GLUING CONSTRUCTIONS OF PSEUDO-HOLOMORPHIC
DISCS AND DESINGULARIZATION

MANABU AKAHO

1. INTRODUCTION

Let M be a symplectic manifold with convex boundary N and L C M a La-
grangian submanifold with Legendrian boundary A C N, and let M’ be a symplec-
tic manifold with concave boundary N and L'’ C M’ a Lagrangian submanifold with
Legendrian boundary A C N. Then we construct a symplectic manifold M§, M’ =
MU([—p, p] x N)UM' and a Lagrangian submanifold Lf,L" = LU([—p, p] x A)UL/,
for some p > 0. Choose nice almost complex structures on M U [0,00) X N,
(—00,0] x N UM’ and M§,M’, and we can construct a pseudo-holomorphic disc
w:D?={z € C||z| <1} - M4,M’ with w(0D?) C L{,L’ by gluing the following
two punctured pseudo-holomorphic discs: one is u : D? \ {1} - M U [0,00) x N
such that w(dD?\ {1}) C LU[0,00) x A and the puncture converges to a Reeb
chord in {c0} x N, and the other is v : D?\ {—1} — (—00,0] x N U M’ such that
v(0D? \ {~1}) C (—0o0,0] x AU L’ and the puncture converges to the Reeb chord
in {—oo} x N. Our gluing technique is an improvement on that of Floer [1].

2. CONTACT AND SYMPLECTIC PRELIMINARIES

Let N be a smooth manifold of dimension 2n 4+ 1. We call a 1-form A on N a
contact form if A A (d\)™ is a volume form on N. A contact structure £ is the 2n
dimensional plane field on N defined by A|¢ = 0 and a Reeb vector field X is the
vector field on N defined by A(X,) = 1 and dA\(X),-) = 0. It is easy to see that
d\|¢ is nondegenerate and there exist complex structures Jg on &, i.e., Je € End(§)
and Jf = —1, such that g¢(-,-) = dA(-, J¢-) is an inner product on &.

Consider R x N and denote by 6 the standard coordinate on the first factor.
Then d(e’)) is a symplectic form on R x N, and we call (R x N,d(e’))) the
symplectization of (N, \). Let ps : R x N — N be the projection py (6, x) = . We
simply denote p3 A\, p5&, p3 Xy and p3Je by A, £, X and J¢, respectively. Then we
define the almost complex structure J on R x N by

o Ju=Je, forve,
o JZ =X, and JX, = -2

Let A C N be a submanifold. We call A Legendrian if dim A = n and A|rp = 0.
A map v:[0,T] — N is called a Reeb chord if 4 = X with v(0) and (T) € A, for
some T' > 0.

Let (M,w) be a noncompact symplectic manifold. Suppose that there exists
K C M such that (M \ K,w) is symplectically isomorphic to ((R,00) x N,d(e?))),
for some R € R. We call such an end convex. We remark that there exist almost
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complex structures J € End(T'M) such that ¢g;(-,-) = w(-,J-) is a Riemannian
metric on M and

o Juv=Jev, forveg,

° J%zXA and JX,\:—%

on the convex end.

Let L C M be a properly embedded noncompact Lagrangian submanifold whose
restriction on the convex end is of the form (R, 00) x A.

Similarly, let (M’,w’) be a noncompact symplectic manifold. Suppose that there
exists K’ C M’ such that (M'\ K’,w) is symplectically isomorphic to ((—oo, R’) x
N, d(e’))), for some R’ € R. We call such an end concave. We remark that there
exist almost complex structures J' € End(T'M’) such that g (-,) = &'(-,J"-) is a
Riemannian metric on M’ and

o J'v=Jew, for v €,

o J'F =Xyand J'X, =-%

on the concave end.

Let L' ¢ M’ be a properly embedded noncompact Lagrangian submanifold
whose restriction on the concave end is of the form (—oo, R') x A.

We assume that R = R’ = 0 hereafter. Then, for p > 0, we define Mf,M’
by KU ((0,p] x N)U ([—p,0) x N)U K’, i.e., we glue K U ((0,p] x N) C M and
([=p,0) x NYUK’ C M’ along the boundaries by the natural identification {p} x N
with {—p} x N, and define L§,L" by (LNK)U((0, p] x A)U([—p,0) x A)U(L'NK").
We often identify ((0, p] x N) U ([=p,0) x N) C M§,M" with (—p, p) x N.

We remark that we can relax the cylindrical end conditions for L and L’ into
similar ones of asymptotically conical Lagrangian submanifolds and isolated conical
singularities of Lagrangian submanifolds as in [5] and [6]. But we put the conditions
for L and L’ for simplicity.

3. SMOOTH MAPS

Let g be the Reimannian metric A® A+ g¢ on N. Then J¢T},A is the orthogonal
complement to T, A in &,, and exp? o(id & J¢) gives a diffeomorphism from a neigh-
borhood of the zero section 00, C R&TA to a neighborhood of A C N, where R
is the trivial bundle with fiber R over A. Let gy be a Riemannian metric on A. The
Levi-Civita connection of g gives the horizontal lift and induces the Riemannian
metric grp on the total space of T'A such that 0, is totally geodesic. Hence we get
a Riemannian metric gy on N such that (exp? o(id® Je))*gn = dz®@dz+gra on a
neighborhood of A, where z is the fiber coordinate of R, and A is totally geodesic.

We define the Riemannian metric g on (M,w) by g(-,-) = e %Pg;, where j3 :
M — [0,1] is a smooth cutoff function such that 8(z) = 1, for € (1,00) x N,
and B(z) = 0, for z € K. Then JT,L is the orthogonal complement to T, L in
Tp,M, and exp9 oJ gives a diffeomorphism from a neighborhood of the zero section
0r C T'L to a neighborhood of L C M. Let g;, be a Riemannian metric on L such
that gr is of the form df ® df + p5ga on (0,00) x A. The Levi-Civita connection
of gy, gives the horizontal lift and induces the Riemannian metric gy, on the total
space of T'L such that 0j, is totally geodesic. Hence we get a Riemannian metric
gn on M of the form df ® df + p5gn on (0,00) x N, and L is totally geodesic.

Define © = {z € C|Imz > 0}. For a Reeb chord v, C§°(©;~) is the set of the
smooth maps p : © — M which satisfy the following conditions:
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e All derivatives of p have continuous extensions to ©.
e 1(00) C L.
e For some Ry, pu(z) = (L log|z|,7(ZL log 7)) when |z| > R,,.

For pn € C§°(©;7), we define C§°(u*T' M) by the set of the smooth sections ¢ : © —
w*T'M which satisfy the following conditions:

e All derivatives of ¢ have continuous extensions to ©.
e ((09) C u*TL.
e For some R, ((z) =0 when |z] > R¢.

Lemma 3.1. For p € C§°(0;7) and ( € Cg°(w*TM), u = expf™ ( is also in
C5°(057).

