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As a simple model for a Pickering emulsion droplet, we consider the adsorption of spherical
particles to a spherical liquid-liquid interface in order to investigate the curvature effect on the
particle adsorption. By taking into account both the surface and the volume energies due to the
presence of a particle, we show that the equilibrium contact angle is determined by the classical
Young’s equation although the adsorption energy depends on the curvature. We also calculate the
partitioning of the colloidal particles among the two liquids and the interface. The distribution of
colloidal particles is expressed in terms of the interfacial curvature as well as the relative wettability
of the particle. © 2006 American Institute of Physics. �DOI: 10.1063/1.2216697�

Small particles such as lamp black or hydrophobic silica
adsorb to an oil-water interface and act as stabilizers of
emulsions. Such emulsions are called “Pickering emulsions”1

and have been used in various food and cosmetic products.2

For instance, lipoprotein particles and fatty acid crystals sta-
bilize the emulsion state in mayonnaise or margarine. A mod-
ern application of Pickering emulsion is to use them as tem-
plates of functional composite materials. For example,
spherical emulsion droplets are used to produce micro-
structured hollow spheres3 or ribosome-like nano-capsules
�“colloidsomes”�.4 In addition to spherical droplets, the par-
ticles form several self-assembling structures such as net-
work structures or ball-like aggregates.5 Quite recently, col-
loidal particles with equal affinity for two liquids are shown
to form a bicontinuous interfacially jammed emulsion gel
�“bijel”�.6

Pickering emulsions are not only useful but also very
interesting from the fundamental point of view. When a mol-
ecule exhibits a surface activity, it is conventionally recog-
nized that both hydrophobic and hydrophilic groups should
exist in a single molecule. This is not the case for colloidal
particles whose surface is chemically uniform. The particles
adsorb only when the relative wettability between the par-
ticle and the two liquids balances each other.7,8 Moreover,
the connecting point between the hydrophobic and hydro-
philic groups in a surfactant molecule is localized at the in-
terface between the two liquids. Colloidal particles, on the
other hand, can adjust their position with respect to the in-
terface in order to reduce the interfacial energy.

In this Communication, we discuss the adsorption of
spherical solid particles to a liquid-liquid interface. Special
attention is paid to the effects of interfacial curvature on the
adsorption behavior. For a spherically curved droplet inter-
face, we show that the contact angle satisfies the classical
Young’s equation although the adsorption energy depends on
the curvature. We also consider the partitioning of the colloi-

dal particles among the two liquids and the interface. In con-
trast to the previous work,9 both the relative wettability and
the interfacial curvature are shown to contribute to the equi-
librium distribution of colloidal particles. The curvature ef-
fect on the adsorption behavior is important because most of
the structures in Pickering emulsions are characterized by
finite curvatures.

We start our discussion by considering a single spherical
particle of radius a resting at a flat interface between liquid 1
and liquid 2, as shown in Fig. 1�a�. Let � be the contact
angle, and �1p, �2p, �12 be the 1-particle, 2-particle, 1-2 in-
terfacial tensions, respectively. Neglecting external forces
and a finite thickness of the interface, the interfacial energy
attributed to the particle is w0=�1pA1p+�2pA2p−�12A12,
where A1p and A2p are the 1-particle and 2-particle contact
areas, respectively, while A12 is the eliminated area of the 1-2
interface due to the presence of the particle.7 For a flat inter-
face, these areas are given by

A1p = 2�a2�1 + cos ��, A2p = 2�a2�1 − cos �� ,

�1�
A12 = �a2 sin2 � .

