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The thermal transport process plays an important role in the sound attenuation in
inhomogeneous media. This problem is best exemplified by the sound attenuation in a
one-dimensional space with periodically alternating media. Using the transfer matrix
technique, we give here a general theory of the sound propagation and attenuation in

such a periodic system.

List of Symbols

p density

P pressure

T temperature

s entropy per unit mass

k wave number of compressional
wave

q wave number of thermal wave

K Bloch’s wave number of compres-
sional wave

(0] Bloch’s wave number of thermal
wave

Ac wavelength of compressional wave

At wavelength of thermal wave

v velocity

o coefficient of thermal expansion

B isothermal compressibility

y=cp/cy ratio of specific heats at constant
pressure and constant volume

t=B/y  adiabatic compressibility

C velocity of sound

7] sound attenuation coefficient

d dimension of the inhomogeneity

& volume fraction of the first compo-
nent

K thermal conductivity

x=kK/pce thermometric conductivity

n=vw/2x

w angular frequency
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Introduction

§1.

The problem of the sound wave propaga-
tion in a suspension, where solid material is
suspended in a liquid, and in an emulsion,
where liquid particles are suspended in a liquid
of different sort, has received great attention
in connection with acoustics in ocean,
biological systems and chemical systems, such
as blood and latex. This problem has been also
frequently an object of theoretical investiga-
tions.'™

Allinson and Richardson® studied the
ultrasonic attenuation in emulsions of benzene
in water and water in benzene. They found
that the attenuation is greater than the values
estimated on the basis of the mechanism of the
scattering and the viscous drag, which are
crucial to the sound attenuation in suspen-
sions. By that time, Isakovich” had already
shown that there must be a special mechanism
for the attenuation of sound in an emulsion.
He reasoned that sound propagation in an
emulsion can produce temperature difference
at the interface between the particle and the
suspending fluid, causing a heat flow from one
component to another. Such a thermal diffu-
sion process leads to entropy production, and
this in turn gives rise to a considerable sound
attenuation. This is an important mechanism
which is absent in the homogeneous fluid.

Physically speaking, at low frequencies, the
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temperature difference between the particle
and the suspending fluid will equilibrate in a
unit cycle of sound wave oscillation. On the
other hand, at high frequencies, only a small
portion of the particle volume near the surface
takes part in the thermal conduction process.
Hence the temperature difference will not
disappear sufficiently during the oscillation in
this case.

Isakovich’s consideration is indeed very in-
genious but his formulation was rather in-
tuitive. An extended theoretical description of
the problem was given later by Epstein and
Carhart® in 1952. They considered a single
fluid sphere suspended in a fluid and included
both viscous and thermal dissipations. A
similar problem of a solid suspended particle
was solved by Allerga and Hawley” on the
basis of Epstein and Carhart’s formalism.
These authors pointed out that Isakovich’s
prediction is justified in the long-wavelength
limit.

The analyses given by the above authors,
however, have been limited to the case where
the frequency is so small that the wavelength
of the compressional wave is much larger than
those of the thermal and viscous waves as well
as the particle size. It is worthwhile to give a
theory which enables us to calculate the pro-
pagation and the attenuation of the sound
wave with shorter wavelengths. In fact, such
a general theory is possible if we restrict
ourselves to one-dimensional periodic
systems. The aim of this paper is to solve
rigorously the one-dimensional problem to
work out dispersion relation of the sound
wave and the coefficient of sound attenuation
in a higher frequency regime as well. Our
result includes Isakovich and Epstein-
Carhart’s ones in a lower frequency region.
The one-dimensional periodic system can be
realized, for example, by a multi-layer of a
lipid-water system.

The sound wave propagation through such
a system is described exactly by means of the
transfer matrix formalism as shown in §2. The
one-dimensional problem and its prediction
can be used as a criterion for the existing
approximation methods. In §3, Isakovich’s
theory is examined on the basis of our
rigorous predictions. We show also a
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discrepancy between Isakovich’s results and
ours in a higher frequency range. A brief ex-
planation of Isakovich’s theory is included
in Appendices A and B.