Similarly, we define the Riemannian metric g’ on (M’,w’) by ¢'(-,-) = e~ % g,
where ' : M’ — [0,1] is a smooth cutoff function such that §'(z) = 1 for z €
(—o0,—1)x N and fB'(z) = 0 for x € K'. Then J'T,L’ is the orthogonal complement
to T,L' in T,M’, and exp? oJ’ gives a diffeomorphism from a neighborhood of the
zero section Ops C TL' to a neighborhood of L' € M’. Let gr be a Riemannian
metric on L’ such that gz, is of the form df ® df + p5gn on (—o00,0) x A. The
Levi-Civita connection of g;, gives the horizontal lift and induces the Riemannian
metric gy, on the total space of TL' such that Oz, is totally geodesic. Hence we
get a Riemannian metric gy on M’ of the form df ® df + pgn on (—00,0) x N,
and L' is totally geodesic.

Define E = ({#z € C|Ilmz > 0} U {cc}) \ {0}. For a Reeb chord v, C§°(E;7) is
the set of the smooth maps v : 2 — M’ which satisfy the following conditions:

e All derivatives of v have continuous extensions to =.

e y(0=)C L.

e For some R, v(z) = (£ log|z|,v(ZL log l—zl)) when |z| < R,.
For v € C§°(E;7), we define C§°(v*T'M') by the set of the smooth sections n : E —
v*TM’ which satisfy the following conditions:

e All derivatives of n have continuous extensions to =.
e 1(0=) Cv*TL.
e For some R,, n(z) =0 when |z| < R,.

Lemma 3.2. For v € C°(Z;7) and n € C(v*TM'), v = expi™’ 1 is also in
C5o(57)-

Let gary, v be the Riemannian metric on M, M’ such that IM, M KU(0,0) = 9M
and garg, v |[—p,0yur’ = gur- We define e7?0 = {ePala € O}, = = {e’b|b € =}
and A, = (e PO UelE)/ ~, where z ~ w for z € 770 and w € e’=Z if z = w. We
remark that A, is diffeomorphic to the disc D?. Then C*°(A,) is the set of the
smooth maps v : A, — Mf, M’ which satisfy the following conditions:

o All derivatives of v have continuous extensions to A,,.

e v(0A,) C L§,L’.
For v € C*(A,), we define C>°(v*T(MH,M’)) by the set of the smooth sections
XA, = v*T(M{,M’) which satisfy the following conditions:

o All derivatives of x have continuous extensions to A,,.
o X(0A,) Cv*T(L§,L").
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ganM’

Lemma 3.3. For v € C*(A,) and x € C®(0*T(M§,M")), v = expy X s
also in C™(A,).
4. BANACH MANIFOLDS

Let p > 2 and 0 € R. For p € C§°(0;~) and ¢ € C§°(u*TM), we define

1/p
ICllwzr o) = ( Jaer+ vc|p>a”<|z|>dxdy) ,

where | - | is the norm with respect to gas, V is the Levi-Civita connection of g,
and a : [0,00) — R is a weight function such that a%(r) = r=277 for r > 1.
We remark that, through (s,t) = (log|z|, 1 log ﬁ),

/ (I¢1” + \VC|p)aa(|Z\)dedy:/ (I[P + [VCIP)e”* dsdt.
on{|z|>1} (0,00)x[0,7]
Let WyP(u*TM) be the completion of C§°(u*TM) by || - [|lyy1.0 () and define

W, P(0;7) = {expﬂM ¢ ‘ w e CP(0;79),C € W;’p(,u*TM)}.

From the Sobolev embedding theorem, u € W1P(O;) satisfies

e u: 0O — M is continuous,
e u(00) C L,
e u asymptotically approaches (£ log|z|,v(ZL log "z—‘)) at z = oo.

For u = expf™ ( € WLP(©;7), we define
T.WyP(0;7) = WP (u*TM).
Lemma 4.1. W}P?(0;~) is a Banach manifold whose tangent space at u is T, WP (0;7).

For 1 € C§°(0;7), we denote by LE(A®1O© @ u*T M) the set of the measurable
sections of A®'© ® p*TM for which the norm

1/p
Ielizior = ([ 1P )z )
is finite. Moreover, for u = expd™ ¢ € W}*(0;7), we define
L2(©;7)y, = LE(A*'O @ pn*TM)

and
ey = L6y
u€EW?(037)

Lemma 4.2. L2(©;7) is a Banach space bundle whose fiber over u is LE(O; 7).
For v € C§°(Z;7) and n € C§°(v*TM’), we define

- 1/p
a”(l2]71)
lileriey = (L0719 Sy
where | - | is the norm with respect to gp; and V is the Levi-Civita connection of
g We remark that, through (s, t) = (log|z|, 1 log é—l),

4 a”(|2]”! —os
Lo o e ey - [ (l? + 1Val?)e st
En{lz|<1} z (—00,0)x[0,7]



GLUING CONSTRUCTIONS OF PSEUDO-HOLOMORPHIC DISCS AND DESINGULARIZATION
Let WP(v*TM') be the completion of C§°(v*TM') by || - ||yy1.r(z) and define
WoP(Z5) = {expﬁM/ U ‘ ve g (5)me Wi’p(V*TM’)}

From the Sobolev embedding theorem, v € W1P(Z; v) satisfies

e v: = — M’ is continuous,
e v(0E) C L,
e v asymptotically approaches (% log |z, 7(% log é—l)) near z = 0.

For v = expy™’' n € WLP(Z;7), we define
LW, (Es7y) = Wo P (v'TM').
Lemma 4.3. W}P(Z;) is a Banach manifold whose tangent space at v is T,WLP(Z;7).

For v € C§°(Z;7), we denote by LE(AY1Z @ v*T'M’) the set of the measurable
sections of AY'Z ® v*T' M’ for which the norm

1
L, o(|2~ 1 d p /p
Inllze =) \ | o dedy

is finite. Moreover, for v = expy™’' n € W2P(Z;7), we define
LE(E:9), = LE(\E @ v TM)

and

Ey= U RZE.

vEW;’p(E;'y)
Lemma 4.4. L2(Z;7) is a Banach space bundle whose fiber over v is L(Z;7),.

For v e C*(A,) and x € C*®(v*T(M§,M")), we define

Il sy = /
WP (Ap) A

where | - | is the norm with respect to gy, a, V is the Levi-Civita connection of
gy, nr and B7 2 [0, 00] — Rp is the weight function defined by

- a”(e?|z))e?,  for |2| <1,
B30 = amqemrap De2,

R for |z| > 1.

