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The theory of optical anisotropy decay r(¢) for a protein in a membrane suspension
is developed. Our new model describes rotational diffusion of membrane anchored
proteins consisting of two different modes occurring simultaneously: one is restricted
wobbling of the whole or part of the protein molecule, and the other is rotation of the
whole protein about a fixed axis. The anisotropy decay r(¢) is characterized by a diffu-
sion coefficient, a cone angle and an angle between the symmetric axis of the wobbling
part of the protein and the optical moment of the probe fixed rigidly in the protein.
Although the exact r(¢) consists of infinite number of exponential functions, an ac-
curate monoexponential plus constant approximation for r(¢) is shown to be
sufficient for the analysis of experimental data. We derived an analytic expression for
the effective relaxation time which appears in this approximation. This treatment may
be applicable to complex wobbling plus axial rotation of membrane anchored pro-

teins such as cytochrome bs.

§1. Introduction

Studies on the dynamics of molecules in
biological and artificial membranes are of im-
portance in understanding the dynamic struc-
tures and physiological mechanics of func-
tional proteins in biological membranes.
Especially, dynamic protein-protein interac-
tions in biological membranes is essential in
complex enzyme systems, for example, elec-
tron transfer reactions in oxydative
phosphorylation, drug metabolism and
steroid hormone synthesis.

There are increasing amount of experiments
on slow rotational diffusion of membrane pro-
teins using triplet probes with long lifetime of
the triplet state or intrinsic chromophores hav-
ing long-lived photoproducts. These measure-
ments detect the decay of either dichroism or
phosphorescence polarization after flash ex-
citation.™”

A variety of theories have been presented to
describe quantitatively the optical polarization
decay r(¢) in the case of anisotropic rotation
of macromolecules in the membrane such as
an axial rotation of integral membrane protein
about membrane normal and a restricted wob-
bling of proteins in membranes.>'? Lipari,
Szabo and other people gave a theory to

analyze NMR data on anisotropic rotation of
aminoacid residues in proteins which is ap-
plicable to the above membrane systems.!*2%

In our previous paper,?” we have also
treated the theory of absorption and emission
anisotropy decay for axial rotation and
restricted wobbling of membrane proteins. It
is useful when these two motions occur in a
completely different time range. However it is
not applicable when wobbling and axial rota-
tion occur in the same time scale (wobbling
plus axial rotation). Practically, membrane
proteins such as cytochrome bs and
glycophorin A may undergo both rotation
modes simultaneously, that is, rotating about
the membrane normal axis with wobbling in
the same time scale.

In this paper we propose a new wobbling
model which includes the rotational effect. Us-
ing this model, we have derived simple expres-
sions for the limiting anisotropy r(o0) and
convenient approximate expressions for r(¢)
which can be used to analyze the experimental
results. We calculated the effective relaxation
time analytically by the method given by
Lipari et al.'® Although we develop the theory
for rotation of membrane proteins, our theory
is also applicable to a variety of protein mo-
tions in supramolecular systems.
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Fig. 1. Geometry of the system. The vector u
represents the direction of emission transition mo-
ment of an optical probe in the sample which is
located at the origin of the coordinate. I, (#) and
Iy(t) are intensity components of emitted light for
vertical and horizontal polarization.

First we follow a general formalism. In §3,
we give our new model followed by the de-
tailed calculation. Application of our theory is
illustrated by measurements of the rotational
diffusion of heme proteins (cytochrome bs) in
§4.

§2. Optical Anisotropy in Membrane
Suspensions

In this paper, we consider the case where a
chromophore is bound to proteins which are
anchored in planner membrane fragments.
Membranes are equivalent to an ensemble of
planner membrane fragments which are im-
mobile in the present time scale. A distinct
feature of such a system is that it is isotropic
as a whole.

First we adopt the following convention: a
letter printed in bold face type denotes a unit
vector: an integration such as | dF represents
{f d cos 6 dp where 0 and ¢ are the polar and
azimuthal angles of F with respect to a certain
fixed direction.

Taking mutually orthogonal unit vectors X,
Y, Z in space (Fig. 1), we excite a sample with
a flash polarized in the direction of Z (vertical-
ly polarized flash). The optical anisotropy r(¢)
is defined by
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In the above, Iy(¢) and Ix(t) are intensity com-
ponents of either absorption change or emis-
sion for vertical and horizontal polarization at
time ¢ after the flash.