Hereafter, it is convenient to introduce the following dimen-
sionless quantities:

� =
�1p + �2p

�12
, � =

�1p − �2p

�12
. �2�

Then the dimensionless adsorption energy defined by
g0���=w0 / �2�a2�12� is written as

g0��� = � + � cos � −
sin2 �

2
. �3�

The equilibrium position �or the contact angle� of the particle
is determined by minimizing g0��� with respect to �, i.e.,
dg0 /d�=0. This results in the conventional Young’s
equation:7a�Electronic mail: komura@comp.metro-u.ac.jp
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�min = arccos�− �� . �4�

By substituting this relation to Eq. �3�, the minimized inter-
facial energy is obtained as g0��=�min�=�− �1+�2� /2 when
����1. On the other hand, the particle prefers to stay either
in liquid 1 when ��−1 or in liquid 2 when ��1.

Next we discuss the adsorption of a spherical particle to
a curved interface between liquids 1 and 2. For simplicity,
we consider a spherical 1-2 interface whose radius is denoted
by R12 as depicted in Fig. 1�b�. Here the dimensionless cur-
vature �=a /R12 is taken to be positive when the interface is
curved toward liquid 1. In the following, we generally as-
sume that ��1. When the interface is curved, one has to take
into account the pressure in each liquid denoted by p1 and p2.
According to Laplace’s law for a spherical interface, the
pressure difference is maintained by the surface tension;
p2− p1=2�12/R12. For a given droplet curvature �, we now
calculate the energy per particle by w=�1pA1p+�2pA2p

−�12A12+ p1V1+ p2V2, where V1 and V2 are the volumes oc-
cupied by the particle in liquids 1 and 2, respectively. After
some geometrical considerations, we obtain these areas and
volumes as

A1p = 2�a2�1 + cos�� − 	�� ,

A2p = 2�a2�1 − cos�� − 	�� , �5�

A12 = 2�R12
2 �1 − cos 	� ,

V1 = �a3� 2
3 + cos�� − 	� − 1

3 cos3�� − 	��
− �R12

3 � 2
3 − cos 	 + 1

3 cos3 	� , �6�

V2 = �a3� 2
3 − cos�� − 	� + 1

3 cos3�� − 	��
+ �R12

3 � 2
3 − cos 	 + 1

3 cos3 	� , �7�

where

	 = arctan� � sin �

1 + � cos �
� �8�

is the central angle defined in Fig. 1�b�. Then the dimension-
less energy g�� ,��=w / �2�a2�12� which now depends on �
and � becomes

g��,�� = � +
a�p1 + p2�

3�12
+ � cos�� − 	�

−
1 − cos3 	

3�2 −
�

3
�3 cos�� − 	� − cos3�� − 	�� .

�9�

Since 	�� sin � up to the lowest order in �, it is easy to see
that Eq. �9� reduces to Eq. �3� in the limit �→0 except the
constant term related to the pressure. We note here that a
similar calculation was done before,10 but the volume ener-
gies were not considered there.

As we did for a flat interface, the equilibrium position of
the particle is obtained by minimizing g�� ,�� with respect to
� while � is fixed, i.e., ��g /����=0. Then we obtain the same
Young’s equation as in Eq. �4�. This means that the equilib-
rium contact angle does not depend on the curvature of the
interface. The present result is consistent with the other
work.11 Notice that we have fixed the curvature � and al-
lowed the area and volume to change. In a different
treatment,12 the same Young’s equation was recovered even
when the volume is conserved.

We now substitute back the Young’s equation into Eq.
�9�, and obtain g���=g��=�min,�� which is a function of �
only. In Fig. 2, 
g���	g���−�−a�p1+ p2� / �3�12� is plotted
for �=0 and ±0.5. We see that g��� takes a maximum value
at a certain value of � �denoted by �*� for each different
values of �. Since the absolute value of g��� corresponds to
the work needed to remove a particle from the interface, the
particles are most weakly adsorbed when �=�*.

