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1. Introduction

Let M be a symplectic manifold with convex boundary N and L ⊂ M a La-
grangian submanifold with Legendrian boundary Λ ⊂ N , and let M ′ be a symplec-
tic manifold with concave boundary N and L′ ⊂M ′ a Lagrangian submanifold with
Legendrian boundary Λ ⊂ N . Then we construct a symplectic manifold M]ρM

′ =
M ∪([−ρ, ρ]×N)∪M ′ and a Lagrangian submanifold L]ρL

′ = L∪([−ρ, ρ]×Λ)∪L′,
for some ρ > 0. Choose nice almost complex structures on M ∪ [0,∞) × N ,
(−∞, 0] × N ∪M ′ and M]ρM

′, and we can construct a pseudo-holomorphic disc
w : D2 = {z ∈ C||z| ≤ 1} →M]ρM

′ with w(∂D2) ⊂ L]ρL′ by gluing the following
two punctured pseudo-holomorphic discs: one is u : D2 \ {1} → M ∪ [0,∞) × N
such that u(∂D2 \ {1}) ⊂ L ∪ [0,∞) × Λ and the puncture converges to a Reeb
chord in {∞} ×N , and the other is v : D2 \ {−1} → (−∞, 0]×N ∪M ′ such that
v(∂D2 \ {−1}) ⊂ (−∞, 0] × Λ ∪ L′ and the puncture converges to the Reeb chord
in {−∞} ×N . Our gluing technique is an improvement on that of Floer [1].

2. Contact and Symplectic Preliminaries

Let N be a smooth manifold of dimension 2n + 1. We call a 1-form λ on N a
contact form if λ ∧ (dλ)n is a volume form on N . A contact structure ξ is the 2n
dimensional plane field on N defined by λ|ξ = 0 and a Reeb vector field Xλ is the
vector field on N defined by λ(Xλ) = 1 and dλ(Xλ, ·) = 0. It is easy to see that
dλ|ξ is nondegenerate and there exist complex structures Jξ on ξ, i.e., Jξ ∈ End(ξ)
and J2

ξ = −1, such that gξ(·, ·) = dλ(·, Jξ·) is an inner product on ξ.
Consider R × N and denote by θ the standard coordinate on the first factor.

Then d(eθλ) is a symplectic form on R × N , and we call (R × N, d(eθλ)) the
symplectization of (N,λ). Let p2 : R×N → N be the projection p2(θ, x) = x. We
simply denote p∗2λ, p∗2ξ, p

∗
2Xλ and p∗2Jξ by λ, ξ, Xλ and Jξ, respectively. Then we

define the almost complex structure J on R×N by

• Jv = Jξv, for v ∈ ξ,
• J ∂

∂θ = Xλ and JXλ = − ∂
∂θ .

Let Λ ⊂ N be a submanifold. We call Λ Legendrian if dim Λ = n and λ|TΛ = 0.
A map γ : [0, T ]→ N is called a Reeb chord if γ̇ = Xλ with γ(0) and γ(T ) ∈ Λ, for
some T > 0.

Let (M,ω) be a noncompact symplectic manifold. Suppose that there exists
K ⊂M such that (M \K,ω) is symplectically isomorphic to ((R,∞)×N, d(eθλ)),
for some R ∈ R. We call such an end convex. We remark that there exist almost
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complex structures J ∈ End(TM) such that gJ(·, ·) = ω(·, J ·) is a Riemannian
metric on M and

• Jv = Jξv, for v ∈ ξ,
• J ∂

∂θ = Xλ and JXλ = − ∂
∂θ

on the convex end.
Let L ⊂M be a properly embedded noncompact Lagrangian submanifold whose

restriction on the convex end is of the form (R,∞)× Λ.
Similarly, let (M ′, ω′) be a noncompact symplectic manifold. Suppose that there

exists K ′ ⊂M ′ such that (M ′ \K ′, ω) is symplectically isomorphic to ((−∞, R′)×
N, d(eθλ)), for some R′ ∈ R. We call such an end concave. We remark that there
exist almost complex structures J ′ ∈ End(TM ′) such that gJ′(·, ·) = ω′(·, J ′·) is a
Riemannian metric on M ′ and

• J ′v = Jξv, for v ∈ ξ,
• J ′ ∂∂θ = Xλ and J ′Xλ = − ∂

∂θ

on the concave end.
Let L′ ⊂ M ′ be a properly embedded noncompact Lagrangian submanifold

whose restriction on the concave end is of the form (−∞, R′)× Λ.
We assume that R = R′ = 0 hereafter. Then, for ρ > 0, we define M]ρM