Hereafter, we use the notations of emission
depolarization. Let u be the direction of the
emission moment. The following description
is straightforwardly applicable to absorption
anisotropy by reading u as the absorption mo-
ment for linear chromophores or the direction
perpendicular to the plane of the chromo-
phore for circularly symmetric chromo-
phores.?Y For simplicity, we assume that the
absorption dipole at the wavelength of excita-
tion and the emission dipole u are parallel. We
introduce a normalized distribution function
w(u, t), the probability that we would find the
emission dipole with orientation u, i.e.,

r(®) M

SW(.u, Hdu=1. @

For the evolution of w with time, we define
g(u® 0lu, t) as the probability that the emis-
sion dipole with orientation 4° at time 0 will
rotate into a new orientation u by time ¢; thus,

w(u, t)=§ w(u® 0)g(u’ 0lp, t)ydu’. (3)

In particular, g reduces to 6(u°—u) for t=0.
The stationary distribution w* is given by let-
ting t— 0,
wi(u)=g(u’ 0l p, ). O]
Following the derivation in refs. 11, 12, r(¢)
can be expressed in terms of these functions as
r(t) —_ 0 S( 440 0 0
0" Py(i’- wyw(u)g(w, 01, 1) dp’ d p,
(%)

where P,(x)=(3x%>—1)/2 is the second Legen-
dre polynomial and r(0)=0.4. For t— 0, we
obtain

2
“m=ﬁawmwwm4, ©)

r(0)

where n is the normal to the membrane. Here
we have used eq. (4) and the addition theorem
for P,(u°-m). The quantity r(o)/r(0) cor-
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responds to the degree of orientational con-
straint. When the absorption and the emission
moment make a fixed angle A, r(0) in egs.
(5) and (6) should be replaced by r(0)=
0.4P,(cos A) instead of 0.4.

§3. Wobbling under Rotational Effect

Wobbling motion is of frequent observation
in supramolecular systems, such as, internal
motion of a subunit in a macromolecule or
flexible motion of a fibrous structure. A typi-
cal type of wobbling of proteins is expressed
as ‘‘wobbling-in-cone’’.!"'*? Let v be the
unit vector directed along the symmetry axis
of the wobbling part of the protein. This
model allows v to diffuse freely within a cone
around membrane normal n. The cone, with
half angle 6., may be formed by steric hin-
drance of surrounding structures. The
restricted motion of the probe molecule results
in the non-zero value of r(). Kinosita et al.'”
solved the above problem in the cases of rod-
shaped molecule with emission dipole u
parallel and perpendicular to the long axis.

In this paper, we generalize our discussion
to the case where the emission dipole u# has an
arbitrary but fixed angle a(0°<a=90°) with
respect to v (see Fig. 2). At the first part of this
section, we consider the wobbling motion
without axial rotation; u does not rotate
around v. Then, in the succeeding subsection,
we examine the effect of axial rotation of u
around v which combines with the wobbling.
A concise review of the results for ‘‘wobbling-
in-cone’” model and ‘‘axial rotation’> model
are given in Appendix A and C, respectively.

3.1 Wobbling without axial rotation

If the rod-shaped molecule does not rotate
about its long axis v, the orientation of the
dipole u is still confined within a cone around
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Fig. 2. Schematic representation of an optical probe
fixed rigidly on the hydrophilic head of the mem-
brane anchored protein. There is an axial rotation
about v which in turn wobbles in a cone (dashed line)
of half angle .. u has a fixed angle o with respect to
v.

n’ tilted by « from n. The half angle of this
cone is also 8. (see Fig. 3). Here, we insist that
the same discussions given for ‘‘wobbling-in-
cone”’ (see Appendix A) are applicable to such
‘‘wobbling-in-tilted-cone’’ case. This can be
understood as follows.

First, eq. (5) can be used as it is, since it is
given irrespective of n. Equation (6), however,
should suffer a slight modification, since the
motion under consideration is no longer sym-
metric around #. We let £— o0 in eq. (5). With
the aid of eq. (4), we obtain

o0
I‘"((O))=SS PZ(‘uO'ﬂ)WS(,uO) Ws(ﬂ) d,u° d[l (7)

We substitute next addition theorem to eq. (7),

Py )=P(n’- ") Po(o’ 1) +5 P -%) PY(n’ ) cos (9= )

