GLUING CONSTRUCTIONS OF PSEUDO-HOLOMORPHIC DISCS AND DESINGULARIZATION

MANABU AKAHO

1. Introduction

Let M be a symplectic manifold with convex boundary N and $L \subset M$ a Lagrangian submanifold with Legendrian boundary $\Lambda \subset N$, and let M^{\prime} be a symplectic manifold with concave boundary N and $L^{\prime} \subset M^{\prime}$ a Lagrangian submanifold with Legendrian boundary $\Lambda \subset N$. Then we construct a symplectic manifold $M \not \sharp_{\rho} M^{\prime}=$ $M \cup([-\rho, \rho] \times N) \cup M^{\prime}$ and a Lagrangian submanifold $L \not \sharp_{\rho} L^{\prime}=L \cup([-\rho, \rho] \times \Lambda) \cup L^{\prime}$, for some $\rho>0$. Choose nice almost complex structures on $M \cup[0, \infty) \times N$, $(-\infty, 0] \times N \cup M^{\prime}$ and $M \not \sharp_{\rho} M^{\prime}$, and we can construct a pseudo-holomorphic disc $w: D^{2}=\{z \in \mathbf{C}| | z \mid \leq 1\} \rightarrow M \not \sharp_{\rho} M^{\prime}$ with $w\left(\partial D^{2}\right) \subset L \not \sharp_{\rho} L^{\prime}$ by gluing the following two punctured pseudo-holomorphic discs: one is $u: D^{2} \backslash\{1\} \rightarrow M \cup[0, \infty) \times N$ such that $u\left(\partial D^{2} \backslash\{1\}\right) \subset L \cup[0, \infty) \times \Lambda$ and the puncture converges to a Reeb chord in $\{\infty\} \times N$, and the other is $v: D^{2} \backslash\{-1\} \rightarrow(-\infty, 0] \times N \cup M^{\prime}$ such that $v\left(\partial D^{2} \backslash\{-1\}\right) \subset(-\infty, 0] \times \Lambda \cup L^{\prime}$ and the puncture converges to the Reeb chord in $\{-\infty\} \times N$. Our gluing technique is an improvement on that of Floer [1].

2. Contact and Symplectic Preliminaries

Let N be a smooth manifold of dimension $2 n+1$. We call a 1 -form λ on N a contact form if $\lambda \wedge(d \lambda)^{n}$ is a volume form on N. A contact structure ξ is the $2 n$ dimensional plane field on N defined by $\left.\lambda\right|_{\xi}=0$ and a Reeb vector field X_{λ} is the vector field on N defined by $\lambda\left(X_{\lambda}\right)=1$ and $d \lambda\left(X_{\lambda}, \cdot\right)=0$. It is easy to see that $\left.d \lambda\right|_{\xi}$ is nondegenerate and there exist complex structures J_{ξ} on ξ, i.e., $J_{\xi} \in \operatorname{End}(\xi)$ and $J_{\xi}^{2}=-1$, such that $g_{\xi}(\cdot, \cdot)=d \lambda\left(\cdot, J_{\xi} \cdot\right)$ is an inner product on ξ.

Consider $\mathbf{R} \times N$ and denote by θ the standard coordinate on the first factor. Then $d\left(e^{\theta} \lambda\right)$ is a symplectic form on $\mathbf{R} \times N$, and we call $\left(\mathbf{R} \times N, d\left(e^{\theta} \lambda\right)\right)$ the symplectization of (N, λ). Let $p_{2}: \mathbf{R} \times N \rightarrow N$ be the projection $p_{2}(\theta, x)=x$. We simply denote $p_{2}^{*} \lambda, p_{2}^{*} \xi, p_{2}^{*} X_{\lambda}$ and $p_{2}^{*} J_{\xi}$ by $\lambda, \xi, X_{\lambda}$ and J_{ξ}, respectively. Then we define the almost complex structure J on $\mathbf{R} \times N$ by

- $J v=J_{\xi} v$, for $v \in \xi$,
- $J \frac{\partial}{\partial \theta}=X_{\lambda}$ and $J X_{\lambda}=-\frac{\partial}{\partial \theta}$.

Let $\Lambda \subset N$ be a submanifold. We call Λ Legendrian if $\operatorname{dim} \Lambda=n$ and $\left.\lambda\right|_{T \Lambda}=0$. A map $\gamma:[0, T] \rightarrow N$ is called a Reeb chord if $\dot{\gamma}=X_{\lambda}$ with $\gamma(0)$ and $\gamma(T) \in \Lambda$, for some $T>0$.

Let (M, ω) be a noncompact symplectic manifold. Suppose that there exists $K \subset M$ such that $(M \backslash K, \omega)$ is symplectically isomorphic to $\left((R, \infty) \times N, d\left(e^{\theta} \lambda\right)\right)$, for some $R \in \mathbf{R}$. We call such an end convex. We remark that there exist almost

[^0]complex structures $J \in \operatorname{End}(T M)$ such that $g_{J}(\cdot, \cdot)=\omega(\cdot, J \cdot)$ is a Riemannian metric on M and

- $J v=J_{\xi} v$, for $v \in \xi$,
- $J \frac{\partial}{\partial \theta}=X_{\lambda}$ and $J X_{\lambda}=-\frac{\partial}{\partial \theta}$
on the convex end.
Let $L \subset M$ be a properly embedded noncompact Lagrangian submanifold whose restriction on the convex end is of the form $(R, \infty) \times \Lambda$.

Similarly, let $\left(M^{\prime}, \omega^{\prime}\right)$ be a noncompact symplectic manifold. Suppose that there exists $K^{\prime} \subset M^{\prime}$ such that $\left(M^{\prime} \backslash K^{\prime}, \omega\right)$ is symplectically isomorphic to $\left(\left(-\infty, R^{\prime}\right) \times\right.$ $N, d\left(e^{\theta} \lambda\right)$), for some $R^{\prime} \in \mathbf{R}$. We call such an end concave. We remark that there exist almost complex structures $J^{\prime} \in \operatorname{End}\left(T M^{\prime}\right)$ such that $g_{J^{\prime}}(\cdot, \cdot)=\omega^{\prime}\left(\cdot, J^{\prime} \cdot\right)$ is a Riemannian metric on M^{\prime} and

- $J^{\prime} v=J_{\xi} v$, for $v \in \xi$,
- $J^{\prime} \frac{\partial}{\partial \theta}=X_{\lambda}$ and $J^{\prime} X_{\lambda}=-\frac{\partial}{\partial \theta}$
on the concave end.
Let $L^{\prime} \subset M^{\prime}$ be a properly embedded noncompact Lagrangian submanifold whose restriction on the concave end is of the form $\left(-\infty, R^{\prime}\right) \times \Lambda$.

We assume that $R=R^{\prime}=0$ hereafter. Then, for $\rho>0$, we define $M \not \sharp_{\rho} M^{\prime}$ by $K \cup((0, \rho] \times N) \cup([-\rho, 0) \times N) \cup K^{\prime}$, i.e., we glue $K \cup((0, \rho] \times N) \subset M$ and $([-\rho, 0) \times N) \cup K^{\prime} \subset M^{\prime}$ along the boundaries by the natural identification $\{\rho\} \times N$ with $\{-\rho\} \times N$, and define $L \not \sharp_{\rho} L^{\prime}$ by $(L \cap K) \cup((0, \rho] \times \Lambda) \cup([-\rho, 0) \times \Lambda) \cup\left(L^{\prime} \cap K^{\prime}\right)$. We often identify $((0, \rho] \times N) \cup([-\rho, 0) \times N) \subset M \not \sharp_{\rho} M^{\prime}$ with $(-\rho, \rho) \times N$.

We remark that we can relax the cylindrical end conditions for L and L^{\prime} into similar ones of asymptotically conical Lagrangian submanifolds and isolated conical singularities of Lagrangian submanifolds as in [5] and [6]. But we put the conditions for L and L^{\prime} for simplicity.

3. Smooth Maps

Let g be the Reimannian metric $\lambda \otimes \lambda+g_{\xi}$ on N. Then $J_{\xi} T_{p} \Lambda$ is the orthogonal complement to $T_{p} \Lambda$ in ξ_{p}, and $\exp ^{g} \circ\left(\mathrm{id} \oplus J_{\xi}\right)$ gives a diffeomorphism from a neighborhood of the zero section $0 \oplus 0_{\Lambda} \subset \underline{\mathbf{R}} \oplus T \Lambda$ to a neighborhood of $\Lambda \subset N$, where $\underline{\mathbf{R}}$ is the trivial bundle with fiber \mathbf{R} over Λ. Let g_{Λ} be a Riemannian metric on Λ. The Levi-Civita connection of g_{Λ} gives the horizontal lift and induces the Riemannian metric $g_{T \Lambda}$ on the total space of $T \Lambda$ such that 0_{Λ} is totally geodesic. Hence we get a Riemannian metric g_{N} on N such that $\left(\exp ^{g} \circ\left(\mathrm{id} \oplus J_{\xi}\right)\right)^{*} g_{N}=d z \otimes d z+g_{T \Lambda}$ on a neighborhood of Λ, where z is the fiber coordinate of $\underline{\mathbf{R}}$, and Λ is totally geodesic.

We define the Riemannian metric g on (M, ω) by $g(\cdot, \cdot)=e^{-\theta \beta} g_{J}$, where β : $M \rightarrow[0,1]$ is a smooth cutoff function such that $\beta(x) \equiv 1$, for $x \in(1, \infty) \times N$, and $\beta(x) \equiv 0$, for $x \in K$. Then $J T_{p} L$ is the orthogonal complement to $T_{p} L$ in $T_{p} M$, and $\exp ^{g} \circ J$ gives a diffeomorphism from a neighborhood of the zero section $0_{L} \subset T L$ to a neighborhood of $L \subset M$. Let g_{L} be a Riemannian metric on L such that g_{L} is of the form $d \theta \otimes d \theta+p_{2}^{*} g_{\Lambda}$ on $(0, \infty) \times \Lambda$. The Levi-Civita connection of g_{L} gives the horizontal lift and induces the Riemannian metric $g_{T L}$ on the total space of $T L$ such that 0_{L} is totally geodesic. Hence we get a Riemannian metric g_{M} on M of the form $d \theta \otimes d \theta+p_{2}^{*} g_{N}$ on $(0, \infty) \times N$, and L is totally geodesic.

Define $\Theta=\{z \in \mathbf{C} \mid \operatorname{Im} z \geq 0\}$. For a Reeb chord $\gamma, C_{0}^{\infty}(\Theta ; \gamma)$ is the set of the smooth maps $\mu: \Theta \rightarrow M$ which satisfy the following conditions:

- All derivatives of μ have continuous extensions to Θ.
- $\mu(\partial \Theta) \subset L$.
- For some $R_{\mu}, \mu(z)=\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)$ when $|z|>R_{\mu}$.

For $\mu \in C_{0}^{\infty}(\Theta ; \gamma)$, we define $C_{0}^{\infty}\left(\mu^{*} T M\right)$ by the set of the smooth sections $\zeta: \Theta \rightarrow$ $\mu^{*} T M$ which satisfy the following conditions:

- All derivatives of ζ have continuous extensions to Θ.
- $\zeta(\partial \Theta) \subset \mu^{*} T L$.
- For some $R_{\zeta}, \zeta(z)=0$ when $|z|>R_{\zeta}$.

Lemma 3.1. For $\mu \in C_{0}^{\infty}(\Theta ; \gamma)$ and $\zeta \in C_{0}^{\infty}\left(\mu^{*} T M\right), u=\exp _{\mu}^{g_{M}} \zeta$ is also in $C_{0}^{\infty}(\Theta ; \gamma)$.

Similarly, we define the Riemannian metric g^{\prime} on $\left(M^{\prime}, \omega^{\prime}\right)$ by $g^{\prime}(\cdot, \cdot)=e^{-\theta \beta^{\prime}} g_{J^{\prime}}$, where $\beta^{\prime}: M^{\prime} \rightarrow[0,1]$ is a smooth cutoff function such that $\beta^{\prime}(x) \equiv 1$ for $x \in$ $(-\infty,-1) \times N$ and $\beta^{\prime}(x) \equiv 0$ for $x \in K^{\prime}$. Then $J^{\prime} T_{p} L^{\prime}$ is the orthogonal complement to $T_{p} L^{\prime}$ in $T_{p} M^{\prime}$, and $\exp ^{g^{\prime}} \circ J^{\prime}$ gives a diffeomorphism from a neighborhood of the zero section $0_{L^{\prime}} \subset T L^{\prime}$ to a neighborhood of $L^{\prime} \subset M^{\prime}$. Let $g_{L^{\prime}}$ be a Riemannian metric on L^{\prime} such that $g_{L^{\prime}}$ is of the form $d \theta \otimes d \theta+p_{2}^{*} g_{\Lambda}$ on $(-\infty, 0) \times \Lambda$. The Levi-Civita connection of $g_{L^{\prime}}$ gives the horizontal lift and induces the Riemannian metric $g_{T L^{\prime}}$ on the total space of $T L^{\prime}$ such that $0_{L^{\prime}}$ is totally geodesic. Hence we get a Riemannian metric $g_{M^{\prime}}$ on M^{\prime} of the form $d \theta \otimes d \theta+p_{2}^{*} g_{N}$ on $(-\infty, 0) \times N$, and L^{\prime} is totally geodesic.

Define $\Xi=(\{z \in \mathbf{C} \mid \operatorname{Im} z \geq 0\} \cup\{\infty\}) \backslash\{0\}$. For a Reeb chord $\gamma, C_{0}^{\infty}(\Xi ; \gamma)$ is the set of the smooth maps $\nu: \Xi \rightarrow M^{\prime}$ which satisfy the following conditions:

- All derivatives of ν have continuous extensions to Ξ.
- $\nu(\partial \Xi) \subset L^{\prime}$.
- For some $R_{\nu}, \nu(z)=\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)$ when $|z|<R_{\nu}$.

For $\nu \in C_{0}^{\infty}(\Xi ; \gamma)$, we define $C_{0}^{\infty}\left(\nu^{*} T M^{\prime}\right)$ by the set of the smooth sections $\eta: \Xi \rightarrow$ $\nu^{*} T M^{\prime}$ which satisfy the following conditions:

- All derivatives of η have continuous extensions to Ξ.
- $\eta(\partial \Xi) \subset \nu^{*} T L^{\prime}$.
- For some $R_{\eta}, \eta(z)=0$ when $|z|<R_{\eta}$.