§2. Method for Calculating Sound Velocity
and Attenuation

We present here a general method for
calculating the sound velocity and attenuation
in a one-dimensional periodic inhomogeneous
medium. This system provides us a rigorously
solvable example, which can be used as a
criterion for examining the approximation
methods developed such as by Isakovich and
Epstein-Carhart.

We start with the fundamental equations of
fluid mechanics.!? For simplicity we neglect
the bulk viscosity. Actually, our formalism
will not be affected by an inclusion of the
viscous effect. The fundamental equations
describe the conservation of mass (continuity
equation) and momentum (Euler’s equation),
and also the entropy balance:

ap 0

5"'5;(%):0, 0y

v v 1 0P

54_”5: ——p'a, 2
ds  0s a aT

pT(E+Z}5;>=5); (Ka), 3)

where p denotes the density of fluid, » the ve-
locity, P the pressure, 7T the temperature, s the
entropy per unit mass and x the thermal con-
ductivity. Since the oscillations caused by the
sound wave are small, we can linearize these
equations. We put

P=P0+§P, T=T0+5T, U=§U,
p=po+dp, s=so+5s. 4
In the above, Py, To, - - - stand for the values

in equilibrium (in the absence of the acoustic
field), and JP, 67T, --- are their variations
when the sound wave is applied (0P <« Py,
0T« Ty, -+ -). Retaining in (1), (2) and (3) only
to the first-order terms, we obtain

adp
o7 P5;=0, &)
v 136P

5 ax (6)
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a0s 0T
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ot pTox ox
(hereafter the suffix 0 attached to the constant
quantities P, etc. is omitted after the lineariza-

tion). Elimination of » from (5) and (6), then,
yields

Fop_ 4 ( 1 66P> ®

or? P ox p ox
Note that in our medium x, p etc. still depend
on x. Our next objective is to eliminate the
variables p and s. To do so, we make use of
two additional equations:

p=p(T, P), s=s(T,P), )]

namely, the equations of state. Then it follows
that

_(9s as _Cp a
Js= (ﬁ)PéT_l- (a-ﬁ)Tép—? §T—; oP, (10)
op= (9£> oT+ (a_p) OP= —padT+ pPoP,
T Jp 0P /r

(11)

where cp is the specific heat at constant
pressure; o= —(1/p)(@p/dT)p the coefficient
of thermal expansion, and S=(1/p)(@3p/0P)r
the isothermal compressibility. This isother-
mal compressibility is related to the adiabatic
compressibility 7 through the well-known ther-
modynamic formula

1 a_p)zﬁz T
‘ p( A g )

12
oPJ, vy pce (12)
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Substituting (10) into (7) and also (11) into (8),
we arrive at

T 1 9 30T\ To doP
?_;';5); (K*(g) _;C—p—é_t—zo, (13)
and
9°0T 3*6P 9 [1 doP
a YD - o +a—x (;a—x)=0 (14)

These two equations are the fundamental equa-
tions of our problem. Let us restrict our atten-
tion to the periodic system of two alternating
media (1 and 2) as illustrated in Fig. 1.
Hereafter we shall denote by the indices 1 and
2 the quantities referring, respectively, to the
first and second media. The period D is the
sum of the thickness of each medium d,
dy(D=d;+d,;). Our main purpose is to seek
for the solution of the two coupled equations
and to get JP in the form dP=f(x)e™™ where
f(x+D)=f(x). Here K corresponds to
Bloch’s wave number in solid state physics or,
to be more specific, in the Kronig-Penny
model. The coefficient of the sound attenua-
tion is provided by its imaginary part.

It is reasonable to postulate the following
forms of 67 and JP for a homogeneous
medium:

6T, SPxexp {i(px—wt)}. (15)
Then (13) and (14) reduce, respectively to
iwpc; iwaT
(pz— }f P) oT+ ’f 6P=0,  (16)
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Geometry of the one-dimensional periodic inhomogeneous system.
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602
pw’adT+ (p -——) oP=0, an
C?
where we have employed the notations
Crm (GP) 1 Cz_(ap) C2 1 (18)
\opl prt 7T \op Y P/)’

for the adiabatic and isothermal sound veloc-
ity. If we put o=0, equations (16) and (17)
become mutually independent. They are, re-
spectively, the heat-conduction equation for
the thermal wave and the wave equation for
the compressional wave. In this case, the wave
number of the compressional wave k takes on
the simple form