′

by K ∪ ((0, ρ] × N) ∪ ([−ρ, 0) × N) ∪K ′, i.e., we glue K ∪ ((0, ρ] × N) ⊂ M and
([−ρ, 0)×N)∪K ′ ⊂M ′ along the boundaries by the natural identification {ρ}×N
with {−ρ}×N , and define L]ρL

′ by (L∩K)∪ ((0, ρ]×Λ)∪ ([−ρ, 0)×Λ)∪ (L′∩K ′).
We often identify ((0, ρ]×N) ∪ ([−ρ, 0)×N) ⊂M]ρM

′ with (−ρ, ρ)×N .
We remark that we can relax the cylindrical end conditions for L and L′ into

similar ones of asymptotically conical Lagrangian submanifolds and isolated conical
singularities of Lagrangian submanifolds as in [5] and [6]. But we put the conditions
for L and L′ for simplicity.

3. Smooth Maps

Let g be the Reimannian metric λ⊗λ+ gξ on N . Then JξTpΛ is the orthogonal
complement to TpΛ in ξp, and expg ◦(id⊕Jξ) gives a diffeomorphism from a neigh-
borhood of the zero section 0⊕0Λ ⊂ R⊕TΛ to a neighborhood of Λ ⊂ N , where R
is the trivial bundle with fiber R over Λ. Let gΛ be a Riemannian metric on Λ. The
Levi-Civita connection of gΛ gives the horizontal lift and induces the Riemannian
metric gTΛ on the total space of TΛ such that 0Λ is totally geodesic. Hence we get
a Riemannian metric gN on N such that (expg ◦(id⊕Jξ))∗gN = dz⊗dz+ gTΛ on a
neighborhood of Λ, where z is the fiber coordinate of R, and Λ is totally geodesic.

We define the Riemannian metric g on (M,ω) by g(·, ·) = e−θβgJ , where β :
M → [0, 1] is a smooth cutoff function such that β(x) ≡ 1, for x ∈ (1,∞) × N ,
and β(x) ≡ 0, for x ∈ K. Then JTpL is the orthogonal complement to TpL in
TpM , and expg ◦J gives a diffeomorphism from a neighborhood of the zero section
0L ⊂ TL to a neighborhood of L ⊂M . Let gL be a Riemannian metric on L such
that gL is of the form dθ ⊗ dθ + p∗2gΛ on (0,∞) × Λ. The Levi-Civita connection
of gL gives the horizontal lift and induces the Riemannian metric gTL on the total
space of TL such that 0L is totally geodesic. Hence we get a Riemannian metric
gM on M of the form dθ ⊗ dθ + p∗2gN on (0,∞)×N , and L is totally geodesic.

Define Θ = {z ∈ C|Imz ≥ 0}. For a Reeb chord γ, C∞0 (Θ; γ) is the set of the
smooth maps µ : Θ→M which satisfy the following conditions:
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• All derivatives of µ have continuous extensions to Θ.
• µ(∂Θ) ⊂ L.
• For some Rµ, µ(z) = (Tπ log |z|, γ( Tπi log z

|z| )) when |z| > Rµ.

For µ ∈ C∞0 (Θ; γ), we define C∞0 (µ∗TM) by the set of the smooth sections ζ : Θ→
µ∗TM which satisfy the following conditions:

• All derivatives of ζ have continuous extensions to Θ.
• ζ(∂Θ) ⊂ µ∗TL.
• For some Rζ , ζ(z) = 0 when |z| > Rζ .

Lemma 3.1. For µ ∈ C∞0 (Θ; γ) and ζ ∈ C∞0 (µ∗TM), u = expgMµ ζ is also in
C∞0 (Θ; γ).

Similarly, we define the Riemannian metric g′ on (M ′, ω′) by g′(·, ·) = e−θβ
′
gJ′ ,

where β′ : M ′ → [0, 1] is a smooth cutoff function such that β′(x) ≡ 1 for x ∈
(−∞,−1)×N and β′(x) ≡ 0 for x ∈ K ′. Then J ′TpL

′ is the orthogonal complement

to TpL
′ in TpM

′, and expg
′ ◦J ′ gives a diffeomorphism from a neighborhood of the

zero section 0L′ ⊂ TL′ to a neighborhood of L′ ⊂ M ′. Let gL′ be a Riemannian
metric on L′ such that gL′ is of the form dθ ⊗ dθ + p∗2gΛ on (−∞, 0) × Λ. The
Levi-Civita connection of gL′ gives the horizontal lift and induces the Riemannian
metric gTL′ on the total space of TL′ such that 0L′ is totally geodesic. Hence we
get a Riemannian metric gM ′ on M ′ of the form dθ ⊗ dθ + p∗2gN on (−∞, 0)×N ,
and L′ is totally geodesic.