1/p
(X|p+|VXp)ﬁZ(ZI)dwdy> 7

P

We remark that, through (s,t) = (log|z|, 1 log é—‘),

/ (P + (VX8 (edody = [ (xl+ [Vxert s
Apn{e=r<|z|<1} (—p,0]x[0,7]

and
/ (IxI? + IVxIP)B; (|2])drdy = / (Ix|? + [V x[P)e 7P dsdt.
Apn{l1<]z|<er} (0,p)x[0,7]

Let WEP(v*T(Mt,M’)) be the completion of C>°(v*T(M4t,M")) by || - lwir(a,)
and define

War(a,) = {exol ™ x| v e €=(A,),x € Wi (T (M3, M) }
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From the Sobolev embedding theorem, w € W}?(A,) is continuous with w(9A,) C
L,L'. For w = exp,"™" x € WEP(A,), we define

T WEP(A,) = WP (0 T(Mt,M).
Lemma 4.5. W}?(A,) is a Banach manifold whose tangent space at w is T,WEP(A,).

For v € C*(A,), we denote by L2(A»'A, @ v*T(M4,M')) the set of the mea-
surable sections of A®'A, @ v*T(M4,M') for which the norm

1/p
Iz, = ( /A |x|wg<|z|>dzdy>

is finite. Moreover, for w = expiMﬁpM/ x € WEP(A,), we define
Lo (Ap)w = Lg(/\o’lAp @ v T(Mg,M'))

and

Lg(Ap) = U Lg(Ap)w-
wEWFP(A,)

Lemma 4.6. L2(A,) is a Banach space bundle whose fiber over w is LE(A[)q.

5. PSEUDO-HOLOMORPHIC Discs

For u € W2P(O;~), we define the Cauchy-Riemann operator by
= 1
9y(u) = 3 (du+ J(u)oduo j) € LE(O;7)u,

where j is the standard complex structure on ©. We may think of 0 as a section
of LE(0;7) [7]. Given ¢ € T,WLP(O;7), let ®,(¢) : w*TM — (expi™ ()*TM
denote the bundle isomorphism given by parallel transport along the geodesic I(t) =
expf™ t(. Then we define the map F, : T, WP(0;~) — LP(©;7), by

Fu(€) = @u(¢) 1D (expi™ C).

We denote by D, the linearized operator dF,(0) : T,WrP(©;v) — L2(O;7),.
Then

D = (V¢ +T(w) 0 VC 0 ) — 5. (w)(VT) (u)d (),

where V is the Levi-Civita connection of gy and 9,;(u) = 3(du — J(u) o du o j).
For some o > 0, D,, is Fredholm. We sometimes think of D,, on © N {|z| > 1} as a
differential operator on {(s,t) € (0,00) x [0,7]} through (s,t) = (log |z|, + log )
We call v standard if there exist a tubular neighborhood U of «([0,T]) and an
immersion ¢ : {(T1,Y1, -, TnsYn, 2)| Doy (22 +y7) < 6,0 <z < T} — U, for some
€ > 0, such that
o o({0} x [0,T]) = ([0, 7)) and ¢*\ = dz + 5 31 (widy; — yiday),
e o~ (A)NB = LoNB, where B = {(z1, Y1, -, Tn,Yn, 0)| i (@2 +y?) < €}
and Lo is a Lagrangian linear subspace in {(1,¥1,...,Zn,¥n)},
e oY (A)NB’' = LyNB’, where B' = {(1,y1, .-, Tn, yn, T)| Yoy (@7 +yF) <
€} and L7 is a Lagrangian linear subspace in {(z1,y1,...,%n,Yn)}-
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Then we may choose gy and J¢ so that V,; = a% and v*VJg = 0. Let ¢ :
N — N be the solution of £, = Xy 0 ¢, and ¢y = id. Write F(t) = v(Tt/x).
We consider the pull-back bundle 7*¢ over [0,7]. Take {e1,e2,...,en} C &5(0) SO
that {eq, Jee1,...,en, Jeen} is a basis of &y Put ei(t) = dory/rei € &), and
then Vze;(t) = 0 and VzJee;(t) = 0. So 7" J¢ o "V o is represented as JO%,
where Jy is the standard complex structure on R?". Since D, is of the form
%(V% + J(u(s,1))Va) - £ J(w)(VJ)(w)ds(u) on (0,00) x [0,7], it asymptotically
approaches the differential operator
1 —x —*
3(55 T e Va)
as s — oo.

We call v nondegenerate if dprT, o)A and T, () A transversally intersect in & (7.
Then, if 7*J 07"V o ((t) = 0 with ¢(0) € RZ & T, o)A and {(7) € RZ & Ty 1)A,
we have ((t) = c%, for c € R.

We define F, : T,WLP(Z;v) — L2(Z;7), and D, = dF,(0) : T,WIP(Z;7) —
LE(Z;7)y, for v € WEP(Z;y), and Fy, : T,WEP(A,) = LE(A,)w and D, =
dFy,(0) : T,WEP(A,) = LE(A,)w, for w € WEP(A,), similarly.

Lemma 5.1. For w € WYP(A,), we write Fupy(x) = Fu(0) + Duwx + Nuw(x). Then
there exists some constant C' depending only on ||[Vw| rr(a,) such that

1000 = N llzzan < CUXwana,y + X T a,)IX = X llwir s,

for x,x' € T,WEP(A,) with IxXlwzra,) IX lwiea,) < c—L.

Proof. 1t is done by the Taylor expansion of F,.

Nu(X) = Nu(x) = /O (1= ) {d®Fu(tx)(x. x) — ®Fu(tx) (X', x') }dt

1
/0 (1= P Fu(t) (0. X — x) + PFult) (0. X) —
B Fu(tX ), X) + P Fu(tx) (x — X', x) Yt

and

1
PFu(tx) (0 x') = P Fu(tx) (6 X') = / d® Fu (1= s)tx + stx’) (tx — tx', X, X' )ds.
0

Then we can conclude
HNw(X) - Nw(XI)HLg(Ap)
< ClIxllwzrca,) T IXlwze ) IX Twrea,) + 1IX Tweea, )X = X lwzea,)s

where C' is some constant depending only on |[Vw| zr(a,). Take some large C' if

necessary, and we obtain the inequality as in the lemma. [
We call u € WYP(0;7) a punctured pseudo-holomorphic disc if d;(u) = 0.
Similarly, we define a punctured pseudo-holomorphic disc, for v € WLP(Z;y). If

w € WEP(A,) satisfies 9 (w) = 0, we call w a pseudo-holomorphic disc.



8 MANABU AKAHO

6. GLUING ANALYSIS

For simplicity, we assume that, for u € W1P(0;7), there exists

P |)) T((0,00) x N))

u on {z € O|log|z| > 0}, and, for v €

T
u € WhP((=log |z|,7( log

7r

. _ gm
such that u = eXp(Tlog| A Tog )
WLP(Z; ), we assume that there exists

7€ W (1o 2], (= log 1)) T((~00,0) x V)

such that v = exp( T on {z € Ellog|z| < 0}. Then we define

uf,v € W;*’(Ap) by

T log |z|,v(F log 151))

u(e’z), for |z| <e 1,
B ex p(Tlog‘ l:v(% log 131) BuaOg|Z|) (efz), for el < 2] <1,
Uty = w@%MMTmiﬂw%mu “r2)
v(e™’z)
where 3, and 3, are smooth cutoff functions such that
n={5 Maisa ma Ao ={] IS0

For ¢ € T,W}?(0;7) and n € T,W2LP(E;v), we similarly define (#,n € Tyz,o WaP(A,)
by

) for 1 < |z| <e,

, for |z| > e,

¢(e”2), for [z < e7?,
Chon = ﬂu(log|z\ +1)¢(ePz), fore™? <[z <1,
T=9 By(log |2 — Dn(e—rz),  for 1< |z| < e?,

n(e=rz), for |z| > €2.