Lemma 3.2. For $\nu \in C_{0}^{\infty}(\Xi ; \gamma)$ and $\eta \in C_{0}^{\infty}\left(\nu^{*} T M^{\prime}\right)$, $v=\exp _{\nu^{\prime}}^{g_{M^{\prime}}} \eta$ is also in $C_{0}^{\infty}(\Xi ; \gamma)$.

Let $g_{M \not \sharp_{\rho} M^{\prime}}$ be the Riemannian metric on $M \not \sharp_{\rho} M^{\prime}$ such that $\left.g_{M \not \sharp_{\rho} M^{\prime}}\right|_{K \cup(0, \rho]}=g_{M}$ and $\left.g_{M \sharp{ }_{\mu} M^{\prime}}\right|_{[-\rho, 0) \cup K^{\prime}}=g_{M^{\prime}}$. We define $e^{-\rho} \Theta=\left\{e^{-\rho} a \mid a \in \Theta\right\}, e^{\rho} \Xi=\left\{e^{\rho} b \mid b \in \Xi\right\}$ and $\Delta_{\rho}=\left(e^{-\rho} \Theta \sqcup e^{\rho} \Xi\right) / \sim$, where $z \sim w$ for $z \in e^{-\rho} \Theta$ and $w \in e^{\rho} \Xi$ if $z=w$. We remark that Δ_{ρ} is diffeomorphic to the disc D^{2}. Then $C^{\infty}\left(\Delta_{\rho}\right)$ is the set of the smooth maps $v: \Delta_{\rho} \rightarrow M \not \sharp_{\rho} M^{\prime}$ which satisfy the following conditions:

- All derivatives of v have continuous extensions to Δ_{ρ}.
- $v\left(\partial \Delta_{\rho}\right) \subset L \not \sharp_{\rho} L^{\prime}$.

For $v \in C^{\infty}\left(\Delta_{\rho}\right)$, we define $C^{\infty}\left(v^{*} T\left(M \sharp_{\rho} M^{\prime}\right)\right)$ by the set of the smooth sections $\chi: \Delta_{\rho} \rightarrow v^{*} T\left(M \sharp_{\rho} M^{\prime}\right)$ which satisfy the following conditions:

- All derivatives of χ have continuous extensions to Δ_{ρ}.
- $\chi\left(\partial \Delta_{\rho}\right) \subset v^{*} T\left(L \not \sharp_{\rho} L^{\prime}\right)$.

Lemma 3.3. For $v \in C^{\infty}\left(\Delta_{\rho}\right)$ and $\chi \in C^{\infty}\left(v^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)\right), v=\exp _{v}^{g_{M \sharp}{ }^{\prime} M^{\prime}} \chi$ is also in $C^{\infty}\left(\Delta_{\rho}\right)$.

4. Banach Manifolds

Let $p>2$ and $\sigma \in \mathbf{R}$. For $\mu \in C_{0}^{\infty}(\Theta ; \gamma)$ and $\zeta \in C_{0}^{\infty}\left(\mu^{*} T M\right)$, we define

$$
\|\zeta\|_{W_{\sigma}^{1, p}(\Theta)}=\left(\int_{\Theta}\left(|\zeta|^{p}+|\nabla \zeta|^{p}\right) \alpha^{\sigma}(|z|) d x d y\right)^{1 / p}
$$

where $|\cdot|$ is the norm with respect to g_{M}, ∇ is the Levi-Civita connection of g_{M} and $\alpha^{\sigma}:[0, \infty) \rightarrow \mathbf{R}_{>0}$ is a weight function such that $\alpha^{\sigma}(r)=r^{-2+\sigma}$, for $r \geq 1$. We remark that, through $(s, t)=\left(\log |z|, \frac{1}{i} \log \frac{z}{|z|}\right)$,

$$
\int_{\Theta \cap\{|z|>1\}}\left(|\zeta|^{p}+|\nabla \zeta|^{p}\right) \alpha^{\sigma}(|z|) d x d y=\int_{(0, \infty) \times[0, \pi]}\left(|\zeta|^{p}+|\nabla \zeta|^{p}\right) e^{\sigma s} d s d t
$$

Let $W_{\sigma}^{1, p}\left(\mu^{*} T M\right)$ be the completion of $C_{0}^{\infty}\left(\mu^{*} T M\right)$ by $\|\cdot\|_{W_{\sigma}^{1, p}(\Theta)}$ and define

$$
W_{\sigma}^{1, p}(\Theta ; \gamma)=\left\{\exp _{\mu}^{g_{M}} \zeta \mid \mu \in C_{0}^{\infty}(\Theta ; \gamma), \zeta \in W_{\sigma}^{1, p}\left(\mu^{*} T M\right)\right\}
$$

From the Sobolev embedding theorem, $u \in W_{\sigma}^{1, p}(\Theta ; \gamma)$ satisfies

- $u: \Theta \rightarrow M$ is continuous,
- $u(\partial \Theta) \subset L$,
- u asymptotically approaches $\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)$ at $z=\infty$.

For $u=\exp _{\mu}^{g_{M}} \zeta \in W_{\sigma}^{1, p}(\Theta ; \gamma)$, we define

$$
T_{u} W_{\sigma}^{1, p}(\Theta ; \gamma)=W_{\sigma}^{1, p}\left(\mu^{*} T M\right)
$$

Lemma 4.1. $W_{\sigma}^{1, p}(\Theta ; \gamma)$ is a Banach manifold whose tangent space at u is $T_{u} W_{\sigma}^{1, p}(\Theta ; \gamma)$.
For $\mu \in C_{0}^{\infty}(\Theta ; \gamma)$, we denote by $L_{\sigma}^{p}\left(\wedge^{0,1} \Theta \otimes \mu^{*} T M\right)$ the set of the measurable sections of $\wedge^{0,1} \Theta \otimes \mu^{*} T M$ for which the norm

$$
\|\zeta\|_{L_{\sigma}^{p}(\Theta)}=\left(\int_{\Theta}|\zeta|^{p} \alpha^{\sigma}(|z|) d x d y\right)^{1 / p}
$$

is finite. Moreover, for $u=\exp _{\mu}^{g_{M}} \zeta \in W_{\sigma}^{1, p}(\Theta ; \gamma)$, we define

$$
L_{\sigma}^{p}(\Theta ; \gamma)_{u}=L_{\sigma}^{p}\left(\wedge^{0,1} \Theta \otimes \mu^{*} T M\right)
$$

and

$$
L_{\sigma}^{p}(\Theta ; \gamma)=\bigcup_{u \in W_{\sigma}^{1, p}(\Theta ; \gamma)} L_{\sigma}^{p}(\Theta ; \gamma)_{u}
$$

Lemma 4.2. $L_{\sigma}^{p}(\Theta ; \gamma)$ is a Banach space bundle whose fiber over u is $L_{\sigma}^{p}(\Theta ; \gamma)_{u}$.
For $\nu \in C_{0}^{\infty}(\Xi ; \gamma)$ and $\eta \in C_{0}^{\infty}\left(\nu^{*} T M^{\prime}\right)$, we define

$$
\|\eta\|_{W_{\sigma}^{1, p}(\Xi)}=\left(\int_{\Xi}\left(|\eta|^{p}+|\nabla \eta|^{p}\right) \frac{\alpha^{\sigma}\left(|z|^{-1}\right)}{|z|^{4}} d x d y\right)^{1 / p}
$$

where $|\cdot|$ is the norm with respect to $g_{M^{\prime}}$ and ∇ is the Levi-Civita connection of $g_{M^{\prime}}$. We remark that, through $(s, t)=\left(\log |z|, \frac{1}{i} \log \frac{z}{|z|}\right)$,

$$
\int_{\Xi \cap\{|z|<1\}}\left(|\eta|^{p}+|\nabla \eta|^{p}\right) \frac{\alpha^{\sigma}\left(|z|^{-1}\right)}{|z|^{4}} d x d y=\int_{(-\infty, 0) \times[0, \pi]}\left(|\eta|^{p}+|\nabla \eta|^{p}\right) e^{-\sigma s} d s d t .
$$

GLUING CONSTRUCTIONS OF PSEUDO-HOLOMORPHIC DISCS AND DESINGULARIZATION
Let $W_{\sigma}^{1, p}\left(\nu^{*} T M^{\prime}\right)$ be the completion of $C_{0}^{\infty}\left(\nu^{*} T M^{\prime}\right)$ by $\|\cdot\|_{W_{\sigma}^{1, p}(\Xi)}$ and define

$$
W_{\sigma}^{1, p}(\Xi ; \gamma)=\left\{\exp _{\nu}^{g_{M^{\prime}}} \eta \mid \nu \in C_{0}^{\infty}(\Xi ; \gamma), \eta \in W_{\sigma}^{1, p}\left(\nu^{*} T M^{\prime}\right)\right\}
$$

From the Sobolev embedding theorem, $v \in W_{\sigma}^{1, p}(\Xi ; \gamma)$ satisfies

- $v: \Xi \rightarrow M^{\prime}$ is continuous,
- $v(\partial \Xi) \subset L^{\prime}$,
- v asymptotically approaches $\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)$ near $z=0$.

For $v=\exp _{\nu}^{g_{M^{\prime}}} \eta \in W_{\sigma}^{1, p}(\Xi ; \gamma)$, we define

$$
T_{v} W_{\sigma}^{1, p}(\Xi ; \gamma)=W_{\sigma}^{1, p}\left(\nu^{*} T M^{\prime}\right)
$$

Lemma 4.3. $W_{\sigma}^{1, p}(\Xi ; \gamma)$ is a Banach manifold whose tangent space at v is $T_{v} W_{\sigma}^{1, p}(\Xi ; \gamma)$.
For $\nu \in C_{0}^{\infty}(\Xi ; \gamma)$, we denote by $L_{\sigma}^{p}\left(\wedge^{0,1} \Xi \otimes \nu^{*} T M^{\prime}\right)$ the set of the measurable sections of $\wedge^{0,1} \Xi \otimes \nu^{*} T M^{\prime}$ for which the norm

$$
\|\eta\|_{L_{\sigma}^{p}(\Xi)}=\left(\int_{\Xi}|\eta|^{p} \frac{\alpha^{\sigma}\left(|z|^{-1}\right)}{|z|^{4}} d x d y\right)^{1 / p}
$$

is finite. Moreover, for $v=\exp _{\nu}^{g_{M^{\prime}}} \eta \in W_{\sigma}^{1, p}(\Xi ; \gamma)$, we define

$$
L_{\sigma}^{p}(\Xi ; \gamma)_{v}=L_{\sigma}^{p}\left(\wedge^{0,1} \Xi \otimes \nu^{*} T M^{\prime}\right)
$$

and

$$
L_{\sigma}^{p}(\Xi ; \gamma)=\bigcup_{v \in W_{\sigma}^{1, p}(\Xi ; \gamma)} L_{\sigma}^{p}(\Xi ; \gamma)_{v} .
$$

Lemma 4.4. $L_{\sigma}^{p}(\Xi ; \gamma)$ is a Banach space bundle whose fiber over v is $L_{\sigma}^{p}(\Xi ; \gamma)_{v}$.
For $v \in C^{\infty}\left(\Delta_{\rho}\right)$ and $\chi \in C^{\infty}\left(v^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)\right)$, we define

$$
\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}=\left(\int_{\Delta_{\rho}}\left(|\chi|^{p}+|\nabla \chi|^{p}\right) \beta_{\rho}^{\sigma}(|z|) d x d y\right)^{1 / p}
$$

where $|\cdot|$ is the norm with respect to $g_{M \sharp_{\rho} M^{\prime}}, \nabla$ is the Levi-Civita connection of $g_{M \not \sharp_{\rho} M^{\prime}}$ and $\beta_{\rho}^{\sigma}:[0, \infty] \rightarrow \mathbf{R}_{>0}$ is the weight function defined by

$$
\beta_{\rho}^{\sigma}(|z|)=\left\{\begin{array}{rc}
\alpha^{\sigma}\left(e^{\rho}|z|\right) e^{2 \rho}, & \text { for }|z| \leq 1 \\
\frac{\alpha^{\sigma}\left(\left|e^{-\rho} z\right|^{-1}\right)}{\left|e^{-\rho} z\right|^{4}} e^{-2 \rho}, & \text { for }|z|>1
\end{array}\right.
$$

We remark that, through $(s, t)=\left(\log |z|, \frac{1}{i} \log \frac{z}{|z|}\right)$,
$\int_{\Delta_{\rho} \cap\left\{e^{-\rho}<|z| \leq 1\right\}}\left(|\chi|^{p}+|\nabla \chi|^{p}\right) \beta_{\rho}^{\sigma}(|z|) d x d y=\int_{(-\rho, 0] \times[0, \pi]}\left(|\chi|^{p}+|\nabla \chi|^{p}\right) e^{\sigma(s+\rho)} d s d t$
and
$\int_{\Delta_{\rho} \cap\left\{1<|z|<e^{\rho}\right\}}\left(|\chi|^{p}+|\nabla \chi|^{p}\right) \beta_{\rho}^{\sigma}(|z|) d x d y=\int_{(0, \rho) \times[0, \pi]}\left(|\chi|^{p}+|\nabla \chi|^{p}\right) e^{-\sigma(s-\rho)} d s d t$.
Let $W_{\sigma}^{1, p}\left(v^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)\right)$ be the completion of $C^{\infty}\left(v^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)\right)$ by $\|\cdot\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}$ and define

$$
W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)=\left\{\exp _{v}^{g_{M \sharp M^{\prime}}} \chi \mid v \in C^{\infty}\left(\Delta_{\rho}\right), \chi \in W_{\sigma}^{1, p}\left(v^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)\right)\right\} .
$$

From the Sobolev embedding theorem, $w \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ is continuous with $w\left(\partial \Delta_{\rho}\right) \subset$ $L \not \sharp_{\rho} L^{\prime}$. For $w=\exp _{v}^{g_{M \sharp}{ }^{\prime} M^{\prime}} \chi \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$, we define

$$
T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)=W_{\sigma}^{1, p}\left(v^{*} T\left(M \sharp \rho M^{\prime}\right)\right) .
$$

Lemma 4.5. $W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ is a Banach manifold whose tangent space at w is $T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$.
For $v \in C^{\infty}\left(\Delta_{\rho}\right)$, we denote by $L_{\sigma}^{p}\left(\wedge^{0,1} \Delta_{\rho} \otimes v^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)\right)$ the set of the measurable sections of $\wedge^{0,1} \Delta_{\rho} \otimes v^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)$ for which the norm

$$
\|\chi\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}=\left(\int_{\Delta_{\rho}}|\chi|^{p} \beta_{\rho}^{\sigma}(|z|) d x d y\right)^{1 / p}
$$

is finite. Moreover, for $w=\exp _{v}^{g_{M \sharp \rho M^{\prime}}} \chi \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$, we define

$$
L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w}=L_{\sigma}^{p}\left(\wedge^{0,1} \Delta_{\rho} \otimes v^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)\right)
$$

and

$$
L_{\sigma}^{p}\left(\Delta_{\rho}\right)=\bigcup_{w \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w}
$$

Lemma 4.6. $L_{\sigma}^{p}\left(\Delta_{\rho}\right)$ is a Banach space bundle whose fiber over w is $L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w}$.

