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We discuss the dynamics of a generalized three-sphere microswimmer in which the spheres are connected by two
elastic springs. The natural length of each spring is assumed to undergo a prescribed cyclic change. We analytically
obtain the average swimming velocity as a function of the frequency of cyclic change in the natural length. In the low-
frequency region, the swimming velocity increases with frequency, and its expression reduces to that of the original
three-sphere model by Najafi and Golestanian. Conversely, in the high-frequency region, the average velocity decreases
with increasing frequency. Such behavior originates from the intrinsic spring relaxation dynamics of an elastic swimmer
moving in a viscous fluid.

Microswimmers are tiny machines that swim in a fluid,
such as sperm cells or motile bacteria, and they are expected
to be applied to microfluidics and microsystems.1) By
transforming chemical energy into mechanical work, micro-
swimmers change their shape and move in viscous environ-
ments. Over the length scale of microswimmers, the fluid
forces acting on them are governed by the effect of viscous
dissipation. According to Purcell’s scallop theorem,2) time-
reversal body motion cannot be used for locomotion in a
Newtonian fluid.3) As one of the simplest models exhibiting
broken time-reversal symmetry, Najafi and Golestanian
proposed a three-sphere swimmer,4,5) in which three in-line
spheres are linked by two arms of varying length. This model
is suitable for analytical analysis because it is sufficient to
consider only the translational motion, and the tensorial
structure of the fluid motion can be neglected. Recently, such
a swimmer has been experimentally realized by using
ferromagnetic particles at an air–water interface and by
applying an oscillating magnetic field.6)

The original Najafi–Golestanian model has been further
extended to various situations, such as the case when one
of the spheres has a larger radius7) or when three spheres
are arranged in a triangular configuration.8) Montino and
DeSimone considered the case in which one arm is periodi-
cally actuated while the other is replaced by a passive elastic
spring.9) It was shown that such a swimmer exhibits a
delayed mechanical response of the passive spring with
respect to the active arm. More recently, they analyzed the
motion of a three-sphere swimmer with arms having active
viscoelastic properties mimicking muscular contraction.10)

Recently, Nasouri et al. discussed the motion of an elastic
two-sphere swimmer, in which one of the sphere is a neo-
Hookean solid.11)

Another approach for extending the Najafi–Golestanian
model is to consider the arm motions as occurring
stochastically,12,13) rather than assuming a prescribed se-
quence of deformations.4,5) In these models, the configuration
space of a swimmer generally consists of a finite number of
distinct states. A similar idea was employed by Sakaue et al.,
who discussed the propulsion of molecular machines or
active proteins in the presence of hydrodynamic interac-
tions.14) Later, Huang et al. considered a modified three-
sphere swimmer in a two-dimensional viscous fluid.15) In
their model, the spheres are connected by two springs, the
lengths of which are assumed to depend on the discrete states

that are cyclically switched. As a result, the dynamics of a
swimmer consists of the spring relaxation processes, which
follow after each switching event.

In this letter, we discuss a generalized three-sphere
swimmer in which the spheres are simply connected by
two harmonic springs. The main difference between this
model and the previous models is that the natural length of
each spring depends on time and is assumed to undergo a
prescribed cyclic change. Whereas the arms in the Najafi–
Golestanian model undergo a prescribed motion regardless of
the force exerted by the fluid, the sphere motion in our model
is determined by the natural spring lengths representing
internal states of a swimmer and also by the force exerted by
the fluid. In this sense, our model is more realistic to study
the locomotion of active microswimmers. We analytically
obtain the average swimming velocity as a function of the
frequency of cyclic change in the natural length. In order to
better illustrate our result, we first explain the case in which
the two spring constants are identical and the two oscillation
amplitudes of the natural lengths are the same. Then, we shall
discuss a general case in which these quantities are different
and the phase mismatch between the natural lengths is
arbitrary.