Lemma 6.1. Let u and v be punctured pseudo-holomorphic discs. For any € > 0,
there exists some constant py depending only on €, u and v such that

105 (ugpv)llzz(a,) <e,
Jor p> po.
Proof. By the definition of uf,v, we obtain

||5J(Uﬁpv) ||L2(A,,)

< ||6J(exp?%llog‘z",y(% logﬁ)) Bu(log |Z|)U(epz)||L£(A,,ﬁ{e*1<|z|<1})
Pl vy —,
+||8J(exp(;74log\z\,"/(%log‘—;)) Bv(log‘zbv(e pz)||Lg(Apﬂ{l<|Z|<e})
<

Clallywzronter—1<izi<eryy T 10lwrr @ne-rcizjce—rriy))s
where C' is some constant depending only on u and v. Hence we obtain py as in
the lemma. ]

Define sgn : R — {—1,0,1} by

—1, for s <0,
sgn(s) = 0, for s =0,
1, for s > 0.
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Let Ag C R?" be the linear subspace corresponding to T5(0)A C &0y through the
basis {e1(0), Jee1(0),...,e,(0), Jee,(0)} and A, C R*" the linear subspace corre-
sponding to Tx(r)A C &5¢x) through the basis {e1(7), Jeei(n), ..., en(7), Jeen(m)}.
We remark that Ag and A, intersect transversely in R?" since 7 is nondegenarate.
Moreover, we define

WP (Rx[0, 7], R*™, Ag, Ay) = {x € WHP(Rx[0, 7], R*")|x(0) € Ag and () € A}
and
Wl’p([O,ﬂ],Rzn,Ao,Aﬂ) ={x ¢ Wl’p([O,W],R2")|X(O) € Ap and x(m) € A}

Lemma 6.2. If 0 > 0 is small enough, the operator %-’-Jg%-’-SQ’ﬂ(S)% s WHP(Rx
[0, 7], R?", Ag, Ar) — LP(R x [0, 7], R?") is bijective, for 1 < p < oc.

Proof. This lemma is a modification of Lemma 2.4 in [8]. We shall give the
proof for p = 2. The operator B = JO% + sgn(s)% s WE2([0, 7], R*™, Ag, Ay) —
L?([0, 7], R?") is a self-adjoint operator on the Hilbert space L*([0, n], R*") with
domain W2([0, 7], R?", Ag, A;). Since Ag and A, intersect transversely, if o > 0
is small enough, then 0 is not an eigenvalue of B. Hence there is a splitting
L?([0,7],R*") = E* @ E~ into the positive and negative eigenspaces of B. Denote
by P* : L2([0,7], R*") — E¥* the orthogonal projections. Define
e Bspt. for s> 0,
K(s) = { —e Bsp= fors<0,

and @ : L?(R x [0, 7],R?") — W12(R x [0, 7], R*") by
Qx(sit) = [ Kls—mxtroyir
and @ is the inverse of % + B. In fact

Qx(s,t):/ e*B(S*T)P+X(T,t)dT—/ e*B(S*T)Pfx(T,t)dT,

— 00

and we can check %QX + BQx = x and Q%X + @By = x directly. The proof for
p > 2 is the same as the one of Lemma 2.4 in [8]. O

For x € T5(0)(R x V), we denote by x! the R% @& RX ), component of y and by
X2 the &5(0) component of x.

Proposition 6.3. Letu and v be punctured pseudo-holomorphic discs and {(p:, xi)}324
a sequence of pairs p; € R and x; € TuﬁpiUW;’p(Api). Suppose that p; — oo and
that ||Xi||W;,p(AM) =1, |[Dug,,vXillzz(a,,) — 0 and X+(1) = 0. Then there exists a
subsequence {(pi,, xi,)}72, such that

X, ”W;"T’(Apil N{e=3<|z|<e3}) 0.

Proof. Fix N > 1. We may assume that uf,,v(A,,N{e™" < |z| < eM}) is contained
in a tubular neighborhood of (=N, N) x v([0, T]) in Mt,M’. For x; : A, N{e ™V <
2| < €N} = (ulp,v0)*T(ME,M'), we define x; : A, N{e™™ < 2] < N} —
(% log |2],v(5; log (%)) T(M¢, M) by
ganiM’

Dex
P(Z 1og |2],7(Z 1og =)

)E:Xu
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and we similarly define Dy, ., by

J\lﬁle’

DX (2 16g 112 tog ) Dttost X = Dy 0

We remark that Dyg, o — (2% +7*J07*V 2)on {e=V < |2| < €N} in the C° topol-

ogy, i.e., if Euﬁpi (al 5t b; 2 51 T ¢i), then a; =1, b; — (0 _1) @ Jo and ¢; — 0

in the C° topology. Thmk of XA, n{e-N<|z|<eN} as asection X : [-N, N|x[0,7] —

(T log|z],7(F; log )" T(M¢4,M") through (s, t) = (log |z,  log %). From [|[xi[lyy1r(a, ) =
7/P . R — Rey

i

1, there exists C' such that ||eZ/pyi||W1,p([,N’N]X[O ) < C, where ep/
is the function defined by

epl"(s) =

ea(SvLPi)/p’ for s < 0,
e=os=p)/P for s > 0.

Then, by the Rellich’s theorem, there exists Xy € LP([—N,N] x [0,7]) and a
subsequence {(ps,,X;,)}72, such that |[xy — erf’yi, | e (=N, N]x[0,7)) — 0. We omit
to mention subsequences hereafter. By the Garding inequality, we have

les/Px; — €/PX; lwrop (= N+1, 1] [0,7])

< C(|Dug,, o(€5/7%; — €5/PX ) | (=, N x 0. + 1€5/7X: = €5/P%; | Lo (v, N [0,7))
< C(e5/"Dug,,oX; — epj/p w0 X | Lo (=N N x 0,y + 1€577%; — e5/PX; | Lo (1= NN x [0,7]))

where C is a constant depending only on u and v. We already know |e5/%y, —
ezj/pyj|\Lp([_N7N]X[o,,r]) — 0. And moreover,

€5/ Duus,,wX; — €5/ Dy, X | Lo (1 NN x[0.7])