1
+15 PA 1) Pi(n’ - ) cos 2(0" = ), ®)

where  Pi(x)=3x(1—x»)"?> and
=3(1—x?) are associate

P3(x)
Legendre
polynomials, ¢° and ¢ are the azimuthal angles

of #° and g around n’. Since w'(x°) and w*(u)
are symmetric around n’, only the first term re-
mains after the integration over #° or x. Thus
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Fig. 3. ‘““Wobbling-in-cone’’ model and ‘‘wobbling-
in-tilted-cone’’ model. The half angle of each cone is
6. n’ is tilted by « from n.

r(oo) 2
= [S Py’ -pyw'(p) dp| . ©))
r(0)
When we take 6 and ¢ to be the polar and
azimuthal angles of u with respect to n’ (not n),
the same diffusion equation for ‘‘wobbling-in-
cone’” model (see later eq. (10)) holds for
w(u, t). Therefore, the remaining discussions
completely follow the ones given for ‘‘wobbl-
ing-in-cone’” model (see Appendix A).
Another interpretation is possible by notic-
ing that the membrane suspension is isotropic
as a whole. Therefore the relative orientation
of the cone with respect to the membrane frag-
ment has no influence on the experimentally
obtained anisotropy r(¢). .

3.2 Wobbling under rotational effect

Next we consider the case where the prin-
cipal mode of motion of u will be the ‘‘spinn-
ing”’ around v, on which the effect of wobbl-
ing motion of v around n is superposed. We
especially focus on the situation when two mo-
tions occur in the same time range. To take
this effect into account, we assume that the
coupled motion can be described by only one
wobbling diffusion constant D. We further
simplify this complicated motion by assuming
that the stationary distribution of u is uniform
over certain restricted region. Within our
model, the above restricted region will depend
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on the relative value of 6. with respect to «. In
the following, we examine r(0)/r(0) and r(¢)
/r(0) in three cases: I, 6.<a; II, 6.=«; III,
0.> . For our later purpose, we introduce the
notations; 6,=16.—al, 6,=0.+a, x;=cos 6;
and x,=cos 0,.
Case I 0.<a
We redefine 6 and ¢ to be the polar and
azimuthal angles of u around n. Under the
above assumptions, u diffuses freely in a poten-
tial which has the shape like V(0)=0 for
0,<0=<06,, V(0)= 0 otherwise (see Fig. 4(a)).
The distribution function w(u, t)=w(6, ¢, t)
obeys the simple diffusion equation
% w(u, )=DV;w(u, 1), (10)
where V3 is the angular part of the Laplacian
operating on u:

(1n

SINLENN L P
“singag\"" " 30) " sin? 0 9g7 "
Diffusion equation (10) is subjected to the
boundary conditions,
9 ‘
20 w(u, t)=0 at 6=0, and 6=0,. (12)

The homogeneous solution of eq. (10) with the
initial condition

w(p, 0)=d(u’—w), (13)

gives ¢ in eq. (3). The stationary distribution
wS(u) is uniform over the band 6, <6=<6,, i.e.,
0,<6=<06,,

ws(,ll)=“—_27z(x1 )

= 0 (14)

Using this stationary distribution, we obtain
r(0)/r(0) from eq. (6)

r(©) |1 :

r(O) =[—2‘ (1 —x%—xlxz—x%)] EBoo, (15)
which is equivalently given in terms of 6. and
o by

otherwise.

r(oo)= 1 (cos 26.+2 cos 20, cos 2«
r |4 ) ’
2
+cos 201)] . 16)

Here, it might be interesting that r(c0)/r(0)
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(a)

(b)

Fig. 4. ‘“Wobbling under rotational effect’’ model. The shape of the square well potential is classified into three
cases. (a) Case I: 6. < a. The cross section of the hemisphere on the right hand side is depicted on the left hand
side. The stationary distribution of g is uniform over the band region hatched with parallel lines and zero
otherwise. (b) Case II: 6.=«. This case corresponds to the ‘‘wobbling-in-cone’’ model with the half angle 260..
(c) Case IIT: 6.> «. The stationary distribution of u in the inverted bowl region hatched with crossed lines is
twice as much as that in the band region hatched with parallel lines.