5. Pseudo-holomorphic Discs

For $u \in W_{\sigma}^{1, p}(\Theta ; \gamma)$, we define the Cauchy-Riemann operator by

$$
\bar{\partial}_{J}(u)=\frac{1}{2}(d u+J(u) \circ d u \circ j) \in L_{\sigma}^{p}(\Theta ; \gamma)_{u}
$$

where j is the standard complex structure on Θ. We may think of $\bar{\partial}_{J}$ as a section of $L_{\sigma}^{p}(\Theta ; \gamma)$ [7]. Given $\zeta \in T_{u} W_{\sigma}^{1, p}(\Theta ; \gamma)$, let $\Phi_{u}(\zeta): u^{*} T M \rightarrow\left(\exp _{u}^{g_{M}} \zeta\right)^{*} T M$ denote the bundle isomorphism given by parallel transport along the geodesic $l(t)=$ $\exp _{u}^{g_{M}} t \zeta$. Then we define the map $\mathcal{F}_{u}: T_{u} W_{\sigma}^{1, p}(\Theta ; \gamma) \rightarrow L_{\sigma}^{p}(\Theta ; \gamma)_{u}$ by

$$
\mathcal{F}_{u}(\zeta)=\Phi_{u}(\zeta)^{-1} \bar{\partial}_{J}\left(\exp _{u}^{g_{M}} \zeta\right)
$$

We denote by D_{u} the linearized operator $d \mathcal{F}_{u}(0): T_{u} W_{\sigma}^{1, p}(\Theta ; \gamma) \rightarrow L_{\sigma}^{p}(\Theta ; \gamma)_{u}$. Then

$$
D_{u} \zeta=\frac{1}{2}(\nabla \zeta+J(u) \circ \nabla \zeta \circ j)-\frac{1}{2} J(u)\left(\nabla_{\zeta} J\right)(u) \partial_{J}(u),
$$

where ∇ is the Levi-Civita connection of g_{M} and $\partial_{J}(u)=\frac{1}{2}(d u-J(u) \circ d u \circ j)$. For some $\sigma>0, D_{u}$ is Fredholm. We sometimes think of D_{u} on $\Theta \cap\{|z|>1\}$ as a differential operator on $\{(s, t) \in(0, \infty) \times[0, \pi]\}$ through $(s, t)=\left(\log |z|, \frac{1}{i} \log \frac{z}{|z|}\right)$.

We call γ standard if there exist a tubular neighborhood U of $\gamma([0, T])$ and an immersion $\phi:\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, z\right) \mid \sum_{i=1}^{n}\left(x_{i}^{2}+y_{i}^{2}\right)<\epsilon, 0 \leq z \leq T\right\} \rightarrow U$, for some $\epsilon>0$, such that

- $\phi(\{0\} \times[0, T])=\gamma([0, T])$ and $\phi^{*} \lambda=d z+\frac{1}{2} \sum_{i=1}^{n}\left(x_{i} d y_{i}-y_{i} d x_{i}\right)$,
- $\phi^{-1}(\Lambda) \cap B=L_{0} \cap B$, where $B=\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, 0\right) \mid \sum_{i=1}^{n}\left(x_{i}^{2}+y_{i}^{2}\right)<\epsilon\right\}$ and L_{0} is a Lagrangian linear subspace in $\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)\right\}$,
- $\phi^{-1}(\Lambda) \cap B^{\prime}=L_{T} \cap B^{\prime}$, where $B^{\prime}=\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, T\right) \mid \sum_{i=1}^{n}\left(x_{i}^{2}+y_{i}^{2}\right)<\right.$ $\epsilon\}$ and L_{T} is a Lagrangian linear subspace in $\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)\right\}$.

Then we may choose g_{N} and J_{ξ} so that $\nabla_{\dot{\gamma}}=\frac{\partial}{\partial z}$ and $\gamma^{*} \nabla J_{\xi}=0$. Let φ_{t} : $N \rightarrow N$ be the solution of $\frac{d}{d t} \varphi_{t}=X_{\lambda} \circ \varphi_{t}$ and $\varphi_{0}=$ id. Write $\bar{\gamma}(t)=\gamma(T t / \pi)$. We consider the pull-back bundle $\bar{\gamma}^{*} \xi$ over $[0, \pi]$. Take $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \subset \xi_{\bar{\gamma}(0)}$ so that $\left\{e_{1}, J_{\xi} e_{1}, \ldots, e_{n}, J_{\xi} e_{n}\right\}$ is a basis of $\xi_{\bar{\gamma}(0)}$. Put $e_{i}(t)=d \varphi_{T t / \pi} e_{i} \in \xi_{\bar{\gamma}(t)}$, and then $\nabla_{\dot{\bar{\gamma}}} e_{i}(t)=0$ and $\nabla_{\dot{\bar{\gamma}}} J_{\xi} e_{i}(t)=0$. So $\bar{\gamma}^{*} J_{\xi} \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}$ is represented as $J_{0} \frac{\partial}{\partial t}$, where J_{0} is the standard complex structure on $\mathbf{R}^{2 n}$. Since D_{u} is of the form $\frac{1}{2}\left(\nabla_{\frac{\partial}{\partial s}}+J(u(s, t)) \nabla_{\frac{\partial}{\partial t}}\right)-\frac{1}{2} J(u)(\nabla J)(u) \partial_{J}(u)$ on $(0, \infty) \times[0, \pi]$, it asymptotically approaches the differential operator

$$
\frac{1}{2}\left(\frac{\partial}{\partial s}+\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}\right)
$$

as $s \rightarrow \infty$.
We call γ nondegenerate if $d \varphi_{T} T_{\gamma(0)} \Lambda$ and $T_{\gamma(T)} \Lambda$ transversally intersect in $\xi_{\gamma(T)}$. Then, if $\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}} \zeta(t)=0$ with $\zeta(0) \in \mathbf{R} \frac{\partial}{\partial \theta} \oplus T_{\gamma(0)} \Lambda$ and $\zeta(\pi) \in \mathbf{R} \frac{\partial}{\partial \theta} \oplus T_{\gamma(T)} \Lambda$, we have $\zeta(t)=c \frac{\partial}{\partial \theta}$, for $c \in \mathbf{R}$.

We define $\mathcal{F}_{v}: T_{v} W_{\sigma}^{1, p}(\Xi ; \gamma) \rightarrow L_{\sigma}^{p}(\Xi ; \gamma)_{v}$ and $D_{v}=d \mathcal{F}_{v}(0): T_{v} W_{\sigma}^{1, p}(\Xi ; \gamma) \rightarrow$ $L_{\sigma}^{p}(\Xi ; \gamma)_{v}$, for $v \in W_{\sigma}^{1, p}(\Xi ; \gamma)$, and $\mathcal{F}_{w}: T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right) \rightarrow L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w}$ and $D_{w}=$ $d \mathcal{F}_{w}(0): T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right) \rightarrow L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w}$, for $w \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$, similarly.

Lemma 5.1. For $w \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$, we write $\mathcal{F}_{w}(\chi)=\mathcal{F}_{w}(0)+D_{w} \chi+N_{w}(\chi)$. Then there exists some constant C depending only on $\|\nabla w\|_{L^{p}\left(\Delta_{\rho}\right)}$ such that

$$
\left\|N_{w}(\chi)-N_{w}\left(\chi^{\prime}\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \leq C\left(\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}+\left\|\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}\right)\left\|\chi-\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}
$$

for $\chi, \chi^{\prime} \in T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ with $\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)},\left\|\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}<C^{-1}$.
Proof. It is done by the Taylor expansion of \mathcal{F}_{w}.

$$
\begin{aligned}
N_{w}(\chi)-N_{w}\left(\chi^{\prime}\right)= & \int_{0}^{1}(1-t)\left\{d^{2} \mathcal{F}_{w}(t \chi)(\chi, \chi)-d^{2} \mathcal{F}_{w}\left(t \chi^{\prime}\right)\left(\chi^{\prime}, \chi^{\prime}\right)\right\} d t \\
= & \int_{0}^{1}(1-t)\left\{d^{2} \mathcal{F}_{w}(t \chi)\left(\chi, \chi-\chi^{\prime}\right)+d^{2} \mathcal{F}_{w}(t \chi)\left(\chi, \chi^{\prime}\right)-\right. \\
& \left.d^{2} \mathcal{F}_{w}\left(t \chi^{\prime}\right)\left(\chi, \chi^{\prime}\right)+d^{2} \mathcal{F}_{w}\left(t \chi^{\prime}\right)\left(\chi-\chi^{\prime}, \chi^{\prime}\right)\right\} d t
\end{aligned}
$$

and

$$
d^{2} \mathcal{F}_{w}(t \chi)\left(\chi, \chi^{\prime}\right)-d^{2} \mathcal{F}_{w}\left(t \chi^{\prime}\right)\left(\chi, \chi^{\prime}\right)=\int_{0}^{1} d^{3} \mathcal{F}_{w}\left((1-s) t \chi+s t \chi^{\prime}\right)\left(t \chi-t \chi^{\prime}, \chi, \chi^{\prime}\right) d s
$$

Then we can conclude

$$
\begin{aligned}
& \left\|N_{w}(\chi)-N_{w}\left(\chi^{\prime}\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \\
\leq & C\left(\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}+\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}\left\|\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}+\left\|\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}\right)\left\|\chi-\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)},
\end{aligned}
$$

where C is some constant depending only on $\|\nabla w\|_{L^{p}\left(\Delta_{\rho}\right)}$. Take some large C if necessary, and we obtain the inequality as in the lemma.

We call $u \in W_{\sigma}^{1, p}(\Theta ; \gamma)$ a punctured pseudo-holomorphic disc if $\bar{\partial}_{J}(u)=0$. Similarly, we define a punctured pseudo-holomorphic disc, for $v \in W_{\sigma}^{1, p}(\Xi ; \gamma)$. If $w \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ satisfies $\bar{\partial}_{J}(w)=0$, we call w a pseudo-holomorphic disc.

6. Gluing Analysis

For simplicity, we assume that, for $u \in W_{\sigma}^{1, p}(\Theta ; \gamma)$, there exists

$$
\bar{u} \in W_{\sigma}^{1, p}\left(\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)^{*} T((0, \infty) \times N)\right)
$$

such that $u=\exp _{\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)}^{g_{M}} \bar{u}$ on $\{z \in \Theta|\log | z \mid>0\}$, and, for $v \in$ $W_{\sigma}^{1, p}(\Xi ; \gamma)$, we assume that there exists

$$
\bar{v} \in W_{\sigma}^{1, p}\left(\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)^{*} T((-\infty, 0) \times N)\right)
$$

such that $v=\exp _{\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)}^{g_{M}} \bar{v}$ on $\{z \in \Xi|\log | z \mid<0\}$. Then we define $u \not \sharp_{\rho} v \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ by

$$
u \nVdash \rho v=\left\{\begin{array}{rr}
u\left(e^{\rho} z\right), & \text { for }|z| \leq e^{-1}, \\
\exp _{\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)}^{g_{M}} \beta_{u}(\log |z|) \bar{u}\left(e^{\rho} z\right), & \text { for } e^{-1}<|z| \leq 1, \\
\exp _{\left(\frac{T}{\pi}\right.}^{g^{\prime}} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|)}\right) & \beta_{v}(\log |z|) \bar{v}\left(e^{-\rho} z\right), \\
v\left(e^{-\rho} z\right), & \text { for } 1<|z| \leq e, \\
\text { for }|z|>e,
\end{array}\right.
$$

where β_{u} and β_{v} are smooth cutoff functions such that

$$
\beta_{u}(s)=\left\{\begin{array}{lr}
1, & \text { for } s \leq-1, \\
0, & \text { for } s \geq 0,
\end{array} \quad \text { and } \quad \beta_{v}(s)= \begin{cases}0, & \text { for } s \leq 0 \\
1, & \text { for } s \geq 1\end{cases}\right.
$$

For $\zeta \in T_{u} W_{\sigma}^{1, p}(\Theta ; \gamma)$ and $\eta \in T_{v} W_{\sigma}^{1, p}(\Xi ; \gamma)$, we similarly define $\zeta \sharp \rho \eta \in T_{u \sharp}{ }_{\neq v} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ by

$$
\zeta \sharp \rho \eta=\left\{\begin{array}{rr}
\zeta\left(e^{\rho} z\right), & \text { for }|z| \leq e^{-2}, \\
\beta_{u}(\log |z|+1) \zeta\left(e^{\rho} z\right), & \text { for } e^{-2}<|z| \leq 1, \\
\beta_{v}(\log |z|-1) \eta\left(e^{-\rho} z\right), & \text { for } 1<|z| \leq e^{2}, \\
\eta\left(e^{-\rho} z\right), & \text { for }|z|>e^{2} .
\end{array}\right.
$$

Lemma 6.1. Let u and v be punctured pseudo-holomorphic discs. For any $\varepsilon>0$, there exists some constant ρ_{0} depending only on ε, u and v such that

$$
\left\|\bar{\partial}_{J}\left(u \not \sharp_{\rho} v\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}<\varepsilon,
$$

for $\rho>\rho_{0}$.
Proof. By the definition of $u \not \sharp_{\rho} v$, we obtain

$$
\begin{aligned}
& \left\|\bar{\partial}_{J}\left(u \not \sharp_{\rho} v\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \\
\leq & \| \bar{\partial}_{J}\left(\exp _{\left(\frac{T}{\pi}\right.}^{g_{M}} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right) \\
& +\| \bar{\partial}_{J}\left(\exp { }_{\left(\frac{T}{\pi}\right.}^{g_{M^{\prime}}} \log |z|, \gamma\left(\frac{T}{\pi i} \log |z|\right) \bar{u}\left(e^{\rho} z\right)\left\|_{L_{\sigma}^{p}\left(\Delta_{\rho} \cap\left\{e^{-1}<|z|<1\right\}\right)}^{|z|} \beta_{v}(\log |z|) \bar{v}\left(e^{-\rho} z\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho} \cap\{1<|z|<e\}\right)}\right) \\
\leq & C\left(\|\bar{u}\|_{W_{\sigma}^{1, p}\left(\Theta \cap\left\{e^{\rho-1}<|z|<e^{\rho}\right\}\right)}+\|\bar{v}\|_{W_{\sigma}^{1, p}\left(\Xi \cap\left\{e^{-\rho}<|z|<e^{-\rho+1}\right\}\right)}\right),
\end{aligned}
$$

where C is some constant depending only on u and v. Hence we obtain ρ_{0} as in the lemma.

