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Abstract – Optical tracking in vivo experiments reveal that diffusion of particles in biological
cells is strongly enhanced in the presence of ATP and the experimental data for animal cells
could previously be reproduced within a phenomenological model of a gel with myosin motors
acting within it (Fodor É. et al., EPL, 110 (2015) 48005). Here, the two-fluid model of a gel
is considered where active macromolecules, described as force dipoles, cyclically operate both in
the elastic and the fluid components. Through coarse-graining, effective equations of motions
for idealized tracer particles displaying local deformations and local fluid flows are derived. The
equation for deformation tracers coincides with the earlier phenomenological model and thus
confirms it. For flow tracers, diffusion enhancement caused by active force dipoles in the fluid
component, and thus due to metabolic activity, is found. The latter effect may explain why ATP-
dependent diffusion enhancement could also be observed in bacteria that lack molecular motors in
their skeleton or when the activity of myosin motors was chemically inhibited in eukaryotic cells.

Copyright c© EPLA, 2017

Introduction. – High-precision optical tracking ex-
periments demonstrate that diffusion of microinjected
or natural particles is strongly enhanced in the pres-
ence of ATP and, generally, under metabolic activity in
the cytoplasm of a biological cell [1,2]. Similar behav-
ior was previously found for diffusion within the nucleo-
plasm [3,4]. Thus, non-thermal active noises apparently
dominate transport processes inside living cells. Two pos-
sible explanations have been proposed. The first of them
relates the observed effects to activity of myosin motors
that cross-link actin polymer filaments in eukaryotic (an-
imal) cells [5,6]. Importantly, strong diffusion enhance-
ment in the presence of ATP could also be observed in

vitro in the experiments with synthetic actin-myosin sys-
tems [7]. Another possibility is that non-thermal noise is of
metabolic origin and it arises from fluid agitation caused
by active conformational changes in protein molecules
within the cytoplasm [1,8]. Such explanation is supported
by experimental results for bacteria (i.e., prokaryotic mi-
croorganisms) that lack molecular motors in their skeleton

but where strong diffusion enhancement is nonetheless
observed [1] (and ATP-dependent diffusion enhancement
was also found when the skeleton had been dissolved [1]).
Recently, it was moreover demonstrated that both the
tracking and the microrheology data on active diffusion
in eukaryotic cells can be reproduced in the framework of
a phenomenological model for the motion of tracer par-
ticles trapped inside an elastic environment and subject
only to active forces generated within it [9].

In this letter, the problem is analyzed within a gen-
eral model of a viscoelastic medium that combines strain
fluctuations caused by molecular motors in the gel and
mechanical agitation of the fluid component caused by
metabolic activity within it. The classical two-fluid de-
scription is employed for the viscoelastic medium [10] and
molecular motors, enzymes and other protein machines are
modeled as active force dipoles. We introduce two kinds of
hypothetical non-invasive tracers that are intended to vi-
sualize, respectively, elastic deformations and fluid flows.
Reduced equations for random motion of both kinds of
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particles are derived. As we find, the derived equation
for deformation tracers coincides with the previously pro-
posed phenomenological model [9]. On the other hand,
relative random motion of flow tracers with respect to
the elastic component is described by a Langevin equation
with non-thermal metabolic noise.

Our analysis reveals that localization and diffusion phe-
nomena are generally involved. The motion of tracers im-
mobilized within the elastic subsystem is localized in the
long-time limit, but it can show a diffusion-like behavior
at the intermediate time scales shorter than the coopera-
tive correlation times of molecular motor aggregates (i.e.,
myosin microfilaments) operating in the active gels of eu-
karyotes, as also found in the phenomenological model [9].
On the other hand, motion of flow tracers remains dif-
fusive in the long-time limit, and such active diffusion is
controlled by metabolic processes that take place both in
prokaryotes and eukaryotes. Assuming that the motion of
real tracer particles represents repeated attachment and
detachment to the polymer network, we expect for it a
combination of localization and diffusion effects.

