolution of the pattern becomes exceedingly

(k(t))

(14)
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Figure 3: Inverse characteristic length scale (k(t)) as a function of time step for different
values of p. The straight line has a slope of —1/3.

Figure 4: Profiles of ¢ and p along the straight lines drawn in Fig. 1 (a) (¢ = 50000). The
solid line represents 9 and dashed line represents p.

slow, which appears to be almost logarithmic in time for large time steps and
large p. (ii) At almost any time step, the average domain size decreases as p
is increased.

In addition to these features, especially for small p, we can observe the
coexistence of two types of interfaces at the early stage of phase separation,
i.e. the coexistence of saturated interface and unsaturated interface. At the
saturated interfaces, p takes a saturated value (slightly above 1), whereas the
value of p at the unsaturated interfaces is almost the same as that in the balk
phase. This can be more clearly seen in Fig. 4 where we plotted the cross section
profiles of the two fields along the straight lines drawn in Fig. 1 (¢ = 50000).
As the phase separation proceeds, the system will eventually be governed by
the saturated interfaces and will reach the equilibrium configuration. It is
interesting to note that the dynamics of phase separation in microemulsions
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Figure 5: Scaling plot of f(z) as a function of z. The straight line has a slope of 1 /3.

can be understood from the point of view of motion of one-dimensional interface
(or contour) separating saturated and unsaturated interfaces.

The time evolution of the: characteristic length scale for various values
of 7 has been analyzed by using the crossover scaling assumption. Since the
hydrodynamic interaction is ignored in our simulation, we consider a similar
form proposed in Ref. (9);

(k(t)) =72 (B~ po)®t), (15)

where f(z) is a scaling function with f(z) ~ const. for z — 0 and f(z) ~
z1/3 for £ = oo. Here, we denote the average value of p in the bulk phase
as pg, which can be considered to correspond to the origin of the surfactant
density. We checked that this value does not depend on p. Hence for small
z, the characteristic length scale exhibits a ¢t~1/3 behavior as in the ordinary
spinodal decomposition, whereas for large x, it becomes proportional to the
total surfactant concentration. The latter fact has been confirmed both by
experiments (6) and by Monte Carlo simulations (22) and can be interpreted
in the following way; if all the interfaces are saturated, the total amount of
surfactant should be proportional to the total area (“length” in our simulation)
of the interface which is also proportional to the inverse characteristic length.
In Fig. 5, we have plotted the scaling function f(z) as a function of z for
various values of p by fixing po = —0.1. Although the data collapse for larger
values of p is satisfactory, the data for small p (such as p = 0.1) deviate slightly
from the universal behavior.
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Figure 6: Time evolution of v (left)

nd p (right) for (a) p=0.1, 9 =2 X 10~ (y70 = 0.1)
and (b) p 1,y

=2 x 1073 (§7 = 1).

an
0.

5 Response to Shear Flow

In this section, we discuss the dynamical response to the steady shear flow
with non-zero 4. Typical time evolutions of 1) and p are shown in Fig. 6 for (a)
5=0.1,+%=2x10"* (470 = 0.1) and (b) p= 0.1, ¥ = 2x 1072 (y7o = 1). By
changing p and ¥, we found the following general behaviors. When the shear
rate is small, surfactants move under the flow keeping themselves attached
to the oil/water interfaces. The total amount of the interface does not seem
to change appreciably during the deformation. On the other hand, when the
shear rate is large, some surfactants are blown off the interfaces by the shear.
The coagulation and break-up processes take place as has been observed in the
spinodal decomposition under steady shear flow (20) and the total amount of
the interface increases.