Define sgn : $\mathbf{R} \rightarrow\{-1,0,1\}$ by

$$
\operatorname{sgn}(s)=\left\{\begin{array}{rc}
-1, & \text { for } s<0 \\
0, & \text { for } s=0 \\
1, & \text { for } s>0
\end{array}\right.
$$

Let $\Lambda_{0} \subset \mathbf{R}^{2 n}$ be the linear subspace corresponding to $T_{\bar{\gamma}(0)} \Lambda \subset \xi_{\bar{\gamma}(0)}$ through the basis $\left\{e_{1}(0), J_{\xi} e_{1}(0), \ldots, e_{n}(0), J_{\xi} e_{n}(0)\right\}$ and $\Lambda_{\pi} \subset \mathbf{R}^{2 n}$ the linear subspace corresponding to $T_{\bar{\gamma}(\pi)} \Lambda \subset \xi_{\bar{\gamma}(\pi)}$ through the basis $\left\{e_{1}(\pi), J_{\xi} e_{1}(\pi), \ldots, e_{n}(\pi), J_{\xi} e_{n}(\pi)\right\}$. We remark that Λ_{0} and Λ_{π} intersect transversely in $\mathbf{R}^{2 n}$ since γ is nondegenarate. Moreover, we define
$W^{1, p}\left(\mathbf{R} \times[0, \pi], \mathbf{R}^{2 n}, \Lambda_{0}, \Lambda_{\pi}\right)=\left\{\chi \in W^{1, p}\left(\mathbf{R} \times[0, \pi], \mathbf{R}^{2 n}\right) \mid \chi(0) \in \Lambda_{0}\right.$ and $\left.\chi(\pi) \in \Lambda_{\pi}\right\}$
and

$$
W^{1, p}\left([0, \pi], \mathbf{R}^{2 n}, \Lambda_{0}, \Lambda_{\pi}\right)=\left\{\chi \in W^{1, p}\left([0, \pi], \mathbf{R}^{2 n}\right) \mid \chi(0) \in \Lambda_{0} \text { and } \chi(\pi) \in \Lambda_{\pi}\right\} .
$$

Lemma 6.2. If $\sigma>0$ is small enough, the operator $\frac{\partial}{\partial s}+J_{0} \frac{\partial}{\partial t}+\operatorname{sgn}(s) \frac{\sigma}{p}: W^{1, p}(\mathbf{R} \times$ $\left.[0, \pi], \mathbf{R}^{2 n}, \Lambda_{0}, \Lambda_{\pi}\right) \rightarrow L^{p}\left(\mathbf{R} \times[0, \pi], \mathbf{R}^{2 n}\right)$ is bijective, for $1<p<\infty$.

Proof. This lemma is a modification of Lemma 2.4 in [8]. We shall give the proof for $p=2$. The operator $B=J_{0} \frac{\partial}{\partial t}+\operatorname{sgn}(s) \frac{\sigma}{p}: W^{1,2}\left([0, \pi], \mathbf{R}^{2 n}, \Lambda_{0}, \Lambda_{\pi}\right) \rightarrow$ $L^{2}\left([0, \pi], \mathbf{R}^{2 n}\right)$ is a self-adjoint operator on the Hilbert space $L^{2}\left([0, \pi], \mathbf{R}^{2 n}\right)$ with domain $W^{1,2}\left([0, \pi], \mathbf{R}^{2 n}, \Lambda_{0}, \Lambda_{\pi}\right)$. Since Λ_{0} and Λ_{π} intersect transversely, if $\sigma>0$ is small enough, then 0 is not an eigenvalue of B. Hence there is a splitting $L^{2}\left([0, \pi], \mathbf{R}^{2 n}\right)=E^{+} \oplus E^{-}$into the positive and negative eigenspaces of B. Denote by $P^{ \pm}: L^{2}\left([0, \pi], \mathbf{R}^{2 n}\right) \rightarrow E^{ \pm}$the orthogonal projections. Define

$$
K(s)=\left\{\begin{aligned}
e^{-B s} P^{+}, & \text {for } s>0 \\
-e^{-B s} P^{-}, & \text {for } s \leq 0
\end{aligned}\right.
$$

and $Q: L^{2}\left(\mathbf{R} \times[0, \pi], \mathbf{R}^{2 n}\right) \rightarrow W^{1,2}\left(\mathbf{R} \times[0, \pi], \mathbf{R}^{2 n}\right)$ by

$$
Q \chi(s, t)=\int_{-\infty}^{\infty} K(s-\tau) \chi(\tau, t) d \tau
$$

and Q is the inverse of $\frac{\partial}{\partial s}+B$. In fact

$$
Q \chi(s, t)=\int_{-\infty}^{s} e^{-B(s-\tau)} P^{+} \chi(\tau, t) d \tau-\int_{s}^{\infty} e^{-B(s-\tau)} P^{-} \chi(\tau, t) d \tau
$$

and we can check $\frac{\partial}{\partial s} Q \chi+B Q \chi=\chi$ and $Q \frac{\partial}{\partial s} \chi+Q B \chi=\chi$ directly. The proof for $p>2$ is the same as the one of Lemma 2.4 in [8].

For $\chi \in T_{\bar{\gamma}(0)}(\mathbf{R} \times N)$, we denote by χ^{1} the $\mathbf{R} \frac{\partial}{\partial \theta} \oplus \mathbf{R} X_{\lambda}$ component of χ and by χ^{2} the $\xi_{\bar{\gamma}(0)}$ component of χ.

Proposition 6.3. Let u and v be punctured pseudo-holomorphic discs and $\left\{\left(\rho_{i}, \chi_{i}\right)\right\}_{i=1}^{\infty}$ a sequence of pairs $\rho_{i} \in \mathbf{R}$ and $\chi_{i} \in T_{u \sharp \rho_{i} v} W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)$. Suppose that $\rho_{i} \rightarrow \infty$ and that $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=1,\left\|D_{u \sharp \rho_{i}} v \chi_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$ and $\chi_{i}^{1}(1)=0$. Then there exists a subsequence $\left\{\left(\rho_{i_{l}}, \chi_{i_{l}}\right)\right\}_{l=1}^{\infty}$ such that

$$
\left\|\chi_{i_{l}}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i_{l}}} \cap\left\{e^{-3}<|z|<e^{3}\right\}\right)} \rightarrow 0 .
$$

Proof. Fix $N>1$. We may assume that $u \not \oiint_{\rho_{i}} v\left(\Delta_{\rho_{i}} \cap\left\{e^{-N}<|z|<e^{N}\right\}\right)$ is contained in a tubular neighborhood of $(-N, N) \times \gamma([0, T])$ in $M \not \sharp_{\rho} M^{\prime}$. For $\chi_{i}: \Delta_{\rho_{i}} \cap\left\{e^{-N}<\right.$ $\left.|z|<e^{N}\right\} \rightarrow\left(u \not \oiint_{i} v\right)^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)$, we define $\bar{\chi}_{i}: \Delta_{\rho_{i}} \cap\left\{e^{-N}<|z|<e^{N}\right\} \rightarrow$ $\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)$ by

$$
D \exp _{\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)}^{g_{M \sharp \rho_{i} M^{\prime}}} \overline{\chi_{i}}=\chi_{i},
$$

and we similarly define $\bar{D}_{u \not{ }_{\rho_{i}} v}$ by

$$
D \exp \operatorname{ex}_{\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)}^{g_{\mu_{i}}^{M^{\prime}}} \bar{D}_{u \sharp \rho_{i}} v \overline{\chi_{i}}=D_{u \sharp \rho_{i}} v \chi_{i} .
$$

We remark that $\bar{D}_{u \not \rho_{\rho_{i}} v} \rightarrow \frac{1}{2}\left(\frac{\partial}{\partial s}+\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}\right)$ on $\left\{e^{-N}<|z|<e^{N}\right\}$ in the C^{0} topology, i.e., if $\bar{D}_{u \not \rho_{i} v}=\frac{1}{2}\left(a_{i} \frac{\partial}{\partial s}+b_{i} \frac{\partial}{\partial t}+c_{i}\right)$, then $a_{i} \rightarrow 1, b_{i} \rightarrow\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \oplus J_{0}$ and $c_{i} \rightarrow 0$ in the C^{0} topology. Think of $\left.\bar{\chi}_{i}\right|_{\Delta_{\rho_{i}} \cap\left\{e^{-N}<|z|<e^{N}\right\}}$ as a section $\bar{\chi}_{i}:[-N, N] \times[0, \pi] \rightarrow$ $\left(\frac{T}{\pi} \log |z|, \gamma\left(\frac{T}{\pi i} \log \frac{z}{|z|}\right)\right)^{*} T\left(M \not \sharp_{\rho} M^{\prime}\right)$ through $(s, t)=\left(\log |z|, \frac{1}{i} \log \frac{z}{|z|}\right)$. From $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=$ 1, there exists C such that $\left\|e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}\right\|_{W^{1, p}([-N, N] \times[0, \pi])}<C$, where $e_{\rho_{i}}^{\sigma / p}: \mathbf{R} \rightarrow \mathbf{R}_{>0}$ is the function defined by

$$
e_{\rho_{i}}^{\sigma / p}(s)=\left\{\begin{array}{rc}
e^{\sigma\left(s+\rho_{i}\right) / p}, & \text { for } s \leq 0 \\
e^{-\sigma\left(s-\rho_{i}\right) / p}, & \text { for } s>0
\end{array}\right.
$$

Then, by the Rellich's theorem, there exists $\bar{\chi}_{N} \in L^{p}([-N, N] \times[0, \pi])$ and a subsequence $\left\{\left(\rho_{i_{l}}, \bar{\chi}_{i_{l}}\right)\right\}_{l=1}^{\infty}$ such that $\left\|\bar{\chi}_{N}-e_{\rho_{i_{l}}}^{\sigma / p} \bar{\chi}_{i_{l}}\right\|_{L^{p}([-N, N] \times[0, \pi])} \rightarrow 0$. We omit to mention subsequences hereafter. By the Gärding inequality, we have

$$
\begin{aligned}
& \left\|e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}-e_{\rho_{j}}^{\sigma / p} \bar{\chi}_{j}\right\|_{W^{1, p}([-N+1, N-1] \times[0, \pi])} \\
\leq & \left.C\left(\| \bar{D}_{u \sharp \rho_{i} v} v e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}-e_{\rho_{j}}^{\sigma / p} \bar{\chi}_{j}\right)\left\|_{L^{p}([-N, N] \times[0, \pi])}+\right\| e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}-e_{\rho_{j}}^{\sigma / p} \bar{\chi}_{j} \|_{L^{p}([-N, N] \times[0, \pi])}\right) \\
\leq & C\left(\left\|e_{\rho_{i}}^{\sigma \sigma p} \bar{D}_{u \sharp \rho_{i} v} v \bar{\chi}_{i}-e_{\rho_{j}}^{\sigma / p} \bar{D}_{u \sharp \rho_{i} v} v \bar{\chi}_{j}\right\|_{L^{p}([-N, N] \times[0, \pi])}+\left\|e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}-e_{\rho_{j}}^{\sigma / p} \bar{\chi}_{j}\right\|_{L^{p}([-N, N] \times[0, \pi])}\right),
\end{aligned}
$$

where C is a constant depending only on u and v. We already know $\| e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}-$ $e_{\rho_{j}}^{\sigma / p} \bar{\chi}_{j} \|_{L^{p}([-N, N] \times[0, \pi])} \rightarrow 0$. And moreover,

$$
\begin{aligned}
& \left\|e_{\rho_{i}}^{\sigma / p} \bar{D}_{u \sharp \rho_{i}} v \bar{\chi}_{i}-e_{\rho_{j}}^{\sigma / p} \bar{D}_{u \sharp \rho_{i}} v \bar{\chi}_{j}\right\|_{L^{p}([-N, N] \times[0, \pi])} \\
& \leq\left\|\bar{D}_{u \sharp \rho_{i}} v \bar{\chi}_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}} \cap\left\{e^{-N}<|z|<e^{N}\right\}\right)}+\left\|\bar{D}_{u \sharp \rho_{j} v} v \bar{\chi}_{j}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{j}} \cap\left\{e^{-N}<|z|<e^{N}\right\}\right)} \\
& +\left\|\left(\bar{D}_{u \sharp \rho_{i} v}-\bar{D}_{u \sharp \rho_{j} v}\right) \bar{\chi}_{j}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{j}} \cap\left\{e^{-N}<|z|<e^{N}\right\}\right)} \\
& \leq\left\|\bar{D}_{u \sharp \rho_{i}} v \bar{\chi}_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}} \cap\left\{e^{-N}<|z|<e^{N}\right\}\right)}+\left\|\bar{D}_{u \sharp \rho_{j} v} v \bar{\chi}_{j}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{j}} \cap\left\{e^{-N}<|z|<e^{N}\right\}\right)} \\
& +C\left\|\bar{D}_{u \sharp \rho_{i} v}-\bar{D}_{u \sharp \rho_{j}} v\right\|_{C^{0}([-N, N] \times[0, \pi])}\left\|\bar{\chi}_{j}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{j}} \cap\left\{e^{-N}<|z|<e^{N}\right\}\right)} \\
& \rightarrow 0,
\end{aligned}
$$