< D, oXilleza, nge-~<izi<enyy + 1Dug,, oX; Lz A, nge-y <fsi<eny)
+(Dug,, o — 5uﬁpj’u)yj||L§(Apjﬂ{e*N<|z\<eN})
< ||Euﬁpivyz‘||L€(Apim{e—N<\z\<eN}) + ||5uﬂpjij||L£(Apjm{e—N<|z|<eN})
+C|[Daut,, v — EuﬁpijcO([—N,N]x[O,ﬂ)||Yj||w;=P(Apjm{e—N<|z|<eN})
— 0,
where || Dug, v—Dug, vl co(-N,n)x[0,71) = Hai_aj”CO[ NN]><[07r])+||b' bjllco (N, N)x [0, F

llci—cilleo NN]><[O ))- Then we can conclude leg!” Xz—@pj "Xl (= N1, N—1]x[0,7]) =
0, and |y —€p/ PXillwrr (= Nt1,N—1]x[0,x]) = 0. Define X, by Xool[- N+1,N—1]x[0,7] =
Xn- Weremark that [[ X [lw1.r@xo,])) < C fromsupy; ||€gi/pyi|‘wl,p([_N,N]X[Om—]) <
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C. Moreover,

1 o_
||*( +7 J o7V o Xeo + §Sgn(s)5Xoo”L”([*N,N]X[O,vr])

< ||*( +7*J°V Va)(Xeo — €5 P Lo (1= N, N x [0,7])
3 T 0T Y 5 )e? 1 o_
+||*( ST J oYV a)e] P+ §Sgn(8);Xoo”LP([fN,N]X[O,w])
< ||*( +7*J07*Va)(xoo—€pi PX)ll e (= N, N x [0,7])

o 1,0 —x% —* —
+leg/P = (8 T 07V 2 )Xill Lo (- NN x[0,7))

o 1 o_
+||—fsgn()p oIPX + isgn(s)gxooHm([—N,N]x[o,ﬂ)

< ClXo — €5/PXillwro (=N, N1x [0,7))
- 0
+lle 1/102(8 +7 S o7 Vo)X —e /pDujip wXill L (=N, N] x [0,7])
+|€5/P Dy, oXill Lo (=, M1 x0,77) + CllXoo — €5/PXill Lo (= N, N1 x [0,7))
< C||Yoo—€ /P W (= NN x 0,))

d | _.
+l5 ( ""7 Joxy V5 ) — uﬁp v||C° ([-N,N]x]| 07r])||XzHW1P A, n{e=N<|z|<eNY)
+||Du]ipiin”Lg(Apiﬂ{e_N<|z\<eN}) + ClXoo — €5/PXill Lo (=N, M) x[0,7])
— 0.

Then we can conclude %(% +7*J o W*V% + sgn(s)%)yOO = 0 which is equivalent

to the following equations:
1,0 0 -1\ 0 1
+ Jo=— +sgn(s)—)xs, = 0.
Put ., = z% + yX, and z = x + iy, and the first equation turns out to be

%(% + i% + sgn(s)%)z = 0. By the separation of variables, we can solve this

equation and z = ceg/p7 for some ¢ € R. Moreover, from the assumption x; (1) = 0,
we have Y., = 0. Concerning the second equation, we get XY=, = 0 from Lemma 6.2.

Then [|eg/"Xillwn(-331xf0.a) — 0, which implies [Xallyw2r(a, nge-s<psi<ery) =
0.

We define KerD,, = {¢ € T,W2?(0;7)|D.¢ = 0}.
Lemma 6.4. There exists some constant C' depending only on u such that
Inllwar o) < CllDunllLz (o)
forn € (KerD,)* = {n € T,W}?(0;7)| [o(n,()a?/?(|z])dzdy = 0 for { € KerD,}.

Proof. Suppose that there exists a sequence {n;}°, of n; € (KerD,)* such that
[nillwre @) =1 and [[Dynillpz @) — 0. Fix N > 1 By the Rellich’s theorem there
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exist a subsequence {n;, }7°; and n, € L} (0) such that ||n.—n4 [ L2 ©n{[z|<eNy) —
0. We omit to mention subsequences hereafter. By the Garding inequality
17 = njllyw2r @ngizi<en-13)

< C([[Du(ni —nj)llzongizi<eny) + 117 — 1l Lz 0ng)21<eV}))
— 0,

and [|nee — nillyy 10 (@n (s <enyy — 0- Moreover,
[Duncc — Dunill Lz eng|zj<eny) < Clines — ni||wjvp(@m{|z|<eN}) -0,
and Dyne = 0. Since [[n;[lyy1rg) =1, [[nocllyy2rg) = 1. S0 noe € KerD,,, which

contradicts to n; € (KerD,)*. Hence there is no such sequence as {n;}2°;, and
there exists some constant C' as in the lemma. (]

We define

o/p
VPJ_ — {X c Tuuva;’p(Ap) ‘ pr<X7Cﬁp7l> pi

(|z))dzdy = 0 for ¢ € KerD,, and n € KerD,,
and x'(1) =0 '

Since x!(1) € R(Z)5(0), the codimension of Vibin Ty, WHP(A,) is equal to
dim KerD,, + dim KerD,, + 1.

Proposition 6.5. Let u and v be punctured pseudo-holomorphic discs. Then there
exist some constants py and C' depending only on u and v such that

IxXlwzra,) < CllDug,oxllLz(a,),
for p>po and x € VPJ‘.

Proof. Let {(pi, xi)}52, be a sequence of pairs p; € R and x; € VPJ;. Suppose that
pi — oo and that |[xilly1ea, ) =1 and [[Dug, oXillzz(a,,) — 0. Define smooth
cutoff functions Be, f_3,3 and f= on A, such that

1, for|z| <e 3,

Pe(2) = { 0, fore 2 <|z|,

0, for |z| < e™3,
Br-3,3(2) = 1, fore 2 < |z| <e€?,
0, for 3 < |2|,

1, fore3 < |z,

Be(2) = { 0, for |z] <e€?,
and Be + B_3,3 + f= = 1. Then

||XiHW;’p(Api) < ||5(—)X1'HW;’P(A%) + Hﬁ[—fﬁ,B]X’i”W(}’P(Api) + ||BEX’L'||W;'P(AM)'

From Proposition 6.3, ||3_3,3)X: |W§"’(Api) — 0. Due to the support of Bex;, we
may think of Sexi € Tus, oWaP(A),) as foxi € TuW,P(0). Let {e1,... e}
be an orthonormal basis of KerD,, i.e., [g(es;, e;j)a?/?(|z|)dzdy = &;;. Decompose
Box; into k;+n;, where k; = Zé’:l f@<ﬂ@xi, ej>a0/p(|z|)dxdyej and n; = Box; —ki.
Then [ Boxillwz(a, » = [1BeXclwney < Ikillyo o) Hinllyas o) By defnition,
for e; € KerD,,

/<M%mwﬁmmmwza

A,
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And, due to the support of e;f,,0,