The introduction of harmonic springs between the spheres
leads to an intrinsic time scale of an elastic swimmer that
characterizes its internal relaxation dynamics. When the
frequency of cyclic change in the natural lengths is smaller
than this characteristic time, the swimming velocity increases
with frequency, as in the previous works.5) In the high-
frequency region, on the other hand, the motion of spheres
cannot follow the change in the natural length, and the
average swimming velocity decreases with increasing
frequency. Such a situation resembles the dynamics of the
Najafi–Golestanian three-sphere swimmer in a viscoelastic
medium.16) We also show that, owing to the elasticity that has
been introduced, the proposed micromachine can swim even
if the change in the natural lengths is reciprocal as long as its
structural symmetry is violated. Although the considered
swimmer appears to be somewhat trivial, it can be regarded
as a generic model for microswimmers or protein machines
since the behaviors of the previous models can be deduced
from our model by taking different limits.

We generalize the Najafi–Golestanian three-sphere
swimmer model to take into account the elasticity in the
sphere motion. As schematically shown in Fig. 1, the present
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model consists of three hard spheres of the same radius a
connected by two harmonic springs A and B with spring
constants KA and KB, respectively. We assume that the
natural lengths of these springs, denoted by ‘AðtÞ and ‘BðtÞ,
undergo cyclic time-dependent change. Their explicit time
dependences will be specified later. The total energy of an
elastic swimmer is then given by

E ¼ KA

2
ðx2 � x1 � ‘AÞ2 þ KB

2
ðx3 � x2 � ‘BÞ2; ð1Þ

where xiðtÞ (i ¼ 1; 2; 3) are the positions of the three spheres
in a one-dimensional coordinate system. We also assume
x1 < x2 < x3 without loss of generality. Owing to the
hydrodynamic interaction, each sphere exerts a force on the
viscous fluid of shear viscosity η and experiences an opposite
force from it. In general, the surrounding medium can be
viscoelastic,16) but such an effect is not considered in this
letter.

Denoting the velocity of each sphere by _xi, we can write
the equations of motion of the three spheres as

_x1 ¼ KA

6��a
ðx2 � x1 � ‘AÞ � KA

4��

ðx2 � x1 � ‘AÞ
x2 � x1

þ KB

4��

ðx3 � x2 � ‘BÞ
x2 � x1

� KB

4��

ðx3 � x2 � ‘BÞ
x3 � x1

; ð2Þ

_x2 ¼ KA

4��

ðx2 � x1 � ‘AÞ
x2 � x1

� KA

6��a
ðx2 � x1 � ‘AÞ

þ KB

6��a
ðx3 � x2 � ‘BÞ � KB

4��

ðx3 � x2 � ‘BÞ
x3 � x2

; ð3Þ

_x3 ¼ KA

4��

ðx2 � x1 � ‘AÞ
x3 � x1

� KA

4��

ðx2 � x1 � ‘AÞ
x3 � x2

þ KB

4��

ðx3 � x2 � ‘BÞ
x3 � x2

� KB

6��a
ðx3 � x2 � ‘BÞ; ð4Þ

where we have used the Stokes’ law for a sphere and the
Oseen tensor in a three-dimensional viscous fluid. The
swimming velocity of the whole object can be obtained by
averaging the velocities of the three spheres:

V ¼ 1

3
ð _x1 þ _x2 þ _x3Þ: ð5Þ

One of the advantages of the present formulation is that the
motion of the spheres is simply described by coupled
ordinary differential equations. Moreover, the force-free
condition for the whole system4,5) is automatically satisfied
in the above equations.