where $\left\|\bar{D}_{u \sharp \rho_{i} v}-\bar{D}_{u \sharp \rho_{j} v}\right\|_{C^{0}([-N, N] \times[0, \pi])}=\left\|a_{i}-a_{j}\right\|_{C^{0}([-N, N] \times[0, \pi])}+\left\|b_{i}-b_{j}\right\|_{C^{0}([-N, N] \times[0, \pi])}+$ $\left\|c_{i}-c_{j}\right\|_{C^{0}([-N, N] \times[0, \pi])}$. Then we can conclude $\left\|e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}-e_{\rho_{j}}^{\sigma / p} \bar{\chi}_{j}\right\|_{W^{1, p}([-N+1, N-1] \times[0, \pi])} \rightarrow$ 0 , and $\left\|\bar{\chi}_{N}-e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}\right\|_{W^{1, p}([-N+1, N-1] \times[0, \pi])} \rightarrow 0$. Define $\bar{\chi}_{\infty}$ by $\left.\bar{\chi}_{\infty}\right|_{[-N+1, N-1] \times[0, \pi]}=$ $\bar{\chi}_{N}$. We remark that $\left\|\bar{\chi}_{\infty}\right\|_{W^{1, p}(\mathbf{R} \times[0, \pi])}<C$ from $\sup _{N, i}\left\|e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}\right\|_{W^{1, p}([-N, N] \times[0, \pi])}<$
C. Moreover,

$$
\begin{aligned}
& \left\|\frac{1}{2}\left(\frac{\partial}{\partial s}+\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}\right) \bar{\chi}_{\infty}+\frac{1}{2} \operatorname{sgn}(s) \frac{\sigma}{p} \bar{\chi}_{\infty}\right\|_{L^{p}([-N, N] \times[0, \pi])} \\
\leq & \left\|\frac{1}{2}\left(\frac{\partial}{\partial s}+\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}\right)\left(\bar{\chi}_{\infty}-e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}\right)\right\|_{L^{p}([-N, N] \times[0, \pi])} \\
& +\left\|\frac{1}{2}\left(\frac{\partial}{\partial s}+\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}\right) e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}+\frac{1}{2} \operatorname{sgn}(s) \frac{\sigma}{p} \bar{\chi}_{\infty}\right\|_{L^{p}([-N, N] \times[0, \pi])} \\
\leq & \left\|\frac{1}{2}\left(\frac{\partial}{\partial s}+\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}\right)\left(\bar{\chi}_{\infty}-e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}\right)\right\|_{L^{p}([-N, N] \times[0, \pi])} \\
& +\left\|e_{\rho_{i}}^{\sigma / p} \frac{1}{2}\left(\frac{\partial}{\partial s}+\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}\right) \bar{\chi}_{i}\right\|_{L^{p}([-N, N] \times[0, \pi])} \\
& +\left\|-\frac{1}{2} \operatorname{sgn}(s) \frac{\sigma}{p} e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}+\frac{1}{2} \operatorname{sgn}(s) \frac{\sigma}{p} \bar{\chi}_{\infty}\right\|_{L^{p}([-N, N] \times[0, \pi])} \\
\leq & C\left\|\bar{\chi}_{\infty}-e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}\right\|_{W^{1, p}([-N, N] \times[0, \pi])} \\
& +\left\|e_{\rho_{i}}^{\sigma / p} \frac{1}{2}\left(\frac{\partial}{\partial s}+\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}\right) \bar{\chi}_{i}-e_{\rho_{i}}^{\sigma / p} \bar{D}_{u \sharp \oiint_{i} v} \bar{\chi}_{i}\right\|_{L^{p}([-N, N] \times[0, \pi])} \\
& +\left\|e_{\rho_{i}}^{\sigma / p} \frac{\bar{D}_{u \sharp \rho_{i}} v}{} \bar{\chi}_{i}\right\|_{L^{p}([-N, N] \times[0, \pi])}+C\left\|\bar{\chi}_{\infty}-e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}\right\|_{L^{p}([-N, N] \times[0, \pi])} \\
\leq & C\left\|\bar{\chi}_{\infty}-e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}\right\|_{W^{1, p}([-N, N] \times[0, \pi])} \\
& +\left\|\frac{1}{2}\left(\frac{\partial}{\partial s}+\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}\right)-\bar{D}_{u \sharp \rho_{i} v}\right\|_{C^{0}([-N, N] \times[0, \pi])}\left\|\bar{\chi}_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta D_{\rho_{i}} \cap\left\{e^{-N}<|z|<e^{N}\right\}\right)} \\
& +\left\|\bar{D}_{u \sharp \rho_{i} v} \bar{\chi}_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}} \cap\left\{e^{-N}<|z|<e^{N}\right\}\right)}+C\left\|\bar{\chi}_{\infty}-e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}\right\|_{L^{p}([-N, N] \times[0, \pi])} \\
\rightarrow \quad & 0 .
\end{aligned}
$$

Then we can conclude $\frac{1}{2}\left(\frac{\partial}{\partial s}+\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}+\operatorname{sgn}(s) \frac{\sigma}{p}\right) \bar{\chi}_{\infty}=0$ which is equivalent to the following equations:

$$
\begin{aligned}
\frac{1}{2}\left(\frac{\partial}{\partial s}+\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \frac{\partial}{\partial t}+\operatorname{sgn}(s) \frac{\sigma}{p}\right) \bar{\chi}_{\infty}^{1} & =0 \\
\frac{1}{2}\left(\frac{\partial}{\partial s}+J_{0} \frac{\partial}{\partial t}+\operatorname{sgn}(s) \frac{\sigma}{p}\right) \bar{\chi}_{\infty}^{2} & =0
\end{aligned}
$$

Put $\bar{\chi}_{\infty}^{1}=x \frac{\partial}{\partial \theta}+y X_{\lambda}$ and $z=x+i y$, and the first equation turns out to be $\frac{1}{2}\left(\frac{\partial}{\partial s}+i \frac{\partial}{\partial t}+\operatorname{sgn}(s) \frac{\sigma}{p}\right) z=0$. By the separation of variables, we can solve this equation and $z=c e_{0}^{\sigma / p}$, for some $c \in \mathbf{R}$. Moreover, from the assumption $\chi_{i}^{1}(1)=0$, we have $\bar{\chi}_{\infty}^{1}=0$. Concerning the second equation, we get $\bar{\chi}_{\infty}^{2}=0$ from Lemma 6.2. Then $\left\|e_{\rho_{i}}^{\sigma / p} \bar{\chi}_{i}\right\|_{W^{1, p}([-3,3] \times[0, \pi])} \rightarrow 0$, which implies $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}} \cap\left\{e^{-3}<|z|<e^{3}\right\}\right)} \rightarrow$ 0.

We define $\operatorname{Ker} D_{u}=\left\{\zeta \in T_{u} W_{\sigma}^{1, p}(\Theta ; \gamma) \mid D_{u} \zeta=0\right\}$.
Lemma 6.4. There exists some constant C depending only on u such that

$$
\|n\|_{W_{\sigma}^{1, p}(\Theta)} \leq C\left\|D_{u} n\right\|_{L_{\sigma}^{p}(\Theta)}
$$

for $n \in\left(K e r D_{u}\right)^{\perp}=\left\{n \in T_{u} W_{\sigma}^{1, p}(\Theta ; \gamma) \mid \int_{\Theta}\langle n, \zeta\rangle \alpha^{\sigma / p}(|z|) d x d y=0\right.$ for $\left.\zeta \in \operatorname{KerD} D_{u}\right\}$.
Proof. Suppose that there exists a sequence $\left\{n_{i}\right\}_{i=0}^{\infty}$ of $n_{i} \in\left(\operatorname{Ker} D_{u}\right)^{\perp}$ such that $\left\|n_{i}\right\|_{W_{\sigma}^{1, p}(\Theta)}=1$ and $\left\|D_{u} n_{i}\right\|_{L_{\sigma}^{p}(\Theta)} \rightarrow 0$. Fix $N>1$. By the Rellich's theorem there
exist a subsequence $\left\{n_{i_{l}}\right\}_{l=1}^{\infty}$ and $n_{\infty} \in L_{\sigma}^{p}(\Theta)$ such that $\left\|n_{\infty}-n_{i_{l}}\right\|_{L_{\sigma}^{p}\left(\Theta \cap\left\{|z|<e^{N}\right\}\right)} \rightarrow$ 0 . We omit to mention subsequences hereafter. By the Gärding inequality

$$
\begin{aligned}
& \left\|n_{i}-n_{j}\right\|_{W_{\sigma}^{1, p}}\left(\Theta \cap\left\{|z|<e^{N-1}\right\}\right) \\
\leq & C\left(\left\|D_{u}\left(n_{i}-n_{j}\right)\right\|_{L_{\sigma}^{p}\left(\Theta \cap\left\{|z|<e^{N}\right\}\right)}+\left\|n_{i}-n_{j}\right\|_{L_{\sigma}^{p}\left(\Theta \cap\left\{|z|<e^{N}\right\}\right)}\right) \\
\rightarrow & 0
\end{aligned}
$$

and $\left\|n_{\infty}-n_{i}\right\|_{W_{\sigma}^{1, p}\left(\Theta \cap\left\{|z|<e^{N}\right\}\right)} \rightarrow 0$. Moreover,

$$
\left\|D_{u} n_{\infty}-D_{u} n_{i}\right\|_{L_{\sigma}^{p}\left(\Theta \cap\left\{|z|<e^{N}\right\}\right)} \leq C\left\|n_{\infty}-n_{i}\right\|_{W_{\sigma}^{1, p}\left(\Theta \cap\left\{|z|<e^{N}\right\}\right)} \rightarrow 0
$$

and $D_{u} n_{\infty}=0$. Since $\left\|n_{i}\right\|_{W_{\sigma}^{1, p}(\Theta)}=1,\left\|n_{\infty}\right\|_{W_{\sigma}^{1, p}(\Theta)}=1$. So $n_{\infty} \in \operatorname{Ker} D_{u}$, which contradicts to $n_{i} \in\left(\operatorname{Ker} D_{u}\right)^{\perp}$. Hence there is no such sequence as $\left\{n_{i}\right\}_{i=1}^{\infty}$, and there exists some constant C as in the lemma.

We define
$V_{\rho}^{\perp}=\left\{\begin{array}{l|l}\chi \in T_{u \not{ }_{\mu} v} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right) & \begin{array}{l}\int_{\Delta_{\rho}}\left\langle\chi, \zeta \not \sharp_{\rho} \eta\right\rangle \beta_{\rho_{i}}^{\sigma / p}(|z|) d x d y=0 \text { for } \zeta \in \operatorname{Ker} D_{u} \text { and } \eta \in \operatorname{Ker} D_{v} \\ \text { and } \chi^{1}(1)=0\end{array}\end{array}\right\}$.
Since $\chi^{1}(1) \in \mathbf{R}\left(\frac{\partial}{\partial \theta}\right)_{\bar{\gamma}(0)}$, the codimension of V_{ρ}^{\perp} in $T_{u \sharp \rho v} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ is equal to $\operatorname{dim} \operatorname{Ker} D_{u}+\operatorname{dim} \operatorname{Ker} D_{v}+1$.

Proposition 6.5. Let u and v be punctured pseudo-holomorphic discs. Then there exist some constants ρ_{0} and C depending only on u and v such that

$$
\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} \leq C\left\|D_{u \sharp \rho v} \chi\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)},
$$

for $\rho>\rho_{0}$ and $\chi \in V_{\rho}^{\perp}$.
Proof. Let $\left\{\left(\rho_{i}, \chi_{i}\right)\right\}_{i=1}^{\infty}$ be a sequence of pairs $\rho_{i} \in \mathbf{R}$ and $\chi_{i} \in V_{\rho_{i}}^{\perp}$. Suppose that $\rho_{i} \rightarrow \infty$ and that $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=1$ and $\left\|D_{u \sharp \rho_{i} v} \chi_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$. Define smooth cutoff functions $\beta_{\Theta}, \beta_{[-3,3]}$ and β_{Ξ} on Δ_{ρ} such that

$$
\begin{aligned}
& \beta_{\Theta}(z)=\left\{\begin{array}{lc}
1, & \text { for }|z| \leq e^{-3}, \\
0, & \text { for } e^{-2}<|z|,
\end{array}\right. \\
& \beta_{[-3,3]}(z)=\left\{\begin{array}{rc}
0, & \text { for }|z|<e^{-3}, \\
1, & \text { for } e^{-2}<|z|<e^{2}, \\
0, & \text { for } e^{3}<|z|,
\end{array}\right. \\
& \beta_{\Xi}(z)=\left\{\begin{array}{rc}
0, & \text { for }|z|<e^{2}, \\
1, & \text { for } e^{3}<|z|,
\end{array}\right.
\end{aligned}
$$

and $\beta_{\Theta}+\beta_{[-3,3]}+\beta_{\Xi} \equiv 1$. Then

$$
\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)} \leq\left\|\beta_{\Theta} \chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}+\left\|\beta_{[-3,3]} \chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}+\left\|\beta_{\Xi} \chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)} .
$$

From Proposition 6.3, $\left\|\beta_{[-3,3]} \chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$. Due to the support of $\beta_{\Theta} \chi_{i}$, we may think of $\beta_{\Theta} \chi_{i} \in T_{u \not{ }_{\rho_{i}} v} W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)$ as $\beta_{\Theta} \chi_{i} \in T_{u} W_{\sigma}^{1, p}(\Theta)$. Let $\left\{e_{1}, \ldots, e_{l}\right\}$ be an orthonormal basis of $\operatorname{Ker} D_{u}$, i.e., $\int_{\Theta}\left\langle e_{i}, e_{j}\right\rangle \alpha^{\sigma / p}(|z|) d x d y=\delta_{i j}$. Decompose $\beta_{\Theta} \chi_{i}$ into $k_{i}+n_{i}$, where $k_{i}=\sum_{j=1}^{l} \int_{\Theta}\left\langle\beta_{\Theta} \chi_{i}, e_{j}\right\rangle \alpha^{\sigma / p}(|z|) d x d y e_{j}$ and $n_{i}=\beta_{\Theta} \chi_{i}-k_{i}$. Then $\left\|\beta_{\Theta} \chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=\left\|\beta_{\Theta} \chi_{i}\right\|_{W_{\sigma}^{1, p}(\Theta)} \leq\left\|k_{i}\right\|_{W_{\sigma}^{1, p}(\Theta)}+\left\|n_{i}\right\|_{W_{\sigma}^{1, p}(\Theta)}$. By definition, for $e_{j} \in \operatorname{Ker} D_{u}$,

$$
\int_{\Delta_{\rho_{i}}}\left\langle\chi_{i}, e_{j} \not \not_{\rho_{i}} 0\right\rangle \beta_{\rho_{i}}^{\sigma / p}(|z|) d x d y=0 .
$$