Define Ξ = ({z ∈ C|Imz ≥ 0} ∪ {∞}) \ {0}. For a Reeb chord γ, C∞0 (Ξ; γ) is
the set of the smooth maps ν : Ξ→M ′ which satisfy the following conditions:

• All derivatives of ν have continuous extensions to Ξ.
• ν(∂Ξ) ⊂ L′.
• For some Rν , ν(z) = (Tπ log |z|, γ( Tπi log z

|z| )) when |z| < Rν .

For ν ∈ C∞0 (Ξ; γ), we define C∞0 (ν∗TM ′) by the set of the smooth sections η : Ξ→
ν∗TM ′ which satisfy the following conditions:

• All derivatives of η have continuous extensions to Ξ.
• η(∂Ξ) ⊂ ν∗TL′.
• For some Rη, η(z) = 0 when |z| < Rη.

Lemma 3.2. For ν ∈ C∞0 (Ξ; γ) and η ∈ C∞0 (ν∗TM ′), v = exp
gM′
ν η is also in

C∞0 (Ξ; γ).

Let gM]ρM ′ be the Riemannian metric on M]ρM
′ such that gM]ρM ′ |K∪(0,ρ] = gM

and gM]ρM ′ |[−ρ,0)∪K′ = gM ′ . We define e−ρΘ = {e−ρa|a ∈ Θ}, eρΞ = {eρb|b ∈ Ξ}
and ∆ρ = (e−ρΘ t eρΞ)/ ∼, where z ∼ w for z ∈ e−ρΘ and w ∈ eρΞ if z = w. We
remark that ∆ρ is diffeomorphic to the disc D2. Then C∞(∆ρ) is the set of the
smooth maps υ : ∆ρ →M]ρM

′ which satisfy the following conditions:

• All derivatives of υ have continuous extensions to ∆ρ.
• υ(∂∆ρ) ⊂ L]ρL′.

For υ ∈ C∞(∆ρ), we define C∞(υ∗T (M]ρM
′)) by the set of the smooth sections

χ : ∆ρ → υ∗T (M]ρM
′) which satisfy the following conditions:

• All derivatives of χ have continuous extensions to ∆ρ.
• χ(∂∆ρ) ⊂ υ∗T (L]ρL

′).
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Lemma 3.3. For υ ∈ C∞(∆ρ) and χ ∈ C∞(υ∗T (M]ρM
′)), v = exp

gM]ρM′
υ χ is

also in C∞(∆ρ).

4. Banach Manifolds

Let p > 2 and σ ∈ R. For µ ∈ C∞0 (Θ; γ) and ζ ∈ C∞0 (µ∗TM), we define

‖ζ‖W 1,p
σ (Θ) =

(∫
Θ

(|ζ|p + |∇ζ|p)ασ(|z|)dxdy
)1/p

,

where | · | is the norm with respect to gM , ∇ is the Levi-Civita connection of gM
and ασ : [0,∞) → R>0 is a weight function such that ασ(r) = r−2+σ, for r ≥ 1.
We remark that, through (s, t) = (log |z|, 1

i log z
|z| ),∫

Θ∩{|z|>1}
(|ζ|p + |∇ζ|p)ασ(|z|)dxdy =

∫
(0,∞)×[0,π]

(|ζ|p + |∇ζ|p)eσsdsdt.

Let W 1,p
σ (µ∗TM) be the completion of C∞0 (µ∗TM) by ‖ · ‖W 1,p

σ (Θ) and define

W 1,p
σ (Θ; γ) =

{
expgMµ ζ

∣∣∣ µ ∈ C∞0 (Θ; γ), ζ ∈W 1,p
σ (µ∗TM)

}
.

From the Sobolev embedding theorem, u ∈W 1,p
σ (Θ; γ) satisfies

• u : Θ→M is continuous,
• u(∂Θ) ⊂ L,
• u asymptotically approaches (Tπ log |z|, γ( Tπi log z

|z| )) at z =∞.

For u = expgMµ ζ ∈W 1,p
σ (Θ; γ), we define

TuW
1,p
σ (Θ; γ) = W 1,p

σ (µ∗TM).

Lemma 4.1. W 1,p
σ (Θ; γ) is a Banach manifold whose tangent space at u is TuW

1,p
σ (Θ; γ).