Given the evolving patterns, we have evaluated the anisotropic factor de-
fined by. (11; 12)

Quy =5 2[ )@,) = 2W (Bu0,) (V)] (16)

where {2 is the total volume (area) of the system. Although this quantity
essentially represents the zy-component of the macroscopic excess stress tensor
in the case of spinodal decomposition without any surfactants (20), this is not
the case in the present model since there should be a contribution to the stress
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Figure 7: Quy (upper 4 curves, see Eq. (10)) and o4y (lower 4 curves, see Eq. (11)) as a
function of the shear strain 4y = 4t for fixed ¥ = 2 X 10~* and 5 = 0.1, 0.2, 0.3, 0.4.

due to the non-local_ coupling term in Eq. (2). Here we propose here the
following quantity

sy =5 3 [~(D = SN @) - 2W Bed)(T)] . (17)

Fig. 7 shows the plot of Qgy and o4y as a function of the shear strain « for
several values of p. Here the shear rate is fixed as y = 2 X 10~%. In Fig. 8, we
also plotted o4, for several values of 4 fixing the total amount of surfactants
as p = 0.1. It is seen that both @, and o,y initially increase rapidly and
then decrease. We observed that the strain giving the peak position of Qgzy
and 0, is almost constant, Ypeak = 2, through the present simulation. On the
other hand, the peak height of Qy is larger than that of o,y as a whole. p
dependencies of the peak height of Q. and oy are also different; the peak
height of Q., increases linearly with p, while that of 05, is almost independent
of p. However, a clear shear rate dependence of the peak height of o4y is
observed in Fig. 8 as in Ref. (20).

6 Summary and Discussions

In this paper, using the CDS approach, we have investigated the effect of
surfactants on the dynamics of phase separation between oil and water on
the basis of newly proposed minimum two-order-parameter TDGL model. We
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Figure 8: 04y (see Eq. (11)) as a function of the shear strain v = 4t for fixed 5 = 0.1 and
4=2x10"%5x10"%, 1 x 1073, 2 x 10~3 from bottom to top.

restricted ourselves to the case where the volumes of water and oil are equal
whereas the average surfactant concentration has been changed systematically.
The time evolution of the typical length scale of the domains is characterized
by an extremely slow dynamics. Our results can be interpreted according
to the dynamical scaling assumption. Furthermore, we have investigated the
dynamic response to the steady shear flow on bicontinuous microemulsions
by changing the average surfactant concentration and the shear rate. As the
surfactant concentration is increased, overshoot peak height of the anisotropic
factor increases.

In the rest of this paper, we shall give some discussions. We first comment
on the other possibilities of the two-order-parameter model. As regards the
double-minimum local potential of p in Eq. (2), one may consider to replace it
with a single-well potential p? which appears in the original model by Laradji
et al. (see Eq. (1)). (The term (V24)? is always necessary for the stability of
the model.) We also examined this case, but it turned out that the system
exhibits macrophase-separation rather than microphase-separation within the
parameter we investigated. This means that the surfactants do not adsorb
enough at the interface to suppress the phase separation dynamics as far as
p(V4)? is the only included coupling term. This situation can be changed,
for example, by including a local coupling term such as 1?p according to the
symmetry consideration. (Notice that 1?p? term in the model by Laradji et al.
gives a higher order contribution than ¢?p.) In this paper, we tried to reduce
the number of different types of coupling terms as few as possible. We consider
that the non-local coupling term used in this paper works more essentially for
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the slow dynamics. |

Finally we comment on the difference between the present rheological study
based on the two-order-parameter model and the previous works (11; 12) which
essentially utilize the single-order-parameter free energy proposed by Teubner
and Strey to describe the microemulsion phase (23)

Frs = [ dr [A(V9)? — BVW)" +Cv?], (18)

where A, B and C are positive constants (B is the surface tension parameter).
This free energy is consistent with the observed scattering function which shows
a peak at non-zero wavevector q and falls off as q~* at large wavevectors.
Since C > 0 in Eq. (18), ¢ locally prefers to vanish, 1 = 0, whereas 9 takes
either ¥ = +4/a/2u # 0 for Eq. (2). (Notice that a in Eq. (2) is defined as
positive.) In this sense, previous rheological studies of microemulsions (11; 12)
have examined essentially the disordered phase as in the study of the rheology
of block copolymer melts near to the critical point (24). In our work, on the
other hand, we observe motions of domains with sharp oil/water interfaces,
and hence dealing with dynamics of ordered phase. Similar approaches to the
phase separating binary mixture (20) or the ordered block copolymers (25)
have been also reported.
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