And, due to the support of $e_{j} \sharp_{\rho_{i}} 0$,

$$
\begin{aligned}
& \int_{\Delta_{\rho_{i}}}\left\langle\chi_{i}, e_{j} \not \AA_{i} 0\right\rangle \beta_{\rho_{i}}^{\sigma / p}(|z|) d x d y \\
= & \int_{\Theta}\left\langle\chi_{i}, e_{j} \sharp_{\rho_{i}} 0\right\rangle \alpha^{\sigma / p}(|z|) d x d y \\
= & \int_{\Theta}\left\langle\beta_{\Theta} \chi_{i}, e_{j}\right\rangle \alpha^{\sigma / p}(|z|) d x d y+\int_{\Theta}\left(1-\beta_{\Theta}\right)\left\langle\chi_{i}, e_{j} \sharp \mu_{i} 0\right\rangle \alpha^{\sigma / p}(|z|) d x d y .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\left|\int_{\Theta}\left(1-\beta_{\Theta}\right)\left\langle\chi_{i}, e_{j} \sharp \rho_{i} 0\right\rangle \alpha^{\sigma / p}(|z|) d x d y\right| & \leq C \int_{\Theta \cap\left\{\left\{^{\rho_{i}-3}<|z|<e^{\rho_{i}-1}\right\}\right.}\left|\chi_{i} \| e_{j}\right| \alpha^{\sigma / p}(|z|) d x d y \\
& \leq C\left\|\chi_{i}\right\|_{C^{0}\left(\Delta_{\rho_{i}}\right)}\left\|e_{j}\right\|_{L_{\sigma}^{p}\left(\Theta \cap\left\{e^{\rho_{i}-3}<|z|<e^{\rho_{i}-1}\right\}\right)} .
\end{aligned}
$$

Since $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=1$, we have $\left\|\chi_{i}\right\|_{C^{o}\left(\Delta_{\rho_{i}}\right)} \leq C$. Hence $\int_{\Theta}\left\langle\beta_{\Theta} \chi_{i}, e_{j}\right\rangle \alpha^{\sigma / p}(|z|) d x d y \rightarrow$ 0 , and $\left\|k_{i}\right\|_{W_{\sigma}^{1, p}(\Theta)} \rightarrow 0$. From Proposition 6.3, Lemma 6.4 and

$$
\begin{aligned}
& \left\|D_{u} n_{i}\right\|_{L_{\sigma}^{p}(\Theta)}=\left\|D_{u}\left(k_{i}+n_{i}\right)\right\|_{L_{\sigma}^{p}(\Theta)} \\
& =\left\|D_{u}\left(\beta_{\Theta} \chi_{i}\right)\right\|_{L_{\sigma}^{p}(\Theta)} \\
& =\left\|D_{u \sharp_{\rho_{i}} v}\left(\beta_{\Theta} \chi_{i}\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \\
& \leq C\left(\left\|\chi_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}} \cap\left\{e^{-3}<|z|<e^{-2}\right)\right.}+\left\|D_{u \sharp \rho_{i} v} v \chi_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)}\right),
\end{aligned}
$$

we obtain $\left\|n_{i}\right\|_{W_{\sigma}^{1, p}(\Theta)} \rightarrow 0$. Hence $\left\|\beta_{\Theta} \chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$. Similarly, we can prove $\left\|\beta_{\Xi \chi_{i}}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$, and finally we have $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$, which contradicts to $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=1$. Hence there is no such sequence as $\left\{\left(\rho_{i}, \chi_{i}\right)\right\}_{i=1}^{\infty}$, and there exists some constant C as in the proposition.

Corollary 6.6. Suppose that $D_{u}: T_{u} W_{\sigma}^{1, p}(\Theta ; \gamma) \rightarrow L_{\sigma}^{p}(\Theta ; \gamma)_{u}$ and $D_{v}: T_{v} W_{\sigma}^{1, p}(\Xi ; \gamma) \rightarrow$ $L_{\sigma}^{p}(\Xi ; \gamma)_{v}$ are surjective. Then there are some constants ρ_{0} and C depending only on u and v such that, for $\rho>\rho_{0}$, there exists $G_{u \not{ }_{\rho} v}: L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \sharp_{\rho} v} \rightarrow V_{\rho}^{\perp}$ which satisfies

$$
\begin{aligned}
D_{u \sharp \rho^{\prime} v} G_{u \not \sharp_{\rho} v} & =i d, \\
\left\|G_{u \not{ }_{一 \rho} v} v\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} & \leq C\|\kappa\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} .
\end{aligned}
$$

Proof. From Proposition 6.5, if $\kappa \in \operatorname{Ker} D_{u \not{ }_{\rho} v} \cap V_{\rho}^{\perp}$, then $\kappa=0$ and

$$
\operatorname{dim} \operatorname{Ker} D_{u \sharp \sharp_{\rho} v} \leq \operatorname{codim} V_{\rho}^{\perp}=\operatorname{dim} \operatorname{Ker} D_{u}+\operatorname{dim} \operatorname{Ker} D_{v}+1 .
$$

We remark that, for small $\sigma>0$, the spectral flow tells us

$$
\operatorname{Index} D_{u \sharp \rho v}=\operatorname{Index} D_{u}+\operatorname{dim} \operatorname{Ker} \bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}+\operatorname{Index} D_{v},
$$

where Index means the Fredholm index. In fact $\operatorname{dim} \operatorname{Ker} \bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}=1$. Then the surjectivity of D_{u} and D_{v} implies that

$$
\operatorname{dim} \operatorname{Ker} D_{u \sharp \rho} v=\operatorname{dim} \operatorname{Ker} D_{u}+\operatorname{dim} \operatorname{Ker} D_{v}+1+\operatorname{Coker} D_{u \sharp{ }^{2} v} v .
$$

Hence we obtain $\operatorname{dim} \operatorname{Ker} D_{u \not{ }_{\neq \rho} v}=\operatorname{codim} V_{\rho}^{\perp}$ and $\operatorname{dim} \operatorname{Coker} D_{u \sharp_{\rho} v}=0$, which imply that $\operatorname{Ker} D_{u \not{ }_{\mu \rho} v} \oplus V_{\rho}^{\perp}=T_{u \not{ }_{\rho} v} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ and $D_{u \not{ }_{\rho} v}: V_{\rho}^{\perp} \rightarrow L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \not{ }_{\neq} v}$ is surjective, and isomorphic. We define $G_{u \sharp_{\rho} v}$ by the inverse of $D_{u \sharp_{\rho} v}$, and the constant C as in the corollary is derived from the one of Proposition 6.5.

We give Newton's method to find pseudo-holomorphic discs near to approximate pseudo-holomorphic discs [1] and [2].

Proposition 6.7. For $w \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$, suppose that there exists some constant C which satisfies the following conditions:

- $\left\|N_{w}(\chi)-N_{w}\left(\chi^{\prime}\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \leq C\left(\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}+\left\|\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}\right)\left\|\chi-\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}$, for $\chi, \chi^{\prime} \in T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ with $\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)},\left\|\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}<C^{-2} / 4$.
- There exists $G_{w}: L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w} \rightarrow T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ such that $D_{w} G_{w}=i d$ and $\left\|G_{w} \kappa\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} \leq C\|\kappa\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}$.
- $\left\|\mathcal{F}_{w}(0)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \leq C^{-3} / 16$.

Then there exists $\chi \in T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ such that $\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} \leq C^{-2} / 4$ and $\mathcal{F}_{w}(\chi)=0$, which implies $\bar{\partial}_{J}\left(\exp _{w}^{g_{M \sharp} \mu^{\prime} M^{\prime}} \chi\right)=0$.

Proof. For $\chi \in \operatorname{Ker} D_{w}$, we define $F_{\chi}: L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w} \rightarrow L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w}$ by

$$
F_{\chi}(\kappa)=-\mathcal{F}_{w}(0)-N_{w}\left(\chi+G_{w} \kappa\right) .
$$

Put $\chi^{\prime}=0$ in the first condition, and $\left\|N_{w}(\chi)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \leq C\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}^{2}$. Then

$$
\begin{aligned}
& \left\|-\mathcal{F}_{w}(0)-N_{w}\left(\chi+G_{w} \kappa\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \\
\leq & \left\|\mathcal{F}_{w}(0)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}+\left\|N_{w}\left(\chi+G_{w} \kappa\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \\
\leq & \left\|\mathcal{F}_{w}(0)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}+C\left\|\chi+G_{w} \kappa\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}^{2} \\
\leq & \left\|\mathcal{F}_{w}(0)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}+C\left(\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}+C\|\kappa\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}\right)^{2}
\end{aligned}
$$

For $x, y \in L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w}$,

$$
\begin{aligned}
& \left\|-N_{w}\left(\chi+G_{w} x\right)+N_{w}\left(\chi+G_{w} y\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \\
\leq & C\left(\left\|\chi+G_{w} x\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}+\left\|\chi+G_{w} y\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}\right)\left\|G_{w} x-G_{w} y\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} \\
\leq & C^{2}\left(2\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}+C\|x\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}+C\|y\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}\right)\|x-y\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}
\end{aligned}
$$

Define $B_{\chi}=\left\{\chi \in \operatorname{Ker} D_{w} \mid\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}<C^{-2} / 8\right\}$ and $B_{\kappa}=\left\{\kappa \in L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w} \mid\|\kappa\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}<\right.$ $\left.C^{-3} / 8\right\}$. Then, if $\chi \in B_{\chi}, F_{\chi}: B_{\kappa} \rightarrow B_{\kappa}$ and

$$
\left\|F_{\chi}(x)-F_{\chi}(y)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \leq \frac{1}{2}\|x-y\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}
$$

for $x, y \in B_{\kappa}$. By the contraction theorem, for each $\chi \in B_{\chi}$, we can find κ_{χ} such that $F_{\chi}\left(\kappa_{\chi}\right)=\kappa_{\chi}$ which implies

$$
-\mathcal{F}_{w}(0)-N_{w}\left(\chi+G_{w} \kappa_{\chi}\right)=\kappa_{\chi} .
$$

Define $f(\chi)=G_{w} \kappa_{\chi}$, and

$$
\mathcal{F}_{w}(0)+D_{w}(\chi+f(\chi))+N_{w}(\chi+f(\chi))=0
$$

since $\chi \in \operatorname{Ker} D_{u}$ and $D_{w} G_{w}=\mathrm{id}$. This implies

$$
\bar{\partial}_{J}\left(\exp _{w}^{g_{M \sharp \rho M^{\prime}}}(\chi+f(\chi))\right)=0,
$$

for $\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}<C^{-2} / 8$. And $\|\chi+f(\chi)\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} \leq C^{-2} / 8+C C^{-3} / 8=C^{-2} / 4$.

Finally, we glue the punctured pseudo-holomorphic discs u and v. From Lemma 5.1, there is ρ_{1} such that, for $\rho>\rho_{1}$, there exists some constant C_{1} which satisfies the first condition of Proposition 6.7. Similarly, from Corollary 6.6, we have ρ_{2} such that, for $\rho>\rho_{2}$, there exists some constant C_{2} and the second condition of Proposition 6.7 holds. And, from Lemma 6.1, there is ρ_{3} such that, for $\rho>\rho_{3}$, there exists some constant C_{3} which satisfies the third condition of Proposition 6.7. Put $\rho_{0}=\max \left(\rho_{1}, \rho_{2}, \rho_{3}\right)$ and $C=\max \left(C_{1}, C_{2}, C_{3}\right)$, and we can apply Proposition 6.7 to our $w=u \sharp \rho v$, for $\rho>\rho_{0}$, and get a pseudo-holomorphic disc near to w.

7. Degenerate Reeb chords

In this section, we discuss the gluing constructions of pseudo-holomorphic discs with degenerate Reeb chords, i.e., we do not assume that γ is nondegenerate. We can use Lemma 5.1, Lemma 6.1, Lemma 6.4 and Proposition 6.7, where we do not need the nondegeneracy.

Let d be the dimension of $T_{\bar{\gamma}(0)} \Lambda \cap\left(d \varphi_{T}\right)^{-1} T_{\bar{\gamma}(\pi)} \Lambda$. We may choose e_{i} as in Section 5 such that $\left\{e_{1}, \ldots, e_{d}\right\}$ is a basis of $T_{\bar{\gamma}(0)} \Lambda \cap\left(d \varphi_{T}\right)^{-1} T_{\bar{\gamma}(\pi)} \Lambda$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of $T_{\bar{\gamma}(0)} \Lambda$. Then, if $\bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}} \zeta(t)=0$ with $\zeta(0) \in \mathbf{R} \frac{\partial}{\partial \theta} \oplus T_{\bar{\gamma}(0)} \Lambda$ and $\zeta(\pi) \in \mathbf{R} \frac{\partial}{\partial \theta} \oplus T_{\bar{\gamma}(\pi)} \Lambda$, we have $\zeta(t)=c \frac{\partial}{\partial \theta} \oplus \sum_{i=1}^{d} c_{i} e_{i}(t)$, for $c, c_{i} \in \mathbf{R}$.