When the size of the droplet is large ���1�, one can
expand g��� in terms of � to obtain

g��� � � +
a�p1 + p2�

3�12
−

1

2
�1 + �2� + ��1 −

�2

3
��

−
3

8
�− 1 + �2�2�2 + ¯ . �10�

Again, g��� reduces to g0��� in the limit �→0 apart from the
constant term. Within this quadratic approximation we obtain
�*��4/9���3−�2� / �−1+�2�2, which is valid when � is close

FIG. 1. �a� A spherical particle of radius a adsorbed to a flat interface
between liquid 1 and liquid 2. The contact angle is denoted by �. �b� A
spherical particle adsorbed to a spherical interface whose radius of curvature
is R12. The pressures in liquids 1 and 2 are p1 and p2, respectively. 	 is the
central angle.

FIG. 2. The minimized scaled interfacial energy difference 
g��� �see the
text� as a function of �=a /R12 for �=0, ±0.5. Filled circles on each curve
correspond to the maximum points.
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to zero. Being consistent with the symmetry consideration, �*

is an odd function of �. It should be noted that even the
equilibrium contact angle is independent of the interfacial
curvature, the minimized interfacial energy g��� is a function
of �. This is the main result of the paper. Such a curvature
effect becomes important when we consider, for example, the
partitioning of the particles as discussed below.

In the following, we adopt the formalism to discuss the
thermodynamics of the surfactant films which are in equilib-
rium with surfactant in solution.13 Here the particles play the
role of surfactants. Consider a ternary mixture in which the
total volume fractions of liquid 1 and liquid 2 are �1 and �2,
respectively, and the total volume fraction of colloidal par-
ticles in the system is �p. These volume fractions satisfy the
condition �1+�2+�p=1. The particles are partitioned
among the liquid 1, liquid 2, and the monolayer films with
volume fractions �p,1, �p,2 and �p,m, respectively. Such a
partitioning was indeed observed in the experiment.14 Since
the total amount of the particle should be conserved, they
satisfy

�p,1 + �p,2 + �p,m = �p. �11�

Next we denote the local volume fractions of particles in
liquid 1 and liquid 2 by �1 and �2, respectively. When the
segregation between the two liquids is strong enough, the
total and the local volume fractions are related by

�p,i

�i
=

�i

1 − �i
, �12�

where i=1,2. It is assumed here that the local concentration
of particle in the film is unity. This assumption is justified
because the interfaces in Pickering emulsions consist
of monolayers of almost hexagonally close-packed
particles.15,16

In the liquid regions containing colloidal particles, each
free energy per particle is given by

f i = �i log �i + �1 − �i�log�1 − �i� + 
i�i +
�i

2
�i

2, �13�

where the first two terms represents the entropy, 
i is the
energy of one particle in liquid i, and �i is the second virial
coefficient among the particles in liquid i. Here and in the
following, all the energies are expressed in units of the ther-
mal energy kBT. We consider the case of �i�0 in order to
investigate the effect of the repulsion between the particles.
For attractive cases ��i�0�, one needs to include the higher
order terms in �i, which will be reported elsewhere. In the
case of a spherical particle, we simply have


i =
4�a2�ip

kBT
+

4�a3pi

3kBT
, �14�

and �i=8 for hard spheres.17 Since the two liquid phases
consisting of both liquid and particles occupy fractions of
�1+�p,1 and �2+�p,2 of the total volume, the total free en-
ergy per particle is written as

f total = ��1 + �p,1�f1 + ��2 + �p,2�f2 + �p,mfm, �15�

where fm= �2�a2�12/kBT�g��� is the interfacial energy per
particle consisting the monolayer �see Eq. �10��.

To obtain the equilibrium partition, we minimize f total

with respect to �1, �2, and �p,m subject to the constraint of
conservation of the total amount of the particle �see Eq.
�11��. Such a constraint minimization can be performed using
the method of Lagrange multiplier. The resulting equilibrium
conditions are provided by

2 log �i − 2�fm − 
i� + �i�i�2 − �i� = 0, �16�

with i=1,2. Elimination of fm from Eq. �16� yields the rela-
tion between �1 and �2 such that

�1 = �2 exp

2 − 
1 + �2��2 −
�2

2

2
� − �1��1 −

�1
2

2
�� .