Next, we assume that the two natural lengths of the springs
undergo the following periodic changes:

‘AðtÞ ¼ ‘ þ dA cosð�tÞ; ð6Þ
‘BðtÞ ¼ ‘ þ dB cosð�t � �Þ: ð7Þ

In the above, ‘ is the common constant length, dA and dB
are the amplitudes of the oscillatory change, Ω is the
common frequency, and ϕ is the mismatch in phase between
the two cyclic changes. The time-reversal symmetry of the
spring dynamics exists only when � ¼ 0 or π; otherwise,
the time-reversal symmetry is broken. In the following
analysis, we generally assume that dA; dB; a � ‘ and focus
on the leading-order contribution. It is convenient to
introduce a characteristic time scale � ¼ 6��a=KA. Then we
use ‘ to scale all the relevant lengths (xi, a, dA, and dB) and
employ τ to scale the frequency, i.e., �̂ ¼ ��. By further
defining the ratio between the two spring constants as
� ¼ KB=KA, the coupled Eqs. (2)–(4) can be made dimen-
sionless.

In order to discuss the essential outcome of the present
model, we shall first consider the simplest symmetric case,
i.e., � ¼ 1, dA ¼ dB ¼ d, and � ¼ �=2. Hence, Eq. (7) now
reads ‘BðtÞ ¼ ‘ þ d sinð�tÞ. For our later calculation, it is
useful to introduce the following spring lengths with respect
to ‘:

uA ¼ x2 � x1 � ‘; uB ¼ x3 � x2 � ‘: ð8Þ
Notice that these quantities are related to the sphere velocities
in Eqs. (2)–(4) as

_uA ¼ _x2 � _x1; _uB ¼ _x3 � _x2: ð9Þ
Using Eqs. (2)–(4) and solving Eq. (9) in the frequency
domain, we obtain the following expressions after inverse
Fourier transform

uAðtÞ � 9 � 3�̂ þ 5�̂2 þ �̂3

9 þ 10�̂2 þ �̂4
d cosð�tÞ

þ 6�̂ � 4�̂2 þ 2�̂3

9 þ 10�̂2 þ �̂4
d sinð�tÞ; ð10Þ

uBðtÞ � � 6�̂ þ 4�̂2 þ 2�̂3

9 þ 10�̂2 þ �̂4
d cosð�tÞ

þ 9 þ 3�̂ þ 5�̂2 � �̂3

9 þ 10�̂2 þ �̂4
d sinð�tÞ; ð11Þ

where we have used a=‘ � 1.
According to the calculation by Golestanian and Ajdari,5)

the average swimming velocity of a three-sphere swimmer
can generally be expressed up to the leading order in uA=‘
and uB=‘ as

V ¼ 7a

24‘2
huA _uB � _uAuBi; ð12Þ

where the averaging h� � �i is performed by time integration in
a full cycle. The above expression indicates that the average
velocity is determined by the area enclosed by the orbit of
periodic motion in the configuration space.5) Using Eqs. (10)
and (11) for an elastic microswimmer with d=‘; a=‘ � 1, we
obtain the lowest-order contribution as

V ¼ 7d2a

24‘2�

3�̂ð3 þ �̂2Þ
9 þ 10�̂2 þ �̂4

; ð13Þ

which is an important result of this letter.

a

η
KA KB

x1 x2 x3

A B

Fig. 1. (Color online) Elastic three-sphere microswimmer in a viscous
fluid characterized by the shear viscosity η. Three identical spheres of radius
a are connected by two harmonic springs with elastic constants KA and KB.
The natural lengths of the springs, ‘AðtÞ and ‘BðtÞ, depend on time and are
assumed to undergo cyclic change [see Eqs. (6) and (7)]. The time-dependent
positions of the spheres are denoted by x1ðtÞ, x2ðtÞ, and x3ðtÞ in a one-
dimensional coordinate system.
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We first consider the small-frequency limit of �̂ � 1.
Physically, this limit corresponds to the case when the spring
constant KA is very large. We easily obtain

uAðtÞ � d cosð�tÞ; uBðtÞ � d sinð�tÞ; ð14Þ
and

V � 7d2a�

24‘2
; ð15Þ

which exactly coincides with the average velocity of the
Najafi–Golestanian swimmer with identical spheres.4,5) This
is reasonable because the two spring lengths uA and uB are in
phase with their respective natural lengths ‘A and ‘B, as we
can see from Eqs. (6), (7), and (14). Notice that the average
velocity increases as V � � in this limit, while it does not
depend on the fluid viscosity η.4,5)