The model. – Our study is based on the two-fluid
model of gels [10]. A viscoelastic medium is described
by the distributions of elastic deformations u(r, t) and
fluid velocities v(r, t) within it. Neglecting inertial effects
that do not play a role on the considered time scales, the
evolution of the two fields is governed by

0 = μ∇2u + (μ + λ)∇ (∇ · u) − Γ

(

∂u

∂t
− v

)

+ fu, (1)

0 = η∇2v −∇p − Γ

(

v −
∂u

∂t

)

+ fv. (2)

If the volume fraction of the elastic component is small,
the conservation equation ∇ · v = 0 should additionally
hold. Here, μ and λ are the Lamé coefficients of the elastic
network, η is the fluid viscosity, and p is the pressure field
that can be eliminated by using the above incompress-
ibility condition. The coefficient Γ specifies the relative
strength of viscous friction forces when an elastic network
is dragged by the fluid that flows through it. The approx-
imate continuum description for a polymer gel holds only
on the length scales that are much larger than the mesh
size which is usually close in its magnitude to the char-

acteristic length ℓ = (η/Γ)
1/2

. Moreover, a characteristic
viscoelastic relaxation time τ = η/μ can be also defined.
Equations (1) and (2) include forces fu and fv that are ap-
plied, respectively, to the elastic and the fluid components.
Since we are only interested in non-thermal fluctuations,
we do not include into such forces the thermal noise.

To study diffusion in viscoelastic biological systems,
tracer particles with diameters a significantly larger than
the mesh size are employed (a ≫ ℓ). The dynamics of
such particles inside a gel is itself a complicated problem;
it depends on the mechanical properties of such particles
and on their interactions with the polymer network [11].
Moreover, the presence of big particles will also modify

the local dynamics of the gel because, for instance, the
assumption of the small volume fraction of the non-fluid
component will not be satisfied at the location of such a
particle.

To avoid these complications, motions of non-invasive

flow velocity and deformation tracers will be considered
by us. A flow velocity tracer can be introduced by choos-
ing a certain volume element of the fluid and following
its motion with time. Similarly, a deformation tracer rep-
resents a chosen volume element of the elastic compo-
nent. The tracers can only follow those velocity and de-
formation fluctuations whose characteristic length scale
is larger than the tracer size a. Hence, they visualize
the coarse-grained fluctuating fields obtained by averag-
ing over the volume elements of linear size a. Such fields
include only the contributions from spatial Fourier modes
with wave numbers smaller than qc = 4π/a. The coarse-
grained velocity and deformation fields are defined as
Vα(r, t) = (2π)−3

∫

|q|<qc

dq vα(q, t)e−iq·r and Uα (r, t) =

(2π)−3
∫

|q|<qc

dquα (q, t) e−iq·r, respectively.

Generally, both compression and shear deformations
will be induced. We shall however only consider shear
deformations because they can be visualized by incom-
pressible tracers. Retaining only such deformations and
performing a transformation to the spatial Fourier com-
ponents of involved fields, we obtain from eqs. (1) and (2)

0 = −μq2uα (q, t) − Γ

(

∂uα(q, t)

∂t
− vα (q, t)

)

+ (δαβ − q̂αq̂β)fu
β (q, t), (3)

0 = −ηq2vα (q, t) − Γ

(

vα (q, t) −
∂uα(q, t)

∂t

)

+ (δαβ − q̂αq̂β)fv
β (q, t), (4)

where the last terms represent transverse components of
the fluctuating force fields and we have introduced the no-
tations q̂α = qα/|q| = qα/q. Summation over the repeated
indices will be assumed throughout this letter.

The forces are generated by active elements, attached
to the elastic network or suspended in the fluid. Be-
cause they are caused by internal dynamics within such
elements, the net total force generated by each element
vanishes. However, the elements still can act as force
dipoles. A force dipole i is characterized by a unit vec-
tor êi of its orientation and by its magnitude mi (for a
force dipole formed by a pair of forces Fi and −Fi at the
points separated by distance di, we have mi = Fidi). It
can also be described by a nematic tensor with the ele-
ments Ni,αβ = mi(êi,αêi,β − δαβ/3) [4]. Note that this
nematic tensor is invariant with respect to the inversion
êi → −êi and hence the direction of the vector êi for a
given line orientation can be arbitrarily assigned. Below
we use, for convenience, the tensor Mi with the elements
Mi,αβ = miêi,αêi,β .