�17�

This relation is reminiscent of the Frumkin adsorption
isotherm.18

In the case of a spherical particle adsorbing to a spheri-
cal interface, one can show from Eqs. �10� and �14� that
fm−
i in Eq. �16� are given by

fm − 
1 =
2�a2�12

kBT

−

1

2
�1 + ��2 + �2

3
+ � −

�3

3
�� + ¯ � ,

�18�

fm − 
2 =
2�a2�12

kBT

−

1

2
�1 − ��2 − �2

3
− � +

�3

3
�� + ¯ � ,

�19�

up to the lowest order in �. Once we obtain �i by solving Eq.
�16�, �p,i is calculated from Eq. �12�. Then �p,m is deter-
mined according to Eq. �11� provided �i and �p are given.
The partitioning of the particle is determined not only by the
relative wettability � but also the interfacial curvature �.

We first consider the adsorption to a flat interface
��=0�. In the absence of repulsion between the particles in
both liquids ��1=�2=0�, Eq. �16� can be easily solved for �i:

FIG. 3. Equilibrium local volume fractions of particles in liquid 1 ��1� and
in liquid 2 ��2� as a function of �. The second virial coefficients are
��1 ,�2�= �0,0� �solid lines� and ��1 ,�2�= �5,1� �dashed lines�. The other
parameters are �=0 and �a2�12/kBT=1.
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�i = exp�fm − 
i� . �20�

This result for �1 and �2 are plotted as solid lines in Fig. 3
when �a2�12/kBT=1. As is consistent with the physical
meaning of the relative wettability, �1 decreases and �2 in-
creases as � is changed from −1 to 1. When �=0, the ad-
sorption is purely determined by the ratio �a2�12/kBT.6

Practically, the fraction of the particles in the bulk liquids are
negligibly small when �a2�12/kBT�10. In the presence of
repulsive interactions, on the other hand, Eq. �16� needs to be
solved numerically. As an example, we show the result of
��1 ,�2�= �5,1� as dashed lines in Fig. 3. The repulsive inter-
actions dramatically suppress �i, which in turn leads to an
enhanced particle adsorption. This suppression is more pro-
nounced in liquid 1.

Next we look at the effect of a finite interfacial curva-
ture. In Fig. 4, we have plotted �1 and �2 for �=0 �solid
lines� and 0.1 �dashed lines�. The other parameter values are
chosen here as ��1 ,�2�= �5,5� and �a2�12/kBT=10. Due to
the latter choice of the parameter, both �1 and �2 almost
vanish for ��0 and ��0, respectively �not visible in Fig.
4�. For a positive curvature as considered here, �1 is larger
and �2 is smaller than those of the flat interface. This result
is in accordance with the fact that the particles prefer to stay
in liquid 1 because the pressure in liquid 2 is larger when
��0. The shifts of the distribution curves become larger as
the curvature is increased �not shown here�.

Finally, we comment that the interfacial curvature � is
primarily determined by the total volume fractions �1, �2,
and �p. Assuming strong adsorption of the particles, the cur-

vature of a spherical droplet consisting of liquid 2 is roughly
given by ���p /�2.17 This means that the partition of the
particles is completely determined provided we know the
total volume fractions of each component. The macroscopic
phase behavior of a Pickering emulsion is characterized by
the competition between � and the spontaneous curvature of
the interface saturated with particles.10

In summary, we have discussed the adsorption of spheri-
cal particles to a spherically curved interface. We showed
that equilibrium contact angle is given by the Young’s equa-
tion, whereas the minimized adsorption energy is a function
of curvature. Such a curvature effect affects the equilibrium
distribution of the particles. Currently, we are investigating
analogous problems for a spherical colloidal particle with
hydrophilic and hydrophobic hemispheres �“Janus bead”�.19
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