[ tcestn 057712 dsdy

AP

/@(Xi»€jﬁpi0>a"/”(|z\)d:cdy

= /<»3@Xi,€j>a”/p(|2|)d$dy+/(1—5@)<Xuejlipi0>aa/”(|2\)d1?dy-
© ©

Moreover,

’/@(1 - 5®)<Xi,€jﬁpi0>a”/p(|z)dxdy‘

IN

c } [xillesla”/?(|z))dudy

on{eri—3<|z|<eri—t

IN

Clixillcoa,)llesll Lz @ngeri—3 <|z|<eri-1})-
Since ||XZ’HW;,p(Api) = 1, we have [ xi[lcoa,,) < C. Hence Jo(Boxi,e;)a?/?(|z])dzdy —
0, and [|%;|[y;1.#(g) — 0. From Proposition 6.3, Lemma 6.4 and

[Dunillrze) = I1Dul(ki +1i)llz (o)
[ Dw(Bexi)llLe (o)
= [|Dug,,v(Boxi)llLz(a,,)
Clllxillz(a, nie-s<izl<e-2) + [[Dug,,vXillLz(a,));

IN

we obtain [[n;|y1s gy — 0. Hence ||/8@XiHW;,p(Ap_) — 0. Similarly, we can prove
1B=Xillw»(a,,) — 0, and finally we have ||xi[ly;2r(a, ) — 0, which contradicts
to HXi”W;,p(ApJ = 1. Hence there is no such sequence as {(p;, x:)}52;, and there
exists some constant C as in the proposition. (I

Corollary 6.6. Suppose that D, : T,WLP(©;v) — LE(0;7), and D, : T,WrP(Z;7) —
LP(Z;7), are surjective. Then there are some constants py and C depending only
on u and v such that, for p > po, there exists Guy,o @ LE(Ap)ug,o — V:,)l which
satisfies

Duﬁvauﬁpv = 1,

||Guﬁpv“||W;:P(Ap) > C||“\|L§(A,,)-

A

Proof. From Proposition 6.5, if k € KerDyg,, N VPJU then kK = 0 and
dim KerDyy,, < codimV,;" = dim KerD,, + dim KerD,, + 1.
We remark that, for small o > 0, the spectral flow tells us
IndexDyg,, = IndexD,, + dim Kery*J o *V o + IndexD,,

where Index means the Fredholm index. In fact dim Kery*J o ¥*V 2 = 1. Then
the surjectivity of D,, and D, implies that

dim KerDyy,, = dim KerD,, + dim KerD,, + 1 + CokerDy; .

Hence we obtain dim KerDuﬁﬂv = codimVpJ- and dim CokerDuupU = 0, which imply
that KerD,,, ® Vpl = Tus,wW5P(A,) and Dy, Vpl — LE(A))ug,v is surjective,
and isomorphic. We define G3,, by the inverse of Dy ., and the constant C' as in
the corollary is derived from the one of Proposition 6.5. (]
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We give Newton’s method to find pseudo-holomorphic discs near to approximate
pseudo-holomorphic discs [1] and [2].

Proposition 6.7. For w € W)P(A,), suppose that there exists some constant C
which satisfies the following conditions:

o 1Nu(0 = N0 zza,) < Cllxllnogay X s X=X s,
for x,x' € T,2WEP(A,) with Ixlwzra,) IX lwiea,) < C~2/4.

o There exists Gy : LE(A,)y — TwWEP(A,) such that D,,G, = id and
1Guwkllwiria,) < Cllslliza,)-

o [Fu0)llzz(a,) < C73/16.

Then there exists x € T, WP(A,) such that IXlwzra,) < C~%/4 and Fyy(x) = 0,
which implies EJ(epo,M”’JM/ x) = 0.
Proof. For x € KerD,,, we define F, : LL(A,)w — LE(A,)y by

Fy (k) = =Fu(0) = Nu(x + Guk).

Put x’ = 0 in the first condition, and || Ny (x)|lzz(a,) < C”X”?/V“’(A ) Then
o P

| = Fu(0) = Nu(x + Guwr)ll Lz (a,)

< NFuO)llzzca,) + 1Nwlx + Guk)lize(a,)
< | Fu(O)llzza,) +C|\X+Gwﬁ||‘2/[,;,pmp)
< NFuOlzza,) + Clixllwira,) + Cllsllza,))*

For z,y € LP(A,)w,

| = Nuw(X + Guz) + Nu(x + Guy)lzz(a,)
Cllx + Guzllyrria,) + X+ Guyllwrea Y IGur = Guyllyroa )

IN

< C*Clxllwrrca,) + Clizlizza,) + Cliyllzza,)lle = yllwiea,)-
Define By = {x € KerDu||x[ly17(a,) < C=?/8} and B, = {r € LE(Ap)u|llkllLz(a,) <
C—3/8}. Then, if x € By, F : B, — B, and
1
55 (@) = Fx(W)llzz(a,) < §H9€ —yllze(a,)s

for x,y € B,. By the contraction theorem, for each x € B,, we can find «, such
that F) (ky) = ky which implies

—Fuw(0) = Nu(Xx + Gukiy) = fix:
Define f(x) = Gwky, and
Fu(0) + Duw(x + f(X)) + Nu(x + f(X)) =0
since x € KerD,, and D,,G,, = id. This implies
9(expn™™ (x + £(x))) = 0,

for (x|l 1w (a,y < C72/8 And x + f(X)lwrra,) < C72/8+CCT? /8 =C72/4.
0
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Finally, we glue the punctured pseudo-holomorphic discs  and v. From Lemma
5.1, there is p; such that, for p > p;, there exists some constant C'; which satisfies
the first condition of Proposition 6.7. Similarly, from Corollary 6.6, we have ps
such that, for p > ps, there exists some constant Cs and the second condition of
Proposition 6.7 holds. And, from Lemma 6.1, there is p3 such that, for p > ps,
there exists some constant C's which satisfies the third condition of Proposition 6.7.
Put pg = max(p1, p2, p3) and C' = max(C4,Cs,C3), and we can apply Proposition
6.7 to our w = uf,v, for p > po, and get a pseudo-holomorphic disc near to w.

7. DEGENERATE REEB CHORDS

In this section, we discuss the gluing constructions of pseudo-holomorphic discs
with degenerate Reeb chords, i.e., we do not assume that v is nondegenerate. We
can use Lemma 5.1, Lemma 6.1, Lemma 6.4 and Proposition 6.7, where we do not
need the nondegeneracy.

Let d be the dimension of TV(O)Aﬂ(dgoT)*lTW(W)A. We may choose e; as in Section
5 such that {e1,...,eq} is a basis of T5yA N (dor) ' T5mA and {e1, ..., ey} is
a basis of Ty()A. Then, if 7°J 0 7V o ((t) = 0 with ¢(0) € RZ & Tyo)A and
¢(m) € R% ® Ty(mA, we have ((t) = Ca% @ Z?Zl ciei(t), for ¢,¢; € R.