©

=1/64 is determined by only either 6. or @« and 6,. These are consistently determined by

when one of these is equal to 60°. the boundary conditions (12) for g(u°, 01y, ).
The expression for r(¢)/r(0) is given as Especially, Bo is defined by eq. (15) and
r(t) ® ¢w»=00. Equation (17) can be approximated

r(O) 2 B;exp (—Dt/ &), (17) by a monoexponential expression

where B; and &; are constants that depend on 6,
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20 ? (@) - Bm] _ [ZU_)_ w]
<R(B)appmx=3°°+(l—Bco) €Xp (_t/¢l)- (18) SO[ r(o) oprox di= SO ~0) By | dt.
(19

In order to determine the effective relaxation
time ¢, eq. (18) should satisfy the next rela- By following the same procedure given by
tion (see (A-5)) Lipari et al.,'® we have calculated the exact
analytic expression for ¢, (see Appendix B for
the details):

Dér(1—Bo)=— (1 —x)(1 —x3)(1 +x1+x2) log 1%
2(X| —Xz) 1
Ca 1+X1
m A+x)(1+x)(1—x1—X2) 10g

+ﬁ [3(1—4ci—4cr+cstcs) +3(—20+20+ 203+ 24— ¢5 1+ o) (x1 +X2)

+(1+8c14 8¢, des Hes+ s+ cg—2 (P +xixa+ D). 20)
In the above
= (1=0)(1 - x)(1+x1+x5), @1)
e= (1)1 +2)(1—x, =), 22)
6= (L4 x)(1+x)[1+2006+2(1 - —xa) + 0], 23)
e= = (1=x)(1 =01+ 2625~ 2(1 +x+x)00+x)], 24)
5= 4(1_1—) (14221 +x)2[(1 = — 32— 5167, 25)
Cﬁ:m (1 =321 = )2[(1 + 1+ Y= 310, 26)
<P2>=S Py(n-u)yws(u) du= —% (1 —x}—x10—x3). 27

{ P,y is the equilibrium average of P,(cos 0) over the distribution function eq. (14). The meanings
of ¢; to ¢s is also given in Appendix B. When 6. and « (hence x; and x,) are determined, the diffu-
sion constant D can be determined by the use of eq. (20) with experimentally observed ¢;.

In the limit x;—1(6,—0), eq. (15) reduces to

r(®) |1 g
") [— x(1 +Xz)] ; (28)

2
and eq. (20) to

x3(1+x) 1+x 1-x
Doy (1~ Ba)= — ) ( S

20 -x) 5 + 3 )+EIZ(l—xZ)(6+8x2—x§—12x%—7x§)sf(x2). (29)

Equations (28) and (29) correspond to (A-1) When 6.=0 with constant «, eq. (16) is
and (A-6), respectively, with x. being replaced  simplified as
by X2.
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r(w)_[ 1 30)

r@0 |2

which coincides with (C-2). This can be easily
understood by noticing that no wobbling
motion occurs when 6.=0. For r(z)/r(0),
however, eq. (18) does not directly reduce to
the correponding expression for axial rotation
only. This stems from the difference between
physical dimension of D, and D. Taking this
difference into account, the discrepancy is
eliminated. Details of the calculations are
relegated to Appendix C.
Case II: 6.=«

This case corresponds to the ‘‘wobbling-in-
cone’” model with the half angle 26, (see Fig.
4(b)). Therefore parallel expressions in Appen-
dix A hold for this case with 6. being replaced
by 26.. They are

2
(1—3cos® a)] ,

2
o s
2
- B cos 26.(1+cos 200)] =C., (1)
t [oe}

.%;= ; Ciexp (—Dt/ (), (32)

t

(;EO—;) =Co+(1—Cx) exp (—t/dn),
approx

(33)

and
Doy(1—Cx)=f(x2). 34)

The functional form of f(x) is defined by eq.
(29). In eq. (32), C;and {; depend only on 6. or
a as before.
Case III: 6.>a

This case needs a particular consideration
since the stationary distribution of u(w*(u))
has two different values. The width of the
band which has been considered in the Case
I(6,<0=<86,) becomes wider as 6. is increased.
When 6. exceeds « (Case IIT), the edge of the
band crosses the membrane normal direction
n and there appears a certain overlapping
region like an inverted bowl 0< 0 =<6, (see Fig.
4(c)). The probability density that we would
find u# within the area 0<6<8, is twice as
much as that within the band area 6, <6<6,.
Therefore the total area that can be occupied
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by u is regarded to be made up of two parts,
namely, area A and B: area A (0<6<6,) is put
on the larger inverted bowl area B (0<6<6,).
The total area of A4 and B is given by the sum

of each area,
2n(1—x)+2n(1 —x)=2m2—x1—Xx2). (35)