=222 (19)

Cr G’

which indicates the absence of the sound
attenuation. In contrast to this, the wave
number g of the thermal wave is

(1+1)¢ —(1+1) \/— (20)
This shows that the thermal wave is rapidly
damped with increasing x. When « is not
equal to zero, the compressional wave
(pressure mode) and the heat wave (tempera-
ture mode) are coupled. The compatibility con-
dition for the two equations for 67 and JP
((16) and (17)) reads

4__p2 (gi+l_(2> l_w_
PP\ xC?
providing the relation between p and w. For a
given w, eq. (21) is a quadratic equation for
p’. The solution of eq. (21) which becomes
identical to w?/C% in the limit «—0 is written
simply as k? (compressional mode), while the
other solution, which approaches iw/x as
a—0 is denoted by g* (thermal mode).

It is instructive to examine the asymptotic ex-
pressions of k and ¢ in high and low frequency
limits (see ref. 10 for details).

(1) In the case of w« C?/y,

3

=0, @D

w o (1 1
=otae (C_"E> 2)
and
B ,Jw
qg=(1+i) _2)(' (23)
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Equation (22) indicates the propagation of the
sound with the adiabatic velocity C;. The im-
aginary part of (22) is nothing but Kirchhoff’s
formula for the sound attenuation.

(2) In the case of w>»C?/y,

k=2 i
TG 2

(Ci-Ch), 4

and

wWCy

g=(1+i) ~/2xcp

25)

In this case the sound propagates with the
isothermal velocity Cr, which is always less
than C; (see (18)). The attenuation coefficient
is independent of the frequency and is
inversely proportional to the thermal
conductivity.

Both the compressional mode and the ther-
mal mode consists of two components, 7 and
OP. The ratio between these components is
determined by eq. (16) (or, equivalently by eq.
(17)). For the compressional mode and the
thermal mode, we define

0T=a(w)oP, b(w)oT=JP, (26)

respectively. In the above,

_ iwaT/k -

= operiy P
pw’a

b(w)=— (28)

= (@*/C?)’
Again, notice that in the case of «=0 both
a(w) and b(w) vanish. Using thus defined

a(w) and b(w), we introduce the following
four base vectors:!

u(k)=( ! ) exp (ikx), (29)
a(w)
1
u(—k) =( ) exp (—ikx), 30)
a(w)
b(w) .
W(q)=( 1 ) exp (igx), (31)
b(w)
w(—q) =( 1 ) exp (—igx). (32)

' If the medium is semi-finite, 0 <x < 00, the solutions
(30) and (32) should be excluded. Our system considered
in what follows is, however, inhomogeneous and hence
the solutions (30) and (32) representing the backward pro-
pagation should also be considered.



1990)

With these notations, the coupled state of the
compressional and heat waves is represented
as

L T———
w= 5T =cu(k)+cu(—k)+caw(q)

(33)

The set of coefficients (c;, ¢, c3, ¢4) uniquely
specifies the state.

Now we are in a position to deal with the
specific problem of the one-dimensional
periodic inhomogeneous medium as already il-
lustrated in Fig. 1. The boundary conditions
at the interfaces are

1 95P1 1 8P,

+cw(—q).

P\=0P;, ———= , 34

oP, 5 Tox g ox (34)
00T, 30T,

5T1=5T2, K1 =K (35)
ox ox

In (34) and (35), the latter conditions can be
easily obtained by integrating egs. (13) and
(14) for inhomogeneous media. Especially, the
latter condition of (34) enforces the continuity
of the velocity.

Our problem is now reduced to find the
transformation of the wave function (33) after
the waves are propagated over a single period
D. In view of (33), it is enough to know how
the coefficients (ci, ¢z, ¢3, 1) at x=xo are
transformed into the new set of coefficients
(ci, ¢3, c3, c) at x=xp+D. To this end, we
define the next two vectors:

oi(x)=| "' , (36)

ci exp {iki(xo+D+0%)}
¢ exp { —iki(xo+D=+0"%)}

¢; exp {igi(xo+D+0%)}
ciexp {—igi(xo+D+0%)}
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and
c; exp (ikix)
c; exp (—ik;x)
d)i (x ) = . ’
cs exp (igix)
csexp (—igix)