Suppose that (d(pT)_lTW(W)A is spanned by {e1,...,eq, fat1,---, fn}, Where f; €
P i1 (Re;®RIee;). Let Ag € R* ™9 be the (n—d)-dimensional linear subspace
corresponding to @, ; Re; € @, Re;®oRJge; and A, € R~ the (n—d)-
dimensional linear subspace corresponding to @?: a1 Rfi C @?: a1 Rei O RJge;.
We remark that Ag and A, intersect transversely in R2("~% . Moreover, we define

Whe (Rx[0, ], R*"™ Ag, Ar) = {x € WHP(Rx[0, 7], R*"~¥)|x(0) € Ag and x(7) € A}
and

W ([0, 7], R* =D Ay, Ar) = {x € WP([0, 7], R* ™= D)|x(0) € Ag and x(7) € A},

and obtain the following lemma in a completely similar way to Lemma 6.2.

Lemma 7.1. Ifo > 0 is small enough, the operator %—FJO%—Fsgn(s)% : WHP(Rx
[0, 7], R*"=D) Ao, A;) — LP(R x [0, 7], R2"=D) is bijective, for 1 < p < .

For x € T5(0)(Rx N), we denote by x' the R% @RXA@@?:I Re;(0)&RJge;(0)
component of x and by x* the @;_,, | Re;(0) ® RJ¢e;(0) component of x, and
obtain the following lemma in a completely similar way to Lemma 6.3.

Proposition 7.2. Letu and v be punctured pseudo-holomorphic discs and {(pi, xi)}24
a sequence of pairs p; € R and x; € TuupivW;*p(Api). Suppose that p; — oo and
that ||Xi||W;,p(Api) =1, [|Dug,,vXillLz(a, ) = 0 and X+(1) = 0. Then there exists a
subsequence {(pi,, Xi,)}72, such that

I ”W;’I’(Apilﬂ{e‘3<\z|<e3}) — 0.

We define

V= {x € Tug, o WaP(8,) | S, 06 Com) 857 (|2])dady = 0 for ¢ € KerD,, and € KerD, }
P upv Vo P .

and x!(1) =0
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Since x!(1) € R(Z)5(0) a@’_, Re;(0), the codimension of Vibin Ty, WEP(A,) is
equal to dim KerD,, +dim KerD, +d+ 1. Then we obtain the following proposition
in a completely similar way to Proposition 6.5.

Proposition 7.3. Let u and v be punctured pseudo-holomorphic discs. Then there
exist some constants py and C' depending only on u and v such that

HXHW;”’(AP) < C||Dunva||L§(Ap)
for p>po and x € VpJ‘.

Corollary 7.4. Suppose that D, : T,WLP(©;v) — LE(0;7), and D, : T,WrP(Z;7) —
LP(Z;7), are surjective. Then there are some constants py and C depending only

on u and v such that, for p > po, there exists Gug,o : LE(Ap)ug,0 — VpL which
satisfies

Duﬁvauﬁpv = 1,

IN

||Guﬁpv“||W;~P(Ap) C||HHL§(A,))-

Proof. From Proposition 7.3, if K € KerDyy,, N Vpl7 then k = 0 and
dim KerDuﬁpv < codimVPJ‘ =dimKerD, + dimKerD, + d + 1.
We remark that, for small o > 0, the spectral flow tells us
IndexDyg,, = IndexD,, + dim Kery*.J o W*V% + IndexD,,,

where Index means the Fredholm index. In fact dim Kery*.J o%5*V 2 = d+1. Then
the surjectivity of D, and D, implies that

dim KerDyy , = dim KerD,, + dim KerD,, +d + 1 + CokerD; .

Hence we obtain dim KerDyy ., = codimVpL and dim CokerDuﬁpU = 0, which imply
that KerDys,, @VPJ- = uﬁva;’p(Ap) and Dyy . VPJ- — LE(Ap)ug,v is surjective,
and isomorphic. We define G3,, by the inverse of Dyj ., and the constant C' as in
the corollary is derived from the one of Proposition 7.3. O

Finally, we glue the punctured pseudo-holomorphic discs u and v. From Lemma
5.1, there is p; such that, for p > p;, there exists some constant C; which satisfies
the first condition of Proposition 6.7. Similarly, from Corollary 7.4, we have ps
such that, for p > ps, there exists some constant C and the second condition of
Proposition 6.7 holds. And, from Lemma 6.1, there is p3 such that, for p > ps,
there exists some constant C's which satisfies the third condition of Proposition 6.7.
Put pg = max(p1, p2, p3) and C' = max(C4,Cs,C3), and we can apply Proposition
6.7 to our w = uff,v, for p > py, and get a pseudo-holomorphic disc near to w.

8. NON-SURJECTIVE CAUCHY-RIEMANN OPERATORS

In this section, we discuss the gluing constructions of Kuranishi maps as in [3]
with non-surjective linearized Cauchy-Riemann operators, i.e., we do not assume
that D, and D, are surjective.

For u € W)P(©;), ImD,, C L2(0;7), is closed and d,, = dim L2(©;~),,/ImD,,
is finite. We define E, C L2(©;7), by a d,-dimensional linear subspace such
that ImD,, + E,, = L2(0;),. Let {e},..., egu} be a basis of F,. Similarly, for
v € WEP(Z;v), ImD, C LP(Z;7), is closed and d, = dim L2(Z;7),/ImD, is
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finite. We define E,, C L2(0O;~), by a d,-dimensional linear subspace such that
ImD, + E, = L5 (Z;7),. Let {ef,... ey } be a basis of E,.
For a € B, and b € E,, we define afi,b € LE(A,)ug,0 by

a(elz), for |z| < e 3,
Bu(log |z| +2)a(erz), for e™3 < |z| <1,
By (log|z| —2)b(e Pz) for 1 < |z| < €3,

ble=*z), for |z] > €2,

affpb =

)

and By, = {afi,bla € E, and b € E,} C LE(A,)ug,»- Since the norm on the
quotient g (Ap)ug,o = L5 (Ap)ug,o/Bus,o is given by || - |zr (s ) = infren

ufpv

+kll Lz (a,), we obtain || - [lzz (s ) < [[22(a,), and slight modifications of Lemma
5.1 and Lemma 6.1, where we do not need the surjectivity, hold.

Lemma 8.1. For w € WYP(A,), we write Fuy(X) = Fu(0) + DX + Nuw(x). Then
there exists some constant C' depending only on ||Vw|[rs(a,) such that

INw() = Nz ) < CUX N oa, + X Twzrca, )X = Xllweea,

for x,;x' € TuW5P(A,) with ||X||W;'p(Ap)7 ||X/HW;"’(AP) <Cc L

Lemma 8.2. Let u and v be punctured pseudo-holomorphic discs. For any € > 0,
there exists some constant py depending only on €, u and v such that

18 (w0l a < <

Jor p> po.
Now we prove the new lemma.