Suppose that $\left(d \varphi_{T}\right)^{-1} T_{\bar{\gamma}(\pi)} \Lambda$ is spanned by $\left\{e_{1}, \ldots, e_{d}, f_{d+1}, \ldots, f_{n}\right\}$, where $f_{i} \in$ $\bigoplus_{i=d+1}^{n}\left(\mathbf{R} e_{i} \oplus \mathbf{R} J_{\xi} e_{i}\right)$. Let $\Lambda_{0} \subset \mathbf{R}^{2(n-d)}$ be the $(n-d)$-dimensional linear subspace corresponding to $\bigoplus_{i=d+1}^{n} \mathbf{R} e_{i} \subset \bigoplus_{i=d+1}^{n} \mathbf{R} e_{i} \oplus \mathbf{R} J_{\xi} e_{i}$ and $\Lambda_{\pi} \subset \mathbf{R}^{2(n-d)}$ the $(n-d)$ dimensional linear subspace corresponding to $\bigoplus_{i=d+1}^{n} \mathbf{R} f_{i} \subset \bigoplus_{i=d+1}^{n} \mathbf{R} e_{i} \oplus \mathbf{R} J_{\xi} e_{i}$. We remark that Λ_{0} and Λ_{π} intersect transversely in $\mathbf{R}^{2(n-d)}$. Moreover, we define
$W^{1, p}\left(\mathbf{R} \times[0, \pi], \mathbf{R}^{2(n-d)}, \Lambda_{0}, \Lambda_{\pi}\right)=\left\{\chi \in W^{1, p}\left(\mathbf{R} \times[0, \pi], \mathbf{R}^{2(n-d)}\right) \mid \chi(0) \in \Lambda_{0}\right.$ and $\left.\chi(\pi) \in \Lambda_{\pi}\right\}$
and
$W^{1, p}\left([0, \pi], \mathbf{R}^{2(n-d)}, \Lambda_{0}, \Lambda_{\pi}\right)=\left\{\chi \in W^{1, p}\left([0, \pi], \mathbf{R}^{2(n-d)}\right) \mid \chi(0) \in \Lambda_{0}\right.$ and $\left.\chi(\pi) \in \Lambda_{\pi}\right\}$,
and obtain the following lemma in a completely similar way to Lemma 6.2.
Lemma 7.1. If $\sigma>0$ is small enough, the operator $\frac{\partial}{\partial s}+J_{0} \frac{\partial}{\partial t}+\operatorname{sgn}(s) \frac{\sigma}{p}: W^{1, p}(\mathbf{R} \times$ $\left.[0, \pi], \mathbf{R}^{2(n-d)}, \Lambda_{0}, \Lambda_{\pi}\right) \rightarrow L^{p}\left(\mathbf{R} \times[0, \pi], \mathbf{R}^{2(n-d)}\right)$ is bijective, for $1<p<\infty$.

For $\chi \in T_{\bar{\gamma}(0)}(\mathbf{R} \times N)$, we denote by χ^{1} the $\mathbf{R} \frac{\partial}{\partial \theta} \oplus \mathbf{R} X_{\lambda} \oplus \bigoplus_{i=1}^{d} \mathbf{R} e_{i}(0) \oplus \mathbf{R} J_{\xi} e_{i}(0)$ component of χ and by χ^{2} the $\bigoplus_{i=d+1}^{n} \mathbf{R} e_{i}(0) \oplus \mathbf{R} J_{\xi} e_{i}(0)$ component of χ, and obtain the following lemma in a completely similar way to Lemma 6.3.

Proposition 7.2. Let u and v be punctured pseudo-holomorphic discs and $\left\{\left(\rho_{i}, \chi_{i}\right)\right\}_{i=1}^{\infty}$ a sequence of pairs $\rho_{i} \in \mathbf{R}$ and $\chi_{i} \in T_{u \sharp \rho_{i} v} W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)$. Suppose that $\rho_{i} \rightarrow \infty$ and that $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=1,\left\|D_{u \sharp \rho_{i}} v \chi_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$ and $\chi_{i}^{1}(1)=0$. Then there exists a subsequence $\left\{\left(\rho_{i_{l}}, \chi_{i_{l}}\right)\right\}_{l=1}^{\infty}$ such that

$$
\left\|\chi_{i_{l}}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i_{l}}} \cap\left\{e^{-3}<|z|<e^{3}\right\}\right)} \rightarrow 0
$$

We define
$V_{\rho}^{\perp}=\left\{\begin{array}{l|l}\chi \in T_{u \not{ }_{\rho} v} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right) & \begin{array}{l}\int_{\Delta_{\rho}}\left\langle\chi, \zeta \not \sharp_{\rho} \eta\right\rangle \beta_{\rho_{i}}^{\sigma / p}(|z|) d x d y=0 \text { for } \zeta \in \operatorname{Ker} D_{u} \text { and } \eta \in \operatorname{Ker} D_{v} \\ \text { and } \chi^{1}(1)=0\end{array}\end{array}\right\}$.

Since $\chi^{1}(1) \in \mathbf{R}\left(\frac{\partial}{\partial \theta}\right)_{\bar{\gamma}(0)} \oplus \bigoplus_{i=1}^{d} \mathbf{R} e_{i}(0)$, the codimension of V_{ρ}^{\perp} in $T_{u \sharp p v} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ is equal to $\operatorname{dim} \operatorname{Ker} D_{u}+\operatorname{dim} \operatorname{Ker} D_{v}+d+1$. Then we obtain the following proposition in a completely similar way to Proposition 6.5.

Proposition 7.3. Let u and v be punctured pseudo-holomorphic discs. Then there exist some constants ρ_{0} and C depending only on u and v such that

$$
\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} \leq C\left\|D_{u \sharp \rho_{\rho} v} \chi\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}
$$

for $\rho>\rho_{0}$ and $\chi \in V_{\rho}^{\perp}$.
Corollary 7.4. Suppose that $D_{u}: T_{u} W_{\sigma}^{1, p}(\Theta ; \gamma) \rightarrow L_{\sigma}^{p}(\Theta ; \gamma)_{u}$ and $D_{v}: T_{v} W_{\sigma}^{1, p}(\Xi ; \gamma) \rightarrow$ $L_{\sigma}^{p}(\Xi ; \gamma)_{v}$ are surjective. Then there are some constants ρ_{0} and C depending only on u and v such that, for $\rho>\rho_{0}$, there exists $G_{u \sharp \rho v}: L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \sharp{ }_{\mu} v} \rightarrow V_{\rho}^{\perp}$ which satisfies

$$
\begin{aligned}
D_{u \sharp \rho v} G_{u \sharp \rho v} & =i d, \\
\left\|G_{u \sharp \rho v} \kappa\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} & \leq C\|\kappa\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} .
\end{aligned}
$$

Proof. From Proposition 7.3, if $\kappa \in \operatorname{Ker} D_{u \sharp \rho v} \cap V_{\rho}^{\perp}$, then $\kappa=0$ and

$$
\operatorname{dim} \operatorname{Ker} D_{u \sharp \sharp_{\rho} v} \leq \operatorname{codim} V_{\rho}^{\perp}=\operatorname{dim} \operatorname{Ker} D_{u}+\operatorname{dim} \operatorname{Ker} D_{v}+d+1
$$

We remark that, for small $\sigma>0$, the spectral flow tells us

$$
\operatorname{Index} D_{u \sharp \rho v}=\operatorname{Index} D_{u}+\operatorname{dim} \operatorname{Ker} \bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}+\operatorname{Index} D_{v},
$$

where Index means the Fredholm index. In fact $\operatorname{dim} \operatorname{Ker} \bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}=d+1$. Then the surjectivity of D_{u} and D_{v} implies that

$$
\operatorname{dim} \operatorname{Ker} D_{u \sharp \rho v}=\operatorname{dim} \operatorname{Ker} D_{u}+\operatorname{dim} \operatorname{Ker} D_{v}+d+1+\operatorname{Coker} D_{u \sharp \rho v} .
$$

Hence we obtain $\operatorname{dim} \operatorname{Ker} D_{u \sharp \rho v}=\operatorname{codim} V_{\rho}^{\perp}$ and $\operatorname{dim} \operatorname{Coker} D_{u \sharp{ }_{\mu} v}=0$, which imply that $\operatorname{Ker} D_{u \sharp p v} \oplus V_{\rho}^{\perp}=T_{u \sharp \rho v} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ and $D_{u \sharp \rho v}: V_{\rho}^{\perp} \rightarrow L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \sharp \rho v}$ is surjective, and isomorphic. We define $G_{u \not \sharp_{\rho} v}$ by the inverse of $D_{u \not{ }_{\rho} v}$, and the constant C as in the corollary is derived from the one of Proposition 7.3.

Finally, we glue the punctured pseudo-holomorphic discs u and v. From Lemma 5.1, there is ρ_{1} such that, for $\rho>\rho_{1}$, there exists some constant C_{1} which satisfies the first condition of Proposition 6.7. Similarly, from Corollary 7.4, we have ρ_{2} such that, for $\rho>\rho_{2}$, there exists some constant C_{2} and the second condition of Proposition 6.7 holds. And, from Lemma 6.1, there is ρ_{3} such that, for $\rho>\rho_{3}$, there exists some constant C_{3} which satisfies the third condition of Proposition 6.7. Put $\rho_{0}=\max \left(\rho_{1}, \rho_{2}, \rho_{3}\right)$ and $C=\max \left(C_{1}, C_{2}, C_{3}\right)$, and we can apply Proposition 6.7 to our $w=u \not \sharp_{\rho} v$, for $\rho>\rho_{0}$, and get a pseudo-holomorphic disc near to w.

8. Non-surjective Cauchy-Riemann operators

In this section, we discuss the gluing constructions of Kuranishi maps as in [3] with non-surjective linearized Cauchy-Riemann operators, i.e., we do not assume that D_{u} and D_{v} are surjective.

For $u \in W_{\sigma}^{1, p}(\Theta ; \gamma), \operatorname{Im} D_{u} \subset L_{\sigma}^{p}(\Theta ; \gamma)_{u}$ is closed and $d_{u}=\operatorname{dim} L_{\sigma}^{p}(\Theta ; \gamma)_{u} / \operatorname{Im} D_{u}$ is finite. We define $E_{u} \subset L_{\sigma}^{p}(\Theta ; \gamma)_{u}$ by a d_{u}-dimensional linear subspace such that $\operatorname{Im} D_{u}+E_{u}=L_{\sigma}^{p}(\Theta ; \gamma)_{u}$. Let $\left\{e_{1}^{u}, \ldots, e_{d_{u}}^{u}\right\}$ be a basis of E_{u}. Similarly, for $v \in W_{\sigma}^{1, p}(\Xi ; \gamma), \operatorname{Im} D_{v} \subset L_{\sigma}^{p}(\Xi ; \gamma)_{v}$ is closed and $d_{v}=\operatorname{dim} L_{\sigma}^{p}(\Xi ; \gamma)_{v} / \operatorname{Im} D_{v}$ is
finite. We define $E_{u} \subset L_{\sigma}^{p}(\Theta ; \gamma)_{u}$ by a d_{v}-dimensional linear subspace such that $\operatorname{Im} D_{v}+E_{v}=L_{\sigma}^{p}(\Xi ; \gamma)_{v}$. Let $\left\{e_{1}^{v}, \ldots, e_{d_{v}}^{v}\right\}$ be a basis of E_{v}.

For $a \in E_{u}$ and $b \in E_{v}$, we define $a \sharp_{\rho} b \in L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \nsim \rho} v$ by

$$
a \not \sharp_{\rho} b=\left\{\begin{array}{rr}
a\left(e^{\rho} z\right), & \text { for }|z| \leq e^{-3}, \\
\beta_{u}(\log |z|+2) a\left(e^{\rho} z\right), & \text { for } e^{-3}<|z| \leq 1, \\
\beta_{v}(\log |z|-2) b\left(e^{-\rho} z\right), & \text { for } 1<|z| \leq e^{3}, \\
b\left(e^{-\rho} z\right), & \text { for }|z|>e^{3},
\end{array}\right.
$$

and $E_{u \not \sharp_{\rho} v}=\left\{a \sharp_{\rho} b \mid a \in E_{u}\right.$ and $\left.b \in E_{v}\right\} \subset L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \not{ }_{\nexists} v}$. Since the norm on the quotient $\bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \sharp \rho_{\rho} v}=L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \sharp{ }_{\rho} v} / E_{u \sharp{ }_{\rho} v}$ is given by $\|\cdot\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)}=\inf _{k \in E_{u \sharp} v} \|$. $+k \|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}$, we obtain $\|\cdot\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)} \leq\|\cdot\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)}$, and slight modifications of Lemma 5.1 and Lemma 6.1, where we do not need the surjectivity, hold.

Lemma 8.1. For $w \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$, we write $\mathcal{F}_{w}(\chi)=\mathcal{F}_{w}(0)+D_{w} \chi+N_{w}(\chi)$. Then there exists some constant C depending only on $\|\nabla w\|_{L^{p}\left(\Delta_{\rho}\right)}$ such that

$$
\left\|N_{w}(\chi)-N_{w}\left(\chi^{\prime}\right)\right\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)} \leq C\left(\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}+\left\|\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}\right)\left\|\chi-\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}
$$

for $\chi, \chi^{\prime} \in T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ with $\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)},\left\|\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}<C^{-1}$.
Lemma 8.2. Let u and v be punctured pseudo-holomorphic discs. For any $\varepsilon>0$, there exists some constant ρ_{0} depending only on ε, u and v such that

$$
\left\|\bar{\partial}_{J}\left(u \not \sharp_{\rho} v\right)\right\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)}<\varepsilon,
$$

for $\rho>\rho_{0}$.
Now we prove the new lemma.
Lemma 8.3. Let u and v be punctured pseudo-holomorphic discs and $\left\{\left(\rho_{i}, \chi_{i}\right)\right\}_{i=1}^{\infty}$ a sequence of pairs $\rho_{i} \in \mathbf{R}$ and $\chi_{i} \in T_{u \sharp \rho_{i} v} W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)$. Suppose that $\rho_{i} \rightarrow \infty$ and that $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=1,\left\|D_{u \not \rho_{i}} v \chi_{i}\right\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$. Then $\left\|D_{u \not \oiint_{i} v} v \chi_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$.