37

where i=1,2 corresponding to the first and sec-
ond component respectively. We then find
from (33) that @;(x) and ¢;(x) are related to
each other by

Di(X)=M;pi(x), ¢(x)=M;'®(x), (38)
with
1 1 b; b;
ik; iki  ibiqi  ibig
M= — T T T
pi pi P pi |, (39
a; a; 1 1
ikiak; —iciaik; iciq —iKiq;
and its inverse matrix
Pi bi
= —p ——
ik,' lKiki
i b;
h Ly b
M.“l 1 lk,- lKik,'
"o 2(1—aib) aipi 1
—a == 1 —
1q; IKqi
a;pi 1
P
1q; IKi{gi
(40)

It is advantageous to introduce the transfer
matrix M defined by

$1(xo+D+0%)=M¢(xo+07), (41)
or equally
¢ exp {ik (x+0%)}
exp { — ik (x+0*
C p{ 1(Xo )} , (42)

¢ exp {igi(x+07)}
caexp { —igi(xo+07)}

where 0% is an infinitesimal positive quantity (x, is shown in Fig. 1). Imposition of the boundary

conditions (34) and (35) produces

M=M7{'M,E;M;'M\E,,

(43)
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where
exp (ik:d;) 0 0 0
0 €X - lk,d, 0 0
E= p( ) . , 44
0 0 exp (ig:d;) 0
0 0 0 exp (—iq:d;)

(see Appendix C).
The 4 X 4 matrix M is diagonalized. The diagonalized matrix can be written in the following
form;

exp (iKD) 0 0 0
0 —iKD 0 0
X MXx= exp (~1KD) , (45)
0 0 exp (iQD) 0
0 0 0 exp (—iQD)

where K and Q are complex wave numbers corresponding to the compressional and heat wave, re-
spectively, determining the dispersion relation of each mode. Both K and Q are analogous to
Bloch’s wave number. We choose Im K> 0 and Im Q> 0. From now on, we consider the semi-in-
finite medium, 0<x< 0. Then the solutions corresponding to e~ ** and e ™% should be excluded
from the boundary condition at x— 0. The imaginary part of K gives the sound attenuation.
Within our formalism, cos (KD) and cos (QD) can be obtained by solving the next two equa-
tions

cos (KD)+cos (QD) =% Tr(M), (46)

cos? (KD)+cos? (QOD)=1+ % Tr(M?). ()]

The case of a; =a,=0is much simpler. In this case a;(w)=b;(«w)=0 (see (27) and (28)), so that
each of M;and M ! splits into two 2 X 2 matrices. Then we can readily write down the dispersion
relations of the compressional and thermal waves:

1 (ki/ p)*+(kz/ p2)?

cos (KD)=cos (k1d,) cos (kzdz)—? rl oKl p2)

sin (k,dy) sin (k2d,), (48)

and

L gy U@) o d) sin (g, “49)

cos (OD)=cos (qd:) cos (qzdz)——z—

In the above use has been made of the follow-
ing definitions:

e © _ 1/lco 50)
’_CTi_Csi &= Xi ’
(i=1,2; see (19) and (20)).

The expression of the attenuation coefficient
for the case of non-zero «; and o, is also
available. However, it is too lengthy to be writ-
ten out explicitly here. Instead we are con-
tended with the presentation of some graphi-

K141K24>

cal plots, which is relegated to §3.

In connection with Isakovich’s theory, we
have to be careful about the choice of
parameter values. As shown in Appendix A,
Isakovich predicted the behavior of the at-
tenuation coefficient & as ¢ v/  in a high-fre-
quency region. In that region, the thickness of
each layer d(~d, d,) is much larger than the
wavelength of the thermal wave, but it must
be much shorter than the wavelength of the
compressional wave. Therefore, the frequency
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Re k
Re ¢q

Q-

_2% C CZ w

d d xX

Fig. 2. The dispersion relation of the compressional
wave k and the thermal wave g. The parameter d
gives the dimension of the inhomogeneity. There are
four different frequency regions divided by three
critical frequencies.

region, where do¢ v w holds, should be con-
fined to the range

Re k<<%<< Regq. (629)]
In other words,
X C
?ﬁ« WK (52)