In the opposite large-frequency limit of �̂ � 1, on the
other hand, we have

uAðtÞ �
ffiffiffi
5

p
d

��
cos½�t � arctan 2�; ð16Þ

uBðtÞ �
ffiffiffi
5

p
d

��
sin½�t � ð� � arctan 2Þ�; ð17Þ

where arctan 2 � 1:107 and

V � 21d2a

24‘2��2
: ð18Þ

We see here that uA and uB are out of phase with respect to
the natural lengths ‘A and ‘B, while the average velocity
decreases as V � ��1 when Ω is increased. When the spring
constant KA is small, it takes time for a spring to relax to its
natural length, which leads to a delay in the mechanical
response. The crossover frequency between the above two
regimes is determined by �̂	 � 1. The general frequency
dependence of Eq. (13) is shown in Fig. 2(a) for � ¼ 1 (black
line). It shows a maximum around �̂ � 1, as expected.

Recently, we investigated the motion of the Najafi–
Golestanian three-sphere swimmer in a viscoelastic me-
dium.16) We derived a relation that connects the average
swimming velocity and the frequency-dependent viscosity
of the surrounding medium. In this relation, the viscous
contribution can exist only when the time-reversal symmetry
is broken, whereas the elastic contribution is present only
when the structural symmetry of the swimmer is broken. In
particular, we calculated the average swimming velocity
when the surrounding viscoelastic medium is described by a
simple Maxwell fluid with a characteristic time scale �M.
It was shown that the viscous term increases as V � �

for ��M � 1, while it decreases as V � ��1 for ��M � 1.
This is a unique feature of a swimmer in a viscoelastic
medium,16–18) and such a reduction occurs simply because
the medium responds elastically in the high-frequency
regime. We note that the frequency dependence of V for an
elastic three-sphere swimmer, as obtained in Eq. (13), is
analogous to that for the Najafi–Golestanian swimmer in
a viscoelastic Maxwell fluid. In other words, an elastic
microswimmer in a viscous fluid exhibits “viscoelastic”
effects as a whole.

Having discussed the simplest situation of the proposed
elastic swimmer, we now show the result for a general case
when KA ≠ KB (or � ≠ 1), dA ≠ dB, and the phase mismatch

ϕ in Eq. (7) is arbitrary. By repeating the same calculation as
before, the spring lengths in Eq. (8) now become

uAðtÞ � 1

9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4



n
½9�2 þ ð4 þ �Þ�̂2�dA cosð�tÞ

þ 2ð3�2 þ �̂2Þ�̂dA sinð�tÞ
� 2�ð1 þ �Þ�̂2dB cosð�t � �Þ
� �ð�3� þ �̂2Þ�̂dB sinð�t � �Þ

o
; ð19Þ

uBðtÞ � 1

9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4



n
�2ð1 þ �Þ�̂2dA cosð�tÞ
þ ð3� � �̂2Þ�̂dA sinð�tÞ
þ �½9� þ ð1 þ 4�Þ�̂2�dB cosð�t � �Þ
þ 2�ð3 þ �̂2Þ�̂dB sinð�t � �Þ

o
; ð20Þ

respectively, where we have used a=‘ � 1. Using Eq. (12)
again, we finally obtain the lowest-order general expression
of the average velocity as
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Fig. 2. (Color online) Plots of the scaling functions (a) F1ð�̂; �Þ and
(b) F2ð�̂; �Þ defined in Eqs. (22) and (23), respectively, as functions of
�̂ ¼ �� for � ¼ KB=KA ¼ 0:1, 1, and 10. The numbers indicate the slope
representing the exponent of the power-law behaviors.
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V ¼ 7dAdBa