Accordingly, the stationary distribution w*(u)
is

S(Wy=———— 0=6<6,
W(Iu) 7T(2—X1—XZ) 0=0 !
1
= §,<0<80,,
mC—m—xy 0=0=f
= 0 otherwise. (36)

Using this stationary distribution, we obtain
r()/r(0) as
r(©)
r@©)

X1+X2
22— x1—Xxy)

2
a —x%+x1x2—x%)} ,
(37
or equivalently

r(«©) cos 6. cos o
r(0) |4(1—cos 6. cos a)

2
X (cos 26.—2 cos 26, cos 2a+cos 201)] . (3%

If we put «=0 keeping 6. constant, eq. (38)
reduces to

2
rr(g))= {l cos 6.(1+cos 06)} ,

2
which is derived for wobbling motion alone
(with the half angle 6.). This limit corresponds
to the case when there is no axial rotation.

It is worthwhile to note that both eqgs. (15)
and (37) reduce to eq. (31) in the limit of
6.=a. Hence r(0)/r(0) is continuous over the
entire angle region of 6. and «.

To calculate r(¢)/r(0) we treat area 4 and B
separately so that wobbling motion occurs in-
dependently within each area. We assume that
the measured 7(¢)/r(0) is the weighted sum of
the individual r4(¢)/r(0) and rz(¢)/r(0) which
are obtained by replacing 0. in Appendix A
with 6, and 0,, respectively. With this assump-
tion r(¢)/r(0) is given by

(39)
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r(t) 1 —Xi ® 1 - o
"0 2or—m ; E;exp (—Dt/k) +5 — ,; Fiexp (—Dt/ 1), (40)
where E;, k; depend only on 68, while F;, A; on 6,. E. and F are given by
1 2 1 g
Ego= [‘2‘ X](l +X1)} , Fo= I:? Xz(l +XZ):| . (41)
The approximated expression for r(¢)/r(0) is also averaged as
(r(t)) _ 1=« (Bt (1-E t/
FO) o 2—m1—, L F (AT ) X0 (= 9))
1 —
+2—_;— [Fot(1—Fx) exp (—/ ¢s)], (42)
1

where

Dés(1—Ex)=f(x1), D¢s(l—Fu)=f(x),

(43)
(see eq. (29)). For the purpose of reducing eq.
(42) into a monoexponential expression, we re-

quire that this would fulfill the relation (19).
Then we have

r(O))approx_ o+ (1= Gx) exp (_t/¢m).

(44)
In the above
Gom ™ gy 1T® o s
® 2'—X1"X2 ° 2"‘X1"X2 o ( )
and
Depr(1— Goo)‘— f(x1)
l_.
e (CONNNCD)

The above approximation is reasonable, but
might not be unique.

Formally speaking, r(¢)/r(0) should be
given in the following way. We shall denote by
the indices 1 and 2 the distribution function
w(u, t) referring, respectively, to the region
0<60<6, and 6,<6=<6,. Both wi(u,t) and
wy(u, t) behave in accordance with the diffu-
sion equation (10) in each region, and subject
to the boundary conditions,

Wl(:us f)=2W2(ﬂ, t)s

a

]
wl(,u, t)—— wa(u, t) at 6=60,, (47)

d
30 wa(u, £)=0 at 0=0,. (48)

Under such conditions, however, the
method!? to obtain D in terms of x,, x, and the
effective relaxation time is of no use. This is
because the conditional probability g in this
case no longer possesses such symmetry as

g(u’,0lp, 1)=g(u, 014°, 1), 49

which plays a crucial role in their proéedure.

§4. Discussion

For the newly proposed ‘‘wobbling under
rotational effect’’ model, r(¢)/r(0) can be writ-
ten as an infinite sum of exponentials (see eqs.
(17), (32) and (40)). To analyze the experimen-
tal data, it is necessary to derive a simple but
good approximate expression for r(t)/r(0),
whose parameters can be analytically related
to the potential and the diffusion coefficient. A
possible approximation to r(¢)/r(0) that has
exact values at t=0 and =0 is given as eq.
(18) (or (33), (44)) which is expressed in terms
of monoexponential damping. As was pointed
out by Szabo,'? there are several ways to deter-
mine the effective relaxation time satisfying
the above conditions. Here we consider two of
them.