We assume that the orientations ê
u(v)
i and positions

r
u(v)
i of force dipoles are fixed in time, but are randomly
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distributed. Spatial distributions of the two kinds of ac-
tive force dipoles are given by fluctuating tensor fields
defined as

M
u(v)
αβ (r, t) =

∑

i

m
u(v)
i (t)ê

u(v)
i,α ê

u(v)
i,β δ(r − r

u(v)
i ), (5)

which satisfies 〈M
u(v)
αβ 〉 = 0. A single active force dipole

is characterized by the correlation function Su(v)(t) =
〈mu(v)(t)mu(v)(0)〉 (see later eq. (28)).

The dipoles are statistically independent and correlation
functions for their tensor fields are

〈M
u(v)
αβ (r, t) M

u(v)
α′β′ (0, 0)〉 =

cu(v)

15
(δαβδα′β′ + δαα′δββ′ + δαβ′δβα′) δ(r)Su(v)(t), (6)

where cu and cv are the concentrations of force dipoles.
We also assume that cross-correlations are absent,
〈Mu

αβMv
α′β′〉 = 0, although they can easily be included,

too.
The active force fields f can be expressed in terms of the

tensor fields M of the dipoles. Assuming that each force
dipole i corresponds to a pair of forces Fi and −Fi whose
application points are separated by a vector diêi, we have

fα(r, t) =
∑

i

Fi(t)êi,α [δ(r − ri − diêi) − δ(r − ri)] , (7)

and therefore

fα(q, t) =

∫

dr fα(r, t)eiq·r =

∑

i

Fi(t)êi,α [exp(iq · ri + idiq · êi) − exp(iq · ri)] , (8)

where we have dropped the superscripts u or v. Consider-
ing the modes with the wavelengths that are much larger
than the distances between the forces, i.e., qdi ≪ 1, we
approximately obtain

fα(q, t) = i
∑

i

Fi(t)diqβ êi,αêi,β exp(iq · ri), (9)

and thus
fu(v)

α (q, t) = iqβM
u(v)
αβ (q, t). (10)

Notice that, although we have derived this equation for
pairs of forces, it is more general. On the length scales
much longer than its own size, each object that asymmet-
rically changes its shape can be described as some force
dipole. Taken together, eqs. (3) and (4) with the above
expressions for the forces provide a complete description
of the viscoelastic system with active force dipoles.

Motion of tracer particles. – Reduced equations
that describe stochastic motion of tracers can be derived.
This motion is characterized by coarse-grained deforma-
tion and velocity fields that include only spatial Fourier
components with relatively small wave vectors, such that

|q| < qc. The simplifying assumption is that the tracer
is big, namely, that its diameter is much larger than the
mesh size or, explicitly, that the condition qcℓ ≪ 1 is sat-
isfied (note that qc ∼ 1/a).

Green functions g of the two-fluid model in eqs. (1)
and (2) have been derived by Levine and Lubensky
[12,13]. They allow us to express deformation and ve-
locity fields in terms of the applied forces, i.e., to write
uα(q, ω) = guu

αβ(q, ω)fu
β (q, ω) + guv

αβ(q, ω)fv
β (q, ω) and

vα(q, ω) = gvu
αβ(q, ω)fu

β (q, ω) + gvv
αβ(q, ω)fv

β (q, ω). Using
these Green functions which express the forces in terms of
the force dipoles through eq. (10), and performing alge-
braic transformations, we obtain the following expressions
for transverse components of the deformation and velocity
fields:

uα(q, ω) = Guu
αβγMu

βγ(q, ω) + Guv
αβγMv

βγ(q, ω), (11)

vα(q, ω) = Gvu
αβγMu

βγ(q, ω) + Gvv
αβγMv

βγ(q, ω), (12)

with Gαβγ(q, ω) = igαβ(q, ω)qγ or, explicitly,

Guu
αβγ =

1 + q2ℓ2

μq(1 + q2ℓ2 + iωτ)
Qαβγ(q̂), (13)