For µ ∈ C∞0 (Θ; γ), we denote by Lpσ(∧0,1Θ ⊗ µ∗TM) the set of the measurable
sections of ∧0,1Θ⊗ µ∗TM for which the norm

‖ζ‖Lpσ(Θ) =

(∫
Θ

|ζ|pασ(|z|)dxdy
)1/p

is finite. Moreover, for u = expgMµ ζ ∈W 1,p
σ (Θ; γ), we define

Lpσ(Θ; γ)u = Lpσ(∧0,1Θ⊗ µ∗TM)

and
Lpσ(Θ; γ) =

⋃
u∈W 1,p

σ (Θ;γ)

Lpσ(Θ; γ)u.

Lemma 4.2. Lpσ(Θ; γ) is a Banach space bundle whose fiber over u is Lpσ(Θ; γ)u.

For ν ∈ C∞0 (Ξ; γ) and η ∈ C∞0 (ν∗TM ′), we define

‖η‖W 1,p
σ (Ξ) =

(∫
Ξ

(|η|p + |∇η|p)α
σ(|z|−1)

|z|4
dxdy

)1/p

,

where | · | is the norm with respect to gM ′ and ∇ is the Levi-Civita connection of
gM ′ . We remark that, through (s, t) = (log |z|, 1

i log z
|z| ),∫

Ξ∩{|z|<1}
(|η|p + |∇η|p)α

σ(|z|−1)

|z|4
dxdy =

∫
(−∞,0)×[0,π]

(|η|p + |∇η|p)e−σsdsdt.
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Let W 1,p
σ (ν∗TM ′) be the completion of C∞0 (ν∗TM ′) by ‖ · ‖W 1,p

σ (Ξ) and define

W 1,p
σ (Ξ; γ) =

{
expgM′ν η

∣∣∣ ν ∈ C∞0 (Ξ; γ), η ∈W 1,p
σ (ν∗TM ′)

}
.

From the Sobolev embedding theorem, v ∈W 1,p
σ (Ξ; γ) satisfies

• v : Ξ→M ′ is continuous,
• v(∂Ξ) ⊂ L′,
• v asymptotically approaches (Tπ log |z|, γ( Tπi log z

|z| )) near z = 0.

For v = exp
gM′
ν η ∈W 1,p

σ (Ξ; γ), we define

TvW
1,p
σ (Ξ; γ) = W 1,p

σ (ν∗TM ′).

Lemma 4.3. W 1,p
σ (Ξ; γ) is a Banach manifold whose tangent space at v is TvW

1,p
σ (Ξ; γ).

For ν ∈ C∞0 (Ξ; γ), we denote by Lpσ(∧0,1Ξ ⊗ ν∗TM ′) the set of the measurable
sections of ∧0,1Ξ⊗ ν∗TM ′ for which the norm

‖η‖Lpσ(Ξ) =

(∫
Ξ

|η|pα
σ(|z|−1)

|z|4
dxdy

)1/p

is finite. Moreover, for v = exp
gM′
ν η ∈W 1,p

σ (Ξ; γ), we define

Lpσ(Ξ; γ)v = Lpσ(∧0,1Ξ⊗ ν∗TM ′)

and

Lpσ(Ξ; γ) =
⋃

v∈W 1,p
σ (Ξ;γ)

Lpσ(Ξ; γ)v.

Lemma 4.4. Lpσ(Ξ; γ) is a Banach space bundle whose fiber over v is Lpσ(Ξ; γ)v.

For υ ∈ C∞(∆ρ) and χ ∈ C∞(υ∗T (M]ρM
′)), we define

‖χ‖W 1,p
σ (∆ρ) =

(∫
∆ρ

(|χ|p + |∇χ|p)βσρ (|z|)dxdy

)1/p

,

where | · | is the norm with respect to gM]ρM ′ , ∇ is the Levi-Civita connection of
gM]ρM ′ and βσρ : [0,∞]→ R>0 is the weight function defined by

βσρ (|z|) =

{
ασ(eρ|z|)e2ρ, for |z| ≤ 1,

ασ(|e−ρz|−1)
|e−ρz|4 e−2ρ, for |z| > 1.

We remark that, through (s, t) = (log |z|, 1
i log z

|z| ),∫
∆ρ∩{e−ρ<|z|≤1}

(|χ|p + |∇χ|p)βσρ (|z|)dxdy =

∫
(−ρ,0]×[0,π]

(|χ|p + |∇χ|p)eσ(s+ρ)dsdt

and∫
∆ρ∩{1<|z|<eρ}

(|χ|p + |∇χ|p)βσρ (|z|)dxdy =

∫
(0,ρ)×[0,π]

(|χ|p + |∇χ|p)e−σ(s−ρ)dsdt.