This implies that Isakovich’s result do¢ v
can be obtained in a system such that
1. C
d X
In the above, C is the velocity of the sound
(~ Cr, Cy). In addition to the two frequencies
appearing in (52), there exists another critical
frequency C?/x at which the wavelength of
the thermal wave is equal to that of the com-
pressional wave. For the system satisfying
equation (53) we get

(53)

(34

All of these facts are well illustrated in Fig. 2.
Details are discussed in the following sec-
tion.
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Fig. 3. The attenuation coefficient J as a function of

frequency w in an inhomogeneous system. The
parameters are set as 7=1.0, d,=d,=0.5, p,=p,=
1.0, cp;=¢p,=2.0, C1,=C1,=10.0, k,=k,=0.1. The
frequency covers regions 1 and 2 in this graph. This
graph is written in arbitrary scales.

§3. Discussions

In this section, we examine the validity of
Isakovich’s predictions by comparing with our
rigorous formalism.

Figure 3 is a graph of the attenuation
coefficient & plotted against the frequency w
for typical values of «; and «,. For the simplic-
ity we consider the case where d,=d,=d,
p1=p=p, cpi=cpm=cp and k;=k,=k. The
results of Isakovich’s theory is also shown.
Within the framework of Isakovich’s theory,
the sound attenuation which occurs in the
homogeneous medium is disregarded. This
can be easily understood by equalizing «; and
o, in his expression (A-7). Actually, the at-
tenuation occurs even in the homogeneous
medium within our formalism. This fact can
be realized by (22) or (24). We have included
this effect by putting the pressure field from
the beginning in the general form JPoc e/(P*~9,
Spatial variation in the pressure results in the
spatial variation in the temperature (see (26))
causing a heat flow even if the medium is
homogeneous. This effect is not taken into ac-
count in Isakovich’s theory.

In the two component medium, however,
the dominant contribution to the total attenua-
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w

Fig. 4. The attenuation coefficient J as a function of
frequency w in an inhomogeneous system. The
parameters are set as 7=1.0, d,=d,=0.5, p;=p,=
2.0, cp;=¢p;=2.0, Cpy=Cp=1.0, Kk =kK,=1.0,
a;=0.1, a,=0.01. The frequency covers regions 1, 2,
3 and 4 in this graph. This graph is written in ar-
bitrary scales.

tion is attributed to the inhomogeneity of
the medium. Therefore, the above criticism
against Isakovich’s theory is irrelevant in the
case of the inhomogeneous system. We can
observe this situation from Fig. 3.

Moreover, we would like to emphasize that
our general formulation allows us to predict
the behavior of the sound attenuation in a
wider frequency range. We have divided the
frequencies into four different regions by the
three critical frequencies x/d? C/d and
C?/ . We consider the system where the condi-
tion (53) is satisfied. The attenuation curve
over a wider frequency range is exhibited in
Fig. 4 for certain parameters. It is observed
that the behavior of the attenuation changes at
the critical frequencies.

Let us consider here the physical meaning of
each of the four frequency regions. For this
purpose we introduce the notation A, and A,
for the wavelengths of the compressional and
thermal waves (see Fig. 2).

(1) region 1: w<y/d? d<A<A.

The frequency is so small that the thermal
equilibrium is nearly established in each com-
ponent at every moment of time. The attenua-
tion coefficient is proportional to w?, which
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agrees with the attenuation behavior in the
homogeneous media. However, the physical
mechanism of our attenuation is quite
different from that in the homogeneous case.

(2) region2: y/d*<w<C/d, li<d<A.
The temperature bétween the two components
differences does not die out in one period of
the pressure oscillation. The fact that the at-
tenuation coefficient is proportional to v @ in
this region was first pointed out by Isakovich
and has been confirmed by our general theory.

(3) region 3: C/d<w<C?*/y, M<i.<d
The sound is absorbed at each component in
the same way as in a homogeneous system.
Therefore the attenuation coefficient is again
proportional to w’.

(4) region 4: C*/y<w, Ac<Ai<d
The wavelength of the compressional wave is
smaller than that of the thermal wave. Then
the attenuation coefficient does not depend on
the frequency as can be noticed from (24).