Guv
αβγ =

1

μq(1 + q2ℓ2 + iωτ)
Qαβγ(q̂), (14)

Gvu
αβγ =

iωτ

ηq(1 + q2ℓ2 + iωτ)
Qαβγ(q̂), (15)

Gvv
αβγ =

iωτ + q2l2

ηq(1 + q2ℓ2 + iωτ)
Qαβγ(q̂), (16)

where we have introduced Qαβγ(q̂) = i (δαβ − q̂αq̂β) q̂γ .
The above results can be simplified if only the modes

with small wave numbers qℓ ≪ 1 are considered (but q2ℓ2

may still be larger than ωτ). By performing the inverse
Fourier transform to the time-dependent deformation am-
plitude u(q, t) and the velocity amplitude v(q, t), reduced
evolution equations for these variables can be derived.

For the deformation field, we thus find

η
∂uα(q, t)

∂t
= −μuα(q, t)

+
Qαβγ(q̂)

q
[Mu

βγ(q, t) + Mv
βγ(q, t)]. (17)

On the other hand, the velocity field can be generally writ-
ten as

v(q, t) =
∂u(q, t)

∂t
+ w(q, t), (18)

separating the contribution w that represents the relative
fluid velocity in the co-moving coordinate frame associated
with the elastic component. For such relative velocity, the
evolution equation becomes

η
∂wα(q, t)

∂t
= −μwα(q, t)+

μℓ2

η
qQαβγ(q̂)Mv

βγ(q, t). (19)

Notice here that, whereas any force dipoles present in the
medium will have an effect on the deformations in the
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elastic component in eq. (17), only the force dipoles acting
on the fluid component of the medium will be affecting the
relative velocity w in eq. (19).

Equation (17) can be used to obtain an effective equa-
tion of motion for the deformation tracer immobilized in
the elastic component. The spatial position U(t) of such
a tracer with respect to an arbitrary reference point (that
can be conveniently chosen as the origin of coordinates
r = 0) is given by Uα(t) = (2π)−3

∫

|q|<qc

dquα(q, t). With

the use of eq. (17), the stochastic Langevin equation for
the deformation tracer is finally obtained as

η
dUα

dt
= −μUα + Fu

α (t), (20)

where the time-dependent random force Fu(t) is defined as

Fu
α (t) =

∫

|q|<qc

dq

(2π)3
Qαβγ(q̂)

q
[Mu

βγ(q, t) + Mv
βγ(q, t)].

(21)

The correlation function of this random force is

〈Fu
α (t)Fu

β (0)〉=ζuqc[c
uSu(t) + cvSv(t)]δαβ ≡Hu(t)δαβ ,

(22)

where the coefficient can be calculated as ζu = 1/(45π2)
due to the following integral over all orientations of the
unit vector q̂:

∫

dq̂Qαγδ(q̂)Qβγδ(−q̂) =
8π

3
δαβ . (23)

In a similar manner, a stochastic equation of motion
for fluid velocity tracers can be obtained. According to
eq. (18), the tracer velocity can be split into two parts,
V = dU/dt+W. The first part represents the velocity of
a tracer if it were immobilized in the elastic component.
This contribution to the tracer velocity can be determined
by using eq. (20). In contrast to this, the second con-
tribution yields the relative instantaneous velocity of the
considered tracer with respect to the elastic component,
such as the polymer network. By using eq. (19), we find
a stochastic Langevin equation for it as

η
dWα

dt
= −μWα + Fw

α (t), (24)

where the random force is defined as

Fw
α (t) =

μℓ2

η

∫

|q|<qc

dq

(2π)3
qQαβγ(q̂)Mv

βγ(q, t). (25)

Then its correlation function can be calculated as

〈Fw
α (t)Fw

β (0)〉 = ζw μ2q5
c ℓ4

η2
cvSv(t)δαβ , (26)

where ζw = 1/(225π2) (see also eq. (23)). This random
force is determined only by the force dipoles acting on the

fluid component. Thus, we have derived effective eqs. (20)
and (24) for the motion of the two kinds of tracers that
visualize, respectively, polymer network deformations and
flows in the fluid component.