The first one'™'>'? is to require eq. (19)
which implies that the area under r(¢)/r(0) is
the same between the exact solution and the ap-
proximated one. For our square-well poten-
tial, the analytical expression relating the effec-
tive relaxation time to the diffusion coefficient
is obtained following the method of Lipari
and Szabo' (see also Appendix B). This ap-
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proximation is reasonably accurate and fits
well to the exact r(¢)/r(0) over a wide range of
time. For arbitrary potential, however, the
effective relaxation time defined in this way
still has to be determined numerically.
Another way'” of determining effective
relaxation time is to require that r(¢)/r(0) is ex-
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r(0)

approx n=-—2

Here we have omitted the effect of the overall
rotational motion of the macromolecule
which is independent of the wobbling motion
and d%(a) are reduced Wigner rotation
matrices, i.e.,

d@()=@B cosa—1)/2, (51)
d2(e)=F(3/2)"?sin « cos a, (52)
dP()=(3/8)"?sin® a. (53)

Szabo' gave a generalization of eq. (50) for
special potentials that are symmetric about
#=m/2. His final expression contains several
exponentials and four parameters.

As Brainard ef al. pointed out, there is
significant difference between the above two
approximations; the diffusion constant ob-
tained from the initial decay may not be
reliable.'® Equation (50) for wobbling plus ax-
ial rotation is determined from the initial
decay and is still too complicated to analyze
the experimental data. By contrast, we have
given in this paper a simpler approximate ex-
pression for r(¢)/r(0) which is characterized
by 2 decay parameters and gives a better
description of the entire time-course. Thus our
theory can be applied straightforwardly to
computer curve-fitting of the experimental
data. As an example, we show the application
of our theory to the experiment on
cytochrome bs.

The rotational diffusion of cytochrome bs in
dimyristoyl-lecithin ~ vesicles has  been
demonstrated by Vaz et al.” The anisotropy
decay of cytochrome bs was measured after
flash photolysis of rhodium (III)-protopor-
phyrin IX which was incorporated into

(Vol. 59,

act up to linear order in time (initial decay).
On the basis of this approximation, Lipari and
Szabo'® gave an approximate expression for
r(¢)/r(0) when the wobbling of the unique
axis of the probe and rotational diffusive mo-
tion about this axis occur simultaneously for
an arbitrary shape of potential, i.e.,

(r—@) = >} exp (—n*D,)[{P*+ (1 —{P? exp { — (6 —n?) Dy t/ (1 —<{ P>} [d B ()]

(50)

apocytochrome bs. The observed r(w)/r(0)
are 0.63 and 0.58 for below and above the
phase transition of dimyristoyl-lecithin, respec-
tively. It might be reasonable to assume that
below the phase transition the rotational mo-
tion is inhibited and only the wobbling motion
occurs, and that above the phase transition
both  wobbling and rotation occur
simultaneously. The half angle of the cone is
6.=31.2° which is obtained by eq. (A-1). It
might be also reasonable to postulate that 6.
does not change above the transition point
since it is determined by the steric hindrance
of the lipid bilayer. Then the average direction
of heme normal has a fixed angle «=6° with
respect to the membrane normal. We have esti-
mated this value from the graphical plot of
r(00)/r(0) against « for §.=31.2° (see Fig. 5).

So far, we have assumed that an optical
probe is fixed rigidly in a protein and does not
show any rapid motion independent of slow
protein rotation. This assumption may be
likely for intrinsic chromophores.”® However,
it is sometimes observed that an extrinsic
probe often exhibits rapid restricted wobbling
in the order of several hundred picoseconds to
a few nanoseconds.”**) The rotation of the
whole protein molecule about the membrane
normal has been observed to be slower than 1
usec in all cases examined.’® There are also
proteins whose catalytic sites undergo indepen-
dent segmental motion which has been ob-
served in  (Ca’*-Mg?*)ATPase,””  im-
munoglobulins.”® In the case that the above
three motions are independent of one another
and the segmental motion is much faster than
rotation of the whole protein molecule, r(¢)
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Fig. 5. o dependence of the time-independent residual

anisotropy ratio in ‘‘wobbling under rotational
effect’” model when 6,=31.2°.

may be written as:

r()=ry(rs(O)r:(1), (54

where r,(¢) is the anisotropy decay due to
probe wobbling, r,(¢) is due to the segmental
motion of the protein, and r.(¢) is due to the
whole protein rotation.