Isakovich’s predictions are valid only in the
regions 1 and 2 while ours in all regions.

It is noted that there appear some small dips
and cusps which are due to the resonance
effect inherent in the one-dimensional periodic
system. Since the condition of the resonance
effect is given by

2D=ni., (55)

(n: integer) the dips and cusps will arise near
the frequencies
-C
w= D 7n. (56)
We have set C/ D=1 in Fig. 4, exhibiting dips
and cusps at the frequencies 7, 27, 37- - -.
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Appendix A: Review of Isakovich’s Theory

In this appendix we present a concise
description of Isakovich’s theory. Isakovich
assumed that the medium is ‘‘macroscopically
homogeneous.”” A medium is called
‘““macroscopically homogeneous,’” if it con-
tains two or more components and can be
divided into regions, which are small in com-
parison with the wavelength of the sound
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wave but still contain many heterogeneous
parts. During the passage of the sound wave,
such a region can be regarded as lying in a
uniform pressure field. Thus, he solved equa-
tion (13) by postulating the following forms of
OP and 0T

K=%+i5=ww/ﬁ_f=w{[8p1+(l—8)pz][8C1+(1—8)421}”2.
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OPxe ™ §Toce @ T=0PT, (A-1)

where T has no time dependence. The complex
wave number K of the sound wave in this in-
homogeneous system is related to the fre-
quency w by

(A-2)

In the above ¢ is the volume fraction of the first component; {; and {, are the condensations ex-

pressed by
C1=ﬁ1—a1fl,

szﬁz_az 7~wz,

(A-3)

where T; and T are the periodic solutions of (13). The mathematical derivation of (A-2) is not
given in Isakovich’s paper, so we give it in the Appendix B. Assuming that the sound attenuation

is small, we find from (A-2) that

K1Kahnp tanh [(1—i)n,d,/2] tanh [(1 —i)n.d>/2]

Kk +(1+i)TC ( o ‘)2
L 2D P Pi1Cp1 P2Cp2

where

WpP;Cp;i
ni= ’
ZK,'

1 2] V2
CLL= {[8p1+(1—8)p2] [8%‘+(1_8)ﬁ }} N

xiny tanh [(1—i)nd, /2] + k2n, tanh [(1—i)nady /2]

(A-4)

(A-5)

- (A-6)
Y2

and K;;=w/Cy;. For simplicity, let us consider the special case where di=d,=d, pi=p.=p,
cpi=cp,=cp and k;=k,=k. The attenuation coefficient Jd, obtained from the imaginary part of

K, is
_w TCr(o— )’
8ndcp

In the limiting case where the thermal
wavelength is much greater or much less than
d, the expression (A-7) is reduced to the
following simple forms.

(1) In the case of nd«1,

5= T(Oll - Olz)zpCLL d2w2
B 96K
(2) In the case of nd>1,

V.

o w?. (A-8)

_ T(Oll e Olz)zCLLKn
© 4dpch

The latter result is the characteristic feature
of Isakovich’s theory.

(A-9)

(Re+1Im) tanh [(1—i)nd/2].

(A7)

Appendix B: Derivation of (A-2)
Substituting (A-1) into (14), we obtain

LA E
a2 ox\p Ox
where
{=p—aT. (B-2)

Let us consider the one-dimensional periodic
inhomogeneous medium. At this stage we put
JOP;(i=1, 2) for each component in the form

oP;cexp {i(kix—wt)}. (B-3)

Then the dispersion relation for each compo-
nent is
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_ Then the implicit dispersion relation of the

ki=wpd. (B-4) sound wave reduces to (48). Our next step is to
The boundary condition for the compres- coarse grain the system.!” To do so, we let
sional wave at the interfaces are given by (34).  d,—0, d,—0, keeping d,/D, d»/D constant.
Then we have

1-L kpy=1-1 (hay-1 (hay-+ P ) o (®B-5)
) 5 kd 5 ads 2 P1P2 " Py 102.
We finally reach the desired formula d1(xo+D+0T)=M7'®\(xo+D+0%). (C-8)
K=w+pi, (B-6) Equations (C-3) and (C:7) are always
with guaranteed by the boundary conditions (34)
) and (35). Hence we reach the expression (43).
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