Proof. From $\left\|D_{u \not{ }_{\rho}} v \chi_{i}\right\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$, there exists a sequence of $k_{i} \in E_{u \not{ }_{\rho}} v$ vuch that $\left\|D_{u \sharp \rho_{i}} v \chi_{i}+k_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$. And from $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=1$, we have $\left\|D_{u \sharp \rho_{i} v} \chi_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)}<$ C. Hence we may think that $\left\|k_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)}<2 C$. Put

$$
k_{i}=\sum_{p=1}^{d_{u}} c_{p i}^{u} e_{p}^{u} \not \oiint_{i} 0+\sum_{q=1}^{d_{v}} c_{q i}^{v} 0 \sharp_{\rho_{i}} e_{q}^{v},
$$

for $c_{p i}^{u}, c_{q i}^{v} \in \mathbf{R}$. Because $\left\|k_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)}<2 C$, there exist c_{p}^{u} and c_{q}^{v} such that $\lim _{i \rightarrow \infty} c_{p i}^{u}=c_{p}^{u}$ and $\lim _{i \rightarrow \infty} c_{q i}^{v}=c_{q}^{v}$ after taking subsequences if necessary. Then we put

$$
k_{i}^{\prime}=\sum_{p=1}^{d_{u}} c_{p}^{u} e_{p}^{u} \not \oiint_{i} 0+\sum_{q=1}^{d_{v}} c_{q}^{v} 0 \not \oiint_{i} e_{q}^{v},
$$

and $\left\|D_{u \sharp_{\rho_{i}} v} \chi_{i}+k_{i}^{\prime}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$. Moreover, due to the support of the elements of $E_{u \sharp \rho_{i}} v$, we have

$$
\begin{aligned}
& \left\|D_{u \sharp \rho_{i} v} \chi_{i}+k_{i}^{\prime}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \\
= & \left\|D_{u}\left(\beta_{u}\left(\log |z|-\rho_{i}+1\right) \chi_{i}\left(e^{-\rho_{i}} z\right)\right)+\sum_{p=1}^{d_{u}} c_{p}^{u} \beta_{u}\left(\log |z|-\rho_{i}+2\right) e_{p}^{u}\right\|_{L_{\sigma}^{p}(\Theta)} \\
& +\left\|D_{v}\left(\beta_{v}\left(\log |z|+\rho_{i}-1\right) \chi_{i}\left(e^{\rho_{i}} z\right)\right)+\sum_{q=1}^{d_{v}} c_{q}^{v} \beta_{v}\left(\log |z|+\rho_{i}-2\right) e_{q}^{v}\right\|_{L_{\sigma}^{p}(\Xi)} .
\end{aligned}
$$

And there is some constant $C>0$ such that

$$
\begin{aligned}
& \left\|D_{u}\left(\beta_{u}\left(\log |z|-\rho_{i}+1\right) \chi_{i}\left(e^{-\rho_{i}} z\right)\right)+\sum_{p=1}^{d_{u}} c_{p}^{u} \beta_{u}\left(\log |z|-\rho_{i}+2\right) e_{p}^{u}\right\|_{L_{\sigma}^{p}(\Theta)} \\
\geq & \left\|D_{u}\left(\beta_{u}\left(\log |z|-\rho_{i}+1\right) \chi_{i}\left(e^{-\rho_{i}} z\right)\right)+\sum_{p=1}^{d_{u}} c_{p}^{u} e_{p}^{u}\right\|_{L_{\sigma}^{p}(\Theta)}-C \sum_{p=1}^{d_{u}}\left\|e_{p}^{u}\right\|_{L_{\sigma}^{p}\left(\Theta \cap\left\{e^{\rho_{i}-3}<|z|\right\}\right)} .
\end{aligned}
$$

Hence $D_{u}\left(\beta_{u}\left(\log |z|-\rho_{i}+1\right) \chi_{i}\left(e^{-\rho_{i}} z\right)\right) \in \operatorname{Im} D_{u}$ converges to $\sum_{p=1}^{d_{u}} c_{p}^{u} e_{p}^{u} \in E_{u}$, and the limit is equal to 0 and $c_{p}^{u}=0$. Similarly we obtain $c_{q}^{v}=0$. Hence $k_{i}^{\prime}=0$ and $\left\|D_{u \not \rho_{i}} v \chi_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$.

From Lemma 8.3 and Proposition 7.2, we obtain the following proposition.
Proposition 8.4. Let u and v be punctured pseudo-holomorphic discs and $\left\{\left(\rho_{i}, \chi_{i}\right)\right\}_{i=1}^{\infty}$ a sequence of pairs $\rho_{i} \in \mathbf{R}$ and $\chi_{i} \in T_{u \sharp \rho_{i} v} W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)$. Suppose that $\rho_{i} \rightarrow \infty$ and that $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=1,\left\|D_{u \sharp \rho_{i}} v \chi_{i}\right\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$ and $\chi_{i}^{1}(1)=0$. Then there exists a subsequence $\left\{\left(\rho_{i_{l}}, \chi_{i_{l}}\right)\right\}_{l=1}^{\infty}$ such that

$$
\left\|\chi_{i_{l}}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i_{l}}} \cap\left\{e^{-3}<|z|<e^{3}\right\}\right)} \rightarrow 0 .
$$

And similarly, from Lemma 8.3, we obtain the following proposition which is a slight modification of Proposition 7.3.

Proposition 8.5. Let u and v be punctured pseudo-holomorphic discs. Then there exist some constants ρ_{0} and C depending only on u and v such that

$$
\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} \leq C\left\|D_{u \sharp{ }_{\rho} v} \chi\right\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)}
$$

for $\rho>\rho_{0}$ and $\chi \in V_{\rho}^{\perp}$.
Proof. Let $\left\{\left(\rho_{i}, \chi_{i}\right)\right\}_{i=1}^{\infty}$ be a sequence of pairs $\rho_{i} \in \mathbf{R}$ and $\chi_{i} \in V_{\rho_{i}}^{\perp}$. Suppose that $\rho_{i} \rightarrow \infty$ and that $\left\|\chi_{i}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho_{i}}\right)}=1$ and $\left\|D_{u \sharp \rho_{i}} v \chi_{i}\right\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$. From Lemma 8.3, $\left\|D_{u \sharp \rho_{i} v} \chi_{i}\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho_{i}}\right)} \rightarrow 0$. Then we obtain the same contradiction in the proof of Proposition 6.5, and hence there is no such sequence as $\left\{\left(\rho_{i}, \chi_{i}\right)\right\}_{i=1}^{\infty}$, and there exists some constant C as in the proposition.

Corollary 8.6. There are some constants ρ_{0} and C depending only on u and v such that, for $\rho>\rho_{0}$, there exists $\bar{G}_{u \sharp \rho v}: \bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \sharp \rho v} \rightarrow V_{\rho}^{\perp}$ which satisfies

$$
\begin{aligned}
D_{u \sharp \rho v} \bar{G}_{u \sharp \rho v} & =i d, \\
\left\|\bar{G}_{u \sharp \rho v} \kappa\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} & \leq C\|\kappa\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)} .
\end{aligned}
$$

Proof. Here we denote by $\bar{D}_{u \sharp{ }_{\mu} v}$ the composition of $D_{u \sharp \rho v}$ and the projection $L_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \sharp{ }_{\mu} v} \rightarrow \bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \sharp{ }_{\rho} v}$. From Proposition 8.5, if $\kappa \in \operatorname{Ker} \bar{D}_{u \sharp} \rho v V_{\rho}^{\perp}$, then $\kappa=0$ and

$$
\operatorname{dim} \operatorname{Ker} \bar{D}_{u \sharp \rho v} \leq \operatorname{codim} V_{\rho}^{\perp}=\operatorname{dim} \operatorname{Ker} D_{u}+\operatorname{dim} \operatorname{Ker} D_{v}+d+1
$$

We remark that, for small $\sigma>0$, the spectral flow tells us

$$
\operatorname{Index} D_{u \sharp \rho v}=\operatorname{Index} D_{u}+\operatorname{dim} \operatorname{Ker} \bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}+\operatorname{Index} D_{v} .
$$

In fact $\operatorname{dim} \operatorname{Ker} \bar{\gamma}^{*} J \circ \bar{\gamma}^{*} \nabla_{\frac{\partial}{\partial t}}=d+1$ and $\operatorname{dim} E_{u \sharp \rho v}=\operatorname{dim} \operatorname{Coker} D_{u}+\operatorname{dim} \operatorname{Coker} D_{v}$. Then
$\operatorname{dim} \operatorname{Ker} D_{u \not{ }_{\rho} v}=\operatorname{dim} \operatorname{Ker} D_{u}+\operatorname{dim} \operatorname{Ker} D_{v}+d+1+\operatorname{dim} \operatorname{Coker} D_{u \not{ }_{r h o v} v}-\operatorname{dim} E_{u \not{ }_{\mu} v}$. Since $\operatorname{dim} E_{u \sharp \rho u}-\left(\operatorname{dim} \operatorname{Ker} \bar{D}_{u \sharp \rho v}-\operatorname{dim} \operatorname{Ker} D_{u \sharp \rho v}\right) \leq \operatorname{dim} \operatorname{Coker} D_{u \sharp \rho v}$, we obtain

$$
\operatorname{dim} \operatorname{Ker} \bar{D}_{u \sharp{ }_{\rho} v}=\operatorname{codim} V_{\rho}^{\perp}
$$

and

$$
\operatorname{dim} \operatorname{Ker} \bar{D}_{u \sharp \rho v}-\operatorname{dim} \operatorname{Ker} D_{u \sharp \rho v}=\operatorname{dim} E_{u \sharp \sharp_{\rho} v}-\operatorname{dim} \operatorname{Coker} D_{u \sharp \rho v}
$$

which imply that $\operatorname{Ker} \bar{D}_{u \sharp \rho v} \oplus V_{\rho}^{\perp}=T_{u \sharp \rho v} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ and $\bar{D}_{u \sharp \rho v}: V_{\rho}^{\perp} \rightarrow \bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)_{u \sharp \rho v}$ is surjective, and isomorphic. We can define $\bar{G}_{u \sharp \rho v}$ by the inverse of $\bar{D}_{u \sharp p v}$, and the constant C as in the corollary is derived from the one of Proposition 8.5.

We give Newton's method to construct a Kuranishi map. The proof is completely similar to that of Proposition 6.7.

Proposition 8.7. For $w \in W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$, let $E_{w} \subset L_{\sigma}^{p}(\Delta)_{w}$ be a finite dimensional linear subspace and $\bar{L}_{\sigma}^{p}(\Delta)_{w}=L_{\sigma}^{p}(\Delta)_{w} / E_{w}$. Suppose that there exists some constant C which satisfies the following conditions:

- $\left\|N_{w}(\chi)-N_{w}\left(\chi^{\prime}\right)\right\|_{L_{\sigma}^{p}\left(\Delta_{\rho}\right)} \leq C\left(\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}+\left\|\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}\right)\left\|\chi-\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}$, for $\chi, \chi^{\prime} \in T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ with $\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)},\left\|\chi^{\prime}\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}<C^{-2} / 4$.
- There exists $\bar{G}_{w}: \bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)_{w} \rightarrow T_{w} W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)$ such that $D_{w} \bar{G}_{w}=$ id and $\left\|\bar{G}_{w} \kappa\right\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)} \leq C\|\kappa\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)}$.
- $\left\|\mathcal{F}_{w}(0)\right\|_{\bar{L}_{\sigma}^{p}\left(\Delta_{\rho}\right)} \leq C^{-3} / 16$.

Then there exists a map $f:\left\{\chi \in \operatorname{Ker} D_{w} \mid\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}<C^{-2} / 8\right\} \rightarrow V_{\rho}^{\perp}$ such that $\mathcal{F}_{w}(\chi+f(\chi))=0 \in \bar{L}_{\sigma}^{p}(\Delta)_{w}$ which implies $\bar{\partial}_{J}\left(\exp _{w}^{g_{M} \sharp_{\rho} M^{\prime}}(\chi+f(\chi))\right) \in E_{w}$.

Finally, we construct the Kuranishi map. From Lemma 8.1, there is ρ_{1} such that, for $\rho>\rho_{1}$, there exists some constant C_{1} which satisfies the first condition of Proposition 8.7. Similarly, from Corollary 8.6, we have ρ_{2} such that, for $\rho>\rho_{2}$, there exists some constant C_{2} and the second condition of Proposition 8.7 holds. And, from Lemma 8.2, there is ρ_{3} such that, for $\rho>\rho_{3}$, there exists some constant C_{3} which satisfies the third condition of Proposition 8.7. Put $\rho_{0}=\max \left(\rho_{1}, \rho_{2}, \rho_{3}\right)$ and $C=\max \left(C_{1}, C_{2}, C_{3}\right)$, and we can apply Proposition 8.7 to our $w=u \sharp \rho v$, for $\rho>\rho_{0}$, and get the Kuranishi map $s_{w}(\chi)=\bar{\partial}_{J}\left(\exp _{w}^{g_{M \sharp M^{\prime}}}(\chi+f(\chi))\right) \in E_{w}$ on $\left\{\chi \in \operatorname{Ker} D_{w} \mid\|\chi\|_{W_{\sigma}^{1, p}\left(\Delta_{\rho}\right)}<C^{-2} / 8\right\}$.

We remark that, if $s_{w}(\chi)=0$, then $\exp _{w}^{g_{M \nsim \rho} M^{\prime}}(\chi+f(\chi))$ is a pseudo-holomorphic disc near to w.

Acknowledgements. The author would like to thank Paul Biran, Dominic Joyce, Shinichiroh Matsuo, Kaoru Ono and Hirofumi Sasahira for useful discussions.

References

[1] A. Floer, Morse theory for Lagrangian intersections, J. Differ. Geom. 28 (1998) No. 3, 513-547.
[2] A. Floer, Monopoles on asymptotically flat manifolds, The Floer memorial volume, 3-41, Progr. Math., 133, Birkhäuser, 1995.
[3] K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariants, Topology (1999) Vol 38, No.5, 933-1048.
[4] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
[5] D. Joyce, Special Lagrangian submanifolds with isolated conical singularities. I. Regularity, Ann. Global Anal. Geom. 25 (2004) no. 3, 201-251. math.DG/0211294.
[6] D. Joyce, Special Lagrangian submanifolds with isolated conical singularities. III. Desingularization, the unobstructed case, Ann. Global Anal. Geom. 26 (2004) no. 1, 1-58. math.DG/0302355.
[7] D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications Volum 52, AMS, 2004.
[8] D. Salamon, Lectures on Floer homology, Symplectic geometry and topology (Park City, UT, 1997), 143-229, IAS/Park City Math. Ser., 7, Amer. Math. Soc., Providence, RI, 1999.

Department of Mathematics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

E-mail address: akaho@comp.metro-u.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 58F05. Secondary 35J65, 58E05.
 Supported by JSPS Grant-in-Aid for Young Scientists (B) and EPSRC grant EP/D07763X/1.