A large loss of anisotropy due to r,(¢) has
been observed for N-(1-anilinonaphth-4-yl)
maleimide (ANM) bound to cytochrome ox-
idase,?” eosin-maleimide bound to band 3 in
erythrocytes and eosin-maleimide bound to
ADP/ATP translocator in mitochondria. The
rapid decay of r,(¢#) was also observed for
eosin-maleimide and eosin-iodoacetamide
bound to (Ca’*'-Mg?*)ATPase in sar-
coplasmic reticulum while not observed for
ANM and 5-[[(iodoacetamido)ethyl]amino]
naphthalene-1-sulfonate (IAEDANS) bound
to it.?® For (Ca?**-Mg?*)ATPase, independent
segmental flexibility of part of the protein is
also found. The wobbling of the hydrophilic
head was estimated to be ¢ =60 nsec for ANM
bound segment and ¢=200nsec for
IAEDANS bound segment, which is more
rapid than the rotation of the ATPase
molecule with ¢ =40 usec.”® All of these ex-
amples may well be described by eq. (54), since
each motion occurs in the different time range.

However, for (Ca**-Mg?*)ATPase, there is
still a possibility of the slow segmental flexible

A Theory of Optical Anisotropy Decay in Membranes 2593

motion with ¢=1~40 usec, though not yet
found due to the experimental difficulties.
Furthermore, for other proteins such as
cytochrome bs, glycophorin A, oligosac-
charide or NADPH-cytochrome P-450 reduc-
tase, the time range of whole protein rotations
might be comparable to flexible motion. To
analyze the experimental data of these pro-
teins, eq. (54) is not applicable and one should
exploit the theory which is developed in the
present work. It should be noted that even in
the — o case, our results (egs. (15), (31), 37))
do not coincide with eq. (54). This implies that
our model incorporates new coupling effects
which is absent when we consider wobbling or
rotation independently.
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Appendix A

In this Appendix we briefly review the
results for ‘‘wobbling-in-cone’” model. The
wobbling diffusion coefficient is denoted by
D,. By employing the notation x.=cos 6.,
Kinosita et al.'V obtained

2
rr((O(;D))= [% cos 6.(1+cos Bc)]
2
=[%xc(1+xc)] = A, (A-1)
%=2A13Xp(_Dwt/ai)a (A'Z)

where A; and o; are constants that depend only
on 6., but cannot be expressed as an analytical
function of it. They performed numerical
calculation, and displayed these functional
forms graphically. Furthermore, they
presented a useful approximate expression for
r(t)/r(0) with monoexponential damping,

(’(t)) Aot (1—As) exp (—1/6), (A-3)
— =Aow —Awx) €Xp (— . .
r (0) approx

where ¢ is an effective relaxation time given by

Dw¢(1 —Aoo)= Z A;o;. (A4)

i# 0
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As was pointed out by Lipari ef al.,' this ap-  They further derived an exact analytic expres-

proximation is based on the next relation; sion for the functional dependence of ¢ on x.,
(EISIIER
— _Aoo dt= —_Acn dt.
SO [(f (O) approx 0 r (O)
(A-5)
Dud(1—Ax)= xg(l+x°)2( 1+X°+1_x°)+1 1= 5x)(6+ 8x. — x2— 1242~ T
wp(1—Ax)= 20—x) 2 2 24 17X )6+ 8xe—xc— 12x:—7Txc)
=f(xo). (A-6)

Once A and ¢ are obtained from curve fitting of experimental data, we can calculate 6. (see eq.
(A-1)) and hence D, from eq. (A-6).
Appendix B

We present here a brief summary of procedure to obtain the analytic expression relating the
diffusion coefficient to the effective relaxation time. ¢;is defined by eq. (18). Substituting eq. (18)
into eq. (19), we have

r(0)

By a procedure similar to the one in ref. 13), we can show that ¢; is expressed as a sum of five
terms:

o:(1 "‘Boo)=§:|:'r_(f2_Boo:| dt. B-1)

61=Bo)= 3} om ®-2)
where
2—m)!
2+m)!
for m=0 and ¢-,=¢.. P5(cos 0) is the associated Legendre polynomial, d,,0 the Kronecker

delta, w*(u) and { P,) are given by eqgs. (14) and (27), respectively. T».(u) satisfies the following
differential equation:

1/2
om=(—1)" [ ] S [PF(cos 6) €™ = 3ol PO Tam( ) w* (1) d u, (B-3)

Q2—m)!
Q2+m)!
T is subjected to the boundary conditions eq. (12). Letting x=cos 6, the solution of eq. (B-4)

for m=0, 1, 2 are given as follows;
2

1/2
DViTom(m)=(—1)""! [ ] P(cos 0) €™+ Omo{ Pa). (B-4)

DT20=%+c1 log (1—x)+¢2 log (1+%), (B-5)
_ei¢ 1—x 1/2 1+x 1/2

DT21=7—6— [x(l—-xz)”2+c3 (1+x) +c (1 —x) }, (B-6)

DTzz:i [(1 —x%)+cs <l—x) +cs <1+x)]' B-7)
46 1+x 1—x

1 to cs are given by egs. (21) to (26), respectively. Evaluating the integrals in eq. (B-3), we get eq.
(20) in the text.