24‘2�
F1ð�̂; �Þ sin�

� 7ð� � 1ÞdAdBa
12‘2�

F2ð�̂; �Þ cos�

þ 7ðd2A � d2B�Þa
24‘2�

F2ð�̂; �Þ; ð21Þ
where the two scaling functions are defined by

F1ð�̂; �Þ ¼ 3��̂ð3� þ �̂2Þ
9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4

; ð22Þ

F2ð�̂; �Þ ¼ 3��̂2

9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4
: ð23Þ

In Fig. 2, we plot the above scaling functions as functions of
�̂ for � ¼ 0:1 and 10. Notice, however, that these two cases
are essentially equivalent because we can always exchange
the springs A and B, whereas we have defined the relaxation
time τ by using KA.

When � ¼ 1, dA ¼ dB, and � ¼ �=2, only the first term
remains, and Eq. (21) reduces to Eq. (13), as expected. When
� ≠ 1, on the other hand, the second term is present even if
� ¼ 0. The third term is also present when d2A ≠ d2B�,
regardless of the phase mismatch ϕ. Notice that the first term
represents the broken time-reversal symmetry for � ≠ 0,
whereas both the second and third terms reflect the structural
asymmetry of an elastic three-sphere swimmer.16) To be more
precise, the second term is due to the difference between the
relaxation times of the two springs, and the third term reflects
the asymmetric changes of their natural lengths.

It is interesting to note that the frequency dependence of
the second and third terms in Eq. (21), represented by
F2ð�̂; �Þ, is different from that of the first term, represented
by F1ð�̂; �Þ. According to Eq. (23), V due to the second and
third terms increases as V � �2 for �̂ � 1, whereas it
decreases as V � ��2 for �̂ � 1. In general, the overall
swimming velocity depends on various structural parameters
and exhibits a complex frequency dependence. For example,
F1ð�̂; �Þ in Fig. 2(a) exhibits a non-monotonic frequency
dependence (two maxima) for � ¼ 0:1 or 10 (namely, when
� ≠ 1). On the other hand, an important common feature in
all the terms in Eq. (21) is that V decreases for �̂ � 1, which
is characteristic of elastic swimmers.

We confirm again that Eq. (21) reduces to the result by
Golestanian and Ajdari,5) i.e., V ¼ 7dAdBa�sin�=ð24‘2Þ,
when the two spring constants are infinitely large, i.e.,
KA; KB ! 1 and � ¼ 1. The third term in Eq. (21) vanishes
even if dA ≠ dB because �̂ ! 0 holds in this limit. In
the modified three-sphere swimmer model considered by
Montino and DeSimone, one of the two arms was replaced by
a passive elastic spring.9) Their model can be obtained from
the present model simply by setting one of the spring
constants to be infinitely large, say KA ! 1, and by
regarding the natural length of the other spring as a constant,
say ‘B ¼ ‘ (or dB ¼ 0). The continuous changes of the
natural lengths introduced in Eqs. (6) and (7) are a
straightforward generalization of cyclically switched discrete

states considered in the previous studies.12–15) We finally note
that a model similar to the present one was considered in
Ref. 19, although that study focused only on the low-
frequency region and did not discuss the entire frequency
dependence. Using coupled Langevin equations, the authors
of Ref. 19 mainly investigated the interplay between self-
driven motion and diffusive behavior,19) which is also an
important aspect of microswimmers.

To summarize, we have discussed the locomotion of a
generalized three-sphere microswimmer in which the spheres
are connected by two elastic springs and the natural length
of each spring is assumed to undergo a prescribed cyclic
change. As shown in Eqs. (13) and (21), we have analytically
obtained the average swimming velocity V as a function of
the frequency Ω of cyclic change in the natural length. In the
low-frequency region, the swimming velocity increases with
frequency and reduces to the original three-sphere model by
Najafi and Golestanian.4,5) Conversely, in the high-frequency
region, the velocity decreases with increasing frequency. This
property reflects the intrinsic spring relaxation dynamics of
an elastic swimmer in a viscous fluid.
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