We note here that eq. (20) coincides with the phe-
nomenological model used by Fodor et al. [9]. In their
model, the spatial position x of a tracer particle immobi-
lized in the network was assumed to follow the stochastic
equation

γ
dx

dt
= −kx + fA(t), (27)

if we omit the thermal random forces. In the above, γ
was the friction coefficient of the environment, k was the
spring constant of the surrounding network, and fA(t) was
the fluctuating active force. To fit the model predictions to
the experimental results, it was necessary to assume that γ
and k were both proportional to the tracer size a, and that
the magnitude of the active force scaled as fA ∼ a1/2 [9].
The model described by eq. (27) is straightforwardly ob-
tained from eq. (20) if we identify the tracer position x as

U, and introduce γ = η/qc, k = μ/qc and fA = Fu/q
1/2
c ,

where qc ∼ 1/a as before. According to eq. (21), the active
force fA should actually have contributions coming both
from the force dipoles in the elastic and fluid components
of the medium.

Localization vs. diffusion. – Using eqs. (20)
and (24), one can determine time dependences of the
mean-square displacements (MSD) for both kinds of trac-
ers. The analysis is simplified if we take into account that,
for biological cells, the viscoelastic relaxation time τ can
be estimated as being about 1 ms, and this is much shorter
than the typical times over which particle positions can
be experimentally traced. Moreover, it would be typically
also shorter than correlation times of active force dipoles.
On the time scales much longer than τ , the time derivative
terms in eqs. (20) and (24) can be dropped and they reduce
to Uα(t) = Fu

α (t)/μ and Wα(t) = Fw
α (t)/μ, respectively.

Hence, the local position of the deformation tracer and
the local relative velocity of the flow tracer follow instan-
taneously the applied forces. Therefore, statistical prop-
erties of such active forces should play an important role.

Various kinds of active macromolecules in a biological
cell can contribute to the force dipole activity within it.
Active force dipoles operating in the fluid subsystem are
of metabolic origin. They correspond to enzymes that
undergo repeated conformational changes and thus stir
mechanically the cytoplasm. In contrast to this, force
dipoles operating in the elastic subsystem are associated
with molecular motors such as myosin, kinesin and dynein.
Because of their activity, the skeleton of eukaryotic cells
represents an active gel. In bacteria and other prokary-
otes, however, molecular motors are absent. Hence, their
gel is passive and only the forces of metabolic origin are
in operation in them.

Different kinds of active macromolecules in the cell will
have different correlation functions of their force dipoles,
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and such macromolecules will be present in different con-
centrations. While we have assumed for simplicity that
only one group of elastic force dipoles and one group of
fluid force dipoles are present with their concentrations
cu and cv, respectively, summation over different kinds
of macromolecules within each group has actually to be
performed. Because of this, no universal expressions for
dipole correlation functions can be formulated. For sim-
ple estimates, we can however assume that, within each
group, dipoles are exponentially correlated in time with
some correlation times τu and τv and we have

Su(v)(t) =
Su(v)

2τu(v)
exp

(

−
|t|

τu(v)

)

, (28)

where Su and Sv are integral intensities of the respective
force dipoles.

The MSD for deformation tracers is obtained from
eq. (22) as

〈∆U2
α(t)〉 = 〈(Uα(t) − Uα(0))

2
〉 =

2

μ2
[Hu(0) − Hu(t)],

(29)
where Hu(t) is the correlation function of the elastic active
forces introduced in eq. (22). In the long-time limit, or at
times t much longer than the correlation times τu and τv

of all active force dipoles, we have Hu(t) → 0. Hence,
the MSD remains finite in this limit and localization is
observed. The localization radius is then determined by
the square root of

〈U2
α〉∞ =

qc

15π2μ2

(

cuSu

τu
+

cvSv

τv

)

, (30)

and it decreases with the particle size as a−1/2.
In active gels of eukaryotes, myosin motors that cross-

link actin filaments are operating in large aggregates
(microfilaments) [7]. Each microfilament gives rise to an
effective elastic force dipole and correlation times τu for
the cooperative activity of such motor groups can be long
(about several seconds). Myosin microfilaments give rise
to a time-dependent contribution into the deformation
MSD at intermediate times, τv ≪ t ≪ τu. For such
contribution, one finds that