Appendix C
The problem of rotational diffusion of a nonlinear chromophore fixed rigidly in a protein that
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rotates about the normal to the plane of the membrane was treated firstly by Kawato et a/.2” Sim-
ple expressions for r(¢)/r(0) and r()/r(0) can be obtained for linear and circularly symmetric
chromophores. Using the rotational diffusion constant D,, they are given as follows;

r(t

r_(()_;=3 sin? o cos? oze'D"+% sin* ae“‘D"+% (1—3cos® a)?, ((o13)

r(®©) {1 NG

r(O)_[Z(l 3cos*a) | . (C-2)
In the above, « is the fixed angle between mem- 6) C. Moore, D. Boxer and P. Garland: FEBS Lett.
brane normal 7 and g (linear chromophore) 108 (1979) 161. -

7) W. Hoffmann, M. G. Sarzala and D. Chapman:
or between n and normal to the plane of Proc. Natl. Acad. Sci. USA 76 (1979) 3860.

the chromophore (circularly ~ symmetric 8) R. Rigler and M. Ehrenberg: Q. Rev. Biophys. 6

chromophore). (1973) 139.
If we put .=0 keeping « constant, x; =x,= 9) G. G. Belford, R. L. Belford and G. Weber: Proc.
cos . To obtain the approximated monoex- Natl. Acad. Sci. USA 69 (1972) 1392.

10) Ph. Wahl: Chem. Phys. 7 (1975) 210.

ponential expression for eq. (C-1) (similar to- ) "y o n s Kawato and A, Tkegamis
(.18)),' we employ Fhe relation (19). T‘mS expres- Biophys. J. 20 (1977) 289.
sion is characterized by one effective relaxa-  12) G. Weber: Acta Phys. Pol. A54 (1978) 173.
tion time ¢, which is given by 13) G. Lipari and A. Szabo: Biophys. J. 30 (1980) 489.
14) G. Lipari and A. Szabo: Biochemistry 20 (1981)
_3 2 4 6251.
Dr¢r(1=Ra) =76 (1 +14x1=15x1),  (C-3) 15} G [ipari and A. Szabo: J. Chem. Phys. 75 (1981)
2971.
where 16) G. Lipari and A. Szabo: J. Am. Chem. Soc. 104
: e 5 (1982) 4546.
Ro=|—= (1—3 cos? =|=(1-=3x%1. 17) A. Szabo: J. Chem. Phys. 72 (1980) 4620.
® [2 =3¢ oz)} [2 ( 1) 18) J. R. Brainard and A. Szabo: Biochemistry. 20

(1981) 4618.
(C4)  19) A. Szabo: J. Chem. Phys. 81 (1984) 150.
20) W. van der Meer, H. Pottel, W. Herreman, M.
Ameloot, H. Hendrickx and H. Schroder: Biophys.
J. 46 (1984) 515.
Do¢;(1— Rw)'_'_é (1—=xH(1+ 14x7—15x1), 21) S. Kawato and K. Kinosita, Jr.: Biophys. J. 36
~(1981) 277.
(C-5) 22) S. Kawato, K. Kinosita, Jr. and A. Ikegami:
Biochemistry 17 (1978) 5026.
in this limit. Physically speaking, D and D, 23) R. J. Cherry and R. E. Godfrey: Biophys. J. 36

On the other hand, eq. (20) reduces to

should be related by (1981) 257.
24) S. Kawato, S. Yoshida, Y. Orii, A. Ikegami and K.
D=(1—-x})D.. - (C-6) Kinosita, Jr.: Biochim. Biophys. Acta. 634 (1980)
. . . 8s.
Therefore (C-5) is consistent with (C-3). 25) R.J. Cherry, E. A. Nigg and G. S. Beddard: Proc.
Natl. Acad. Sci. USA 77 (1980) 5899.
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