Lemma 8.3. Let u and v be punctured pseudo-holomorphic discs and {(pi, xi)}324
a sequence of pairs p; € R and x; € TuﬂpiUW(}’p(Api). Suppose that p; — oo and

that |Ixillwrra, ) = L 1Dug,,oxillzza,,) = 0- Then [|Dug, vXillLp(a,,) = 0-

i

Proof. From ||Duﬁpiin||ZP(Ap,_) — 0, there exists a sequence of k; € Eyg, ,, such that
[ Dug,,vxitkillLz(a,,) — 0. And from \\Xi||W;,p(Api) =1, we have |[Dys, vXillzz(a,,) <
C. Hence we may think that [|k;[|e(a, ) <2C. Put

dy dy
_ u U v v
ki = E :Cpiepupi0+ E cqioﬁpieq’
p=1 q=1

for cp;,cp; € R. Because ||killpp(a, )y < 2C, there exist ¢y and cj such that
lim; 00 ¢p; = ¢ and lim; o0 cp; = ¢ after taking subsequences if necessary. Then

we put

u
pt

v
qt

dy dy
/ U U v v
k; = E Cpeplp 0+ E ca08p, €,
p=1

q=1
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and || Dug, vXi + kil 2z (a,.) — 0. Moreover, due to the support of the elements of
Euﬁpiv, we have

[ Dus,, vXi + killz(a,)

dy,
= ||Du(Bu(log|z| — pi + 1)xi(e™"2)) + chﬁu log || — pi + 2)ey ||z (o)
p=1
dy
H|Du(Bo(log 2] + ps — Dxi(e?2)) + > c2Bu(log 2] + pi — 2)el | 12 (=)-
q=1
And there is some constant C' > 0 such that
duy
IDu(Bu(log |2 = pi + 1)xi(e™"2)) + > _ chBu(log |2| — pi + 2)ef 12 (o)
p=1

du d,
> ||Du(Bullog || — pi + )xi(e " 2)) + ZCZeZHLg(@) - CZ lepll Lz ©nferi-3<2(})-

p=1 p=1
Hence D, (B.(log|z| — pi +1)x:(e"?i2)) € ImD,, converges to Zz 1¢p€p € By, and
the limit is equal to 0 and ¢, = 0. Similarly we obtain c; = 0. Hence k; = O and

[ Dut,,vxillLz(a,,) = 0. O
From Lemma 8.3 and Proposition 7.2, we obtain the following proposition.

Proposition 8.4. Letu and v be punctured pseudo-holomorphic discs and {(pi, xi)}224
a sequence of pairs p; € R and x; € TuﬁpiUWUl’p(Api). Suppose that p; — oo and
that ||Xi||Wol_,p(Api) =1, ”D“ﬁm”Xi”fi(Api) — 0 and x} (1) = 0. Then there exists a
subsequence {(pi,, Xi,) }72, such that

”Xil ||W;’p(Apil N{e—3<|z|<e3}) — 0.

And similarly, from Lemma 8.3, we obtain the following proposition which is a
slight modification of Proposition 7.3.

Proposition 8.5. Let u and v be punctured pseudo-holomorphic discs. Then there
exist some constants py and C' depending only on u and v such that

”XHW;’I’(AD) < OHDunvaHZ?;(A )
for p> po and x € VPJ-,
Proof. Let {(pi, xi)}52, be a sequence of pairs p; € R and x; € fo. Suppose that
pi — oo and that ||XZ-HWH1,p(Ap’_) =1 and HDuﬁpiinpr(Ap_) — 0. From Lemma

8.3, | Dug,,vxillLz(a, ) — 0. Then we obtain the same contradiction in the proof

of Proposition 6.5, and hence there is no such sequence as {(p;, x:)}52,, and there
exists some constant C as in the proposition. [

Corollary 8.6. There are some constants py and C depending only on u and v
such that, for p > po, there exists Gug,o : .Y o (Ap)ut,0 — VJ‘ which satisfies

Duﬁvauﬂpv = ld;

IN

||éuﬁpv’€||w,}vp(Ap) C””HZ(’;(A;,)'
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Proof. Here we denote by 57%@ the composition of D, and the projection
LP(Ap)ug, 0 — fﬁ(Ap)uﬁpy. From Proposition 8.5, if £ € KerDyg,, N V-, then
k=0 and
dim Kerﬁuﬁpy < codimVPJ‘ = dimKerD,, + dim KerD, +d + 1.
We remark that, for small o > 0, the spectral flow tells us
IndexDyg,, = IndexD,, + dim Kery*J o 5"V 2 + IndexD,,.

In fact dim Kery*J OW*V% = d+1 and dim Ey3 ,, = dim CokerD,, + dim CokerD,,.
Then

dim KerDyy,, = dim KerD,, + dim KerD, + d + 1 + dim Coker Dy, ,» — dim Eyy ..
Since dim Eyg ., — (dim Kerﬁuﬁpu —dimKerDy4,,) < dim CokerD,; ., we obtain
dimKerDy,, = codimV;"

and
dim Kerﬁuﬁpv —dimKerDyy,, = dim Eyy , — dim CokerDy;

which imply that Kerﬁuﬁpv &) VpL = TuﬁpUW;’p(Ap) and ﬁuﬁpv : Vpl — fi (Ap)ut v
is surjective, and isomorphic. We can define Gys,, by the inverse of Dy .., and the

constant C as in the corollary is derived from the one of Proposition 8.5. O

We give Newton’s method to construct a Kuranishi map. The proof is completely
similar to that of Proposition 6.7.

Proposition 8.7. For w € WYP(A,), let E, C LE(A),, be a finite dimensional

linear subspace and L. (A)y = LE(A)y/Ey. Suppose that there exists some con-
stant C' which satisfies the following conditions:

o N0 ()= Nu 0Oz sy < O,y I Ty s )IX=X 2 s, -
for x, X' € TuWaP(A,) with x|l (a, ) IX lw2ea,) < C2/4

o There exists Gy, : Zi(Ap)w — T,WiP(A,) such that DGy = id and
Héwﬁ”W;P(A,,) < CH”HZT;(AP)'

o [Fu0)llz(a,) < C7%/16.

Then there exists a map f: {x € KeTDw|||X||W;=P(Ap) < C72/8} = Vb such that
Fulx + f(X)) =0 € LY(A)y which implies Dy (expu ™ (x+f(x))) € Ey.

Finally, we construct the Kuranishi map. From Lemma 8.1, there is p; such
that, for p > p1, there exists some constant C; which satisfies the first condition
of Proposition 8.7. Similarly, from Corollary 8.6, we have ps such that, for p > po,
there exists some constant C5 and the second condition of Proposition 8.7 holds.
And, from Lemma 8.2, there is p3 such that, for p > ps, there exists some constant
C'5 which satisfies the third condition of Proposition 8.7. Put py = max(p1, p2, p3)

and C = max(C4, Cy,C3), and we can apply Proposition 8.7 to our w = ufl,v, for
QMupM'

p > po, and get the Kuranishi map s, (x) = 9(expy (x+ f(x))) € Ey on
tx e KerDullly o s, < C2/8).

We remark that, if s,,(x) = 0, then expa M (x+ f(x)) is a pseudo-holomorphic
disc near to w.
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