〈∆U2
α(t)〉 =

qcc
uSu

15π2μ2τu

[

1 − exp

(

−
t

τu

)]

≈ 6Dut, (31)

where

Du =
qcc

uSu

90π2(μτu)2
. (32)

Hence, within this time range, deformation tracers will
perform an apparent diffusive motion with the “diffusion”
coefficient Du. Note that such a diffusion coefficient is
inversely proportional to the particle size a, like the size
dependence of the equilibrium diffusion coefficient given
by the Stokes-Einstein relation. The above result could
previously be obtained [9] in the framework of the phe-
nomenological eq. (27) by assuming that the active force

fA satisfied the equation dfA/dt = νA where νA(t) repre-
sented an active delta-correlated noise.

Next, we consider the motion of flow tracers in the fluid
component. Their time-dependent position vector is

Rα(t) = Uα(t) +

∫ t

0

dt1 Wα(t1), (33)

with the relative flow velocity W satisfying eq. (24). By
using this definition, the MSD for flow tracers can be ob-
tained as

〈∆R2
α(t)〉 = 〈∆U2

α(t)〉

+
1

μ2

∫ t

0

dt1

∫ t

0

dt2 〈F
w
α (t1 − t2) Fw

α (0)〉. (34)

In the long-time limit with t ≫ τu and t ≫ τv, we find

〈R2
α(t)〉 = 〈U2

α〉∞ + 6Dvt, (35)

where the diffusion coefficient is given by

Dv =
q5
c ℓ4cvSv

450π2η2
. (36)

Hence, the asymptotic MSD for flow tracers will include
both the localization and diffusion parts. The diffusion is
weak, but it would nonetheless dominate over the local-
ization at sufficiently long times, i.e., for t ≫ τ2/(τvq4

c ℓ4).
Finally, the behavior of real physical tracers can be dis-

cussed. Our conjecture is that a big tracer would stochas-
tically alternate between the two states, i.e., when it is
bound to the elastic component or is free to move with
the fluid component. Under such assumption, its observed
MSD 〈∆X2

α(t)〉 will be a superposition of the MSDs of de-
formation and fluid velocity tracers,

〈∆X2
α(t)〉 = κ〈∆R2

α(t)〉 + (1 − κ)〈∆U2
α(t)〉, (37)

with some weight coefficient 0 ≤ κ ≤ 1. Therefore, in the
limit t → ∞, we would have

〈∆X2
α(t)〉 = 〈U2

α〉∞ + 6κDvt. (38)

Thus, the asymptotic motion of the tracers will represent
a combination of spatial localization and of the diffusion
process.

Discussion. – The relationship between our theoret-
ical results and the experimental data [1,2,9] can be
discussed. Under physiological conditions in eukaryotic
cells, cooperative activity of myosin motors assembled
into microfilaments acting onto the polymer network suf-
fices to explain the main experimental results, as has
been previously pointed out [2,9]. The experimentally ob-
served regime corresponds to the intermediate diffusion-
like asymptotic behavior (see eq. (31)) which originates
from very long correlations times of the force dipoles that
correspond to myosin microfilaments.
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In the experiments [2,9], it was moreover possible to
chemically inhibit myosin activity while still having ATP
inside a cell. Additionally, tracking experiments were also
performed in the same cells under depletion of ATP. It
was found that myosin inhibition reduces the diffusion
coefficient by about a factor of ten, but the remaining
diffusion was still much larger than what was observed
without ATP. Since myosin contribution has been sup-
pressed, different mechanisms should have contributed to
the remaining ATP-dependent diffusion enhancement in
this case.

Note that, besides myosin, eukaryotes have other molec-
ular motors such as kinesin and dynein in the cytoskele-
ton. However, these other motors do not form aggregates,
similar to myosin microfilaments, and therefore they can-
not lead to long correlation times (of the order of several
seconds) that are needed to have the diffusion-like asymp-
totic behavior in eq. (31). Furthermore, strong diffusion
decrease under ATP depletion (or under starvation con-
ditions) was also observed in optical tracking experiments
with bacteria that lack molecular motors in their skele-
ton [1]. Hence the mechanisms not involving molecular
motors should have been at play.

Our analysis indicates that, in viscoelastic media with
active force dipoles, not only localization, but also dif-
fusion of tracer particles will be observed in the limit of
long times (see eq. (35)). According to eq. (36) for Dv,
such active diffusion is determined only by force dipoles
in the fluid component. They should be of metabolic ori-
gin and are due to active conformational changes that ac-
company turnover cycles of enzymes [1,8]. Note that, in
accordance with eq. (30), both diffusion and localization
should take place.

The diffusion should prevail over the localization at
the times much longer than the crossover time t∗ ≈
τ2/(τvq4

c ℓ4). If the size a ∼ 1/qc of a tracer is about
ten times larger than the mesh size ℓ, and the viscoelastic
time τ (typically about 1 ms) is about ten times shorter
than the correlation time τv for metabolic force dipoles,
we find that the crossover to classical diffusion from the
saturation plateau should be after the time t∗ which is
about 1 s. This can explain why such a plateau was not
seen, and only classical diffusion was found, in the experi-
ments with bacteria where the shortest time intervals were
15 s [1]. On the other hand, a plateau of about this du-
ration has been indeed observed in the animal cells under
inhibition of myosin motors [2].

It should be pointed out that the obtained results hold
only for relatively big tracer particles, with the sizes much
larger than the mesh size (about 50 nm) of the intracellular
polymer network. For the tracers with the sizes smaller
than the mesh size, the previous analysis in ref. [8] will
approximately hold.

In this study, the analysis was performed assuming ide-
alized non-invasive flow and deformations tracers that
serve only to visualize motions of fluid and elastic el-
ements, without affecting flow and deformation fields

themselves. The idealized flow tracers are therefore “non-
sticky” and roughly correspond to those considered in a
recent publication [14]. In contrast to this, deformation
tracers interact strongly with the elastic component and
are bound within it. To obtain an estimate of eq. (37), we
have further assumed that the physical tracer alternates
randomly between its free and bound states. It should
be stressed that this is a simplification and the situation
for real tracers can be much more complicated (see, e.g.,
ref. [11]). Interactions between a tracer and the elastic net-
work depend on the ratio between the size of the tracers
and the mesh size of the polymer network. When exper-
iments with big solid tracers are performed, such trac-
ers would certainly significantly distort flows of the fluid
around them.

The classical two-fluid model of gels was introduced
about four decades ago by de Gennes [10] and much
progress has been made afterwards [15,16], with various
detailed descriptions for the gels available today (see, e.g.,
refs. [17,18]). The present analysis is however done entirely
within the original description [10] in order to demonstrate
what should be expected in its framework. Remarkably,
we could then reproduce the phenomenological model [9]
that shows good agreement with the experimental data for
eukaryotic cells (see also the related publication [19]). Ex-
tensions and generalizations of our results to other models
of gels can be performed, and this will be the task of ad-
ditional work.

The two-fluid model treats a gel as an elastic solid
network with the fluid flowing through it. Real gels are
however only partially solid and begin to flow at a finite
viscosity themselves on sufficiently long time scales [15].
Thus, our analysis needs to be modified at such longer
time scales. The characteristic time when the actin gel
starts to flow is of the order 100–1000 s [15]. Note that,
according to Guo et al. [2], their tweezer measurements
confirmed that the cytoplasm is an elastic solid across the
measured timescales.

Furthermore, we have not considered here the glass
behavior which arises even in the absence of the poly-
mer network because the cytoplasm represents a crowded
colloidal suspension. Previously, such behavior was in-
vestigated at thermal equilibrium [20,21]. Experimental
data for bacterial cells shows that subdiffusion charac-
teristic for glassy systems disappears in the presence of
metabolic activity inside a cell and that classical diffusion
is then observed [1]. Investigations of the effects of active
force dipoles on crowded colloidal suspensions may be an
interesting subject for future research.
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