Let W 1,p
σ (υ∗T (M]ρM

′)) be the completion of C∞(υ∗T (M]ρM
′)) by ‖ · ‖W 1,p

σ (∆ρ)

and define

W 1,p
σ (∆ρ) =

{
exp

gM]ρM′
υ χ

∣∣∣ υ ∈ C∞(∆ρ), χ ∈W 1,p
σ (υ∗T (M]ρM

′))
}
.
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From the Sobolev embedding theorem, w ∈W 1,p
σ (∆ρ) is continuous with w(∂∆ρ) ⊂

L]ρL
′. For w = exp

gM]ρM′
υ χ ∈W 1,p

σ (∆ρ), we define

TwW
1,p
σ (∆ρ) = W 1,p

σ (υ∗T (M]ρM
′)).

Lemma 4.5. W 1,p
σ (∆ρ) is a Banach manifold whose tangent space at w is TwW

1,p
σ (∆ρ).

For υ ∈ C∞(∆ρ), we denote by Lpσ(∧0,1∆ρ ⊗ υ∗T (M]ρM
′)) the set of the mea-

surable sections of ∧0,1∆ρ ⊗ υ∗T (M]ρM
′) for which the norm

‖χ‖Lpσ(∆ρ) =

(∫
∆ρ

|χ|pβσρ (|z|)dxdy

)1/p

is finite. Moreover, for w = exp
gM]ρM′
υ χ ∈W 1,p

σ (∆ρ), we define

Lpσ(∆ρ)w = Lpσ(∧0,1∆ρ ⊗ υ∗T (M]ρM
′))

and

Lpσ(∆ρ) =
⋃

w∈W 1,p
σ (∆ρ)

Lpσ(∆ρ)w.

Lemma 4.6. Lpσ(∆ρ) is a Banach space bundle whose fiber over w is Lpσ(∆ρ)w.

5. Pseudo-holomorphic Discs

For u ∈W 1,p
σ (Θ; γ), we define the Cauchy-Riemann operator by

∂J(u) =
1

2
(du+ J(u) ◦ du ◦ j) ∈ Lpσ(Θ; γ)u,

where j is the standard complex structure on Θ. We may think of ∂J as a section
of Lpσ(Θ; γ) [7]. Given ζ ∈ TuW

1,p
σ (Θ; γ), let Φu(ζ) : u∗TM → (expgMu ζ)∗TM

denote the bundle isomorphism given by parallel transport along the geodesic l(t) =
expgMu tζ. Then we define the map Fu : TuW

1,p
σ (Θ; γ)→ Lpσ(Θ; γ)u by

Fu(ζ) = Φu(ζ)−1∂J(expgMu ζ).

We denote by Du the linearized operator dFu(0) : TuW
1,p
σ (Θ; γ) → Lpσ(Θ; γ)u.

Then

Duζ =
1

2
(∇ζ + J(u) ◦ ∇ζ ◦ j)− 1

2
J(u)(∇ζJ)(u)∂J(u),

where ∇ is the Levi-Civita connection of gM and ∂J(u) = 1
2 (du − J(u) ◦ du ◦ j).

For some σ > 0, Du is Fredholm. We sometimes think of Du on Θ ∩ {|z| > 1} as a
differential operator on {(s, t) ∈ (0,∞)× [0, π]} through (s, t) = (log |z|, 1

i log z
|z| ).

We call γ standard if there exist a tubular neighborhood U of γ([0, T ]) and an
immersion φ : {(x1, y1, . . . , xn, yn, z)|

∑n
i=1(x2

i +y2
i ) < ε, 0 ≤ z ≤ T} → U , for some

ε > 0, such that

• φ({0} × [0, T ]) = γ([0, T ]) and φ∗λ = dz + 1
2

∑n
i=1(xidyi − yidxi),

• φ−1(Λ)∩B = L0∩B, where B = {(x1, y1, . . . , xn, yn, 0)|
∑n
i=1(x2

i +y2
i ) < ε}

and L0 is a Lagrangian linear subspace in {(x1, y1, . . . , xn, yn)},
• φ−1(Λ)∩B′ = LT ∩B′, where B′ = {(x1, y1, . . . , xn, yn, T )|

∑n
i=1(x2

i +y2
i ) <

ε} and LT is a Lagrangian linear subspace in {(x1, y1, . . . , xn, yn)}.
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Then we may choose gN and Jξ so that ∇γ̇ = ∂
∂z and γ∗∇Jξ = 0. Let ϕt :

N → N be the solution of d
dtϕt = Xλ ◦ ϕt and ϕ0 = id. Write γ(t) = γ(Tt/π).

We consider the pull-back bundle γ∗ξ over [0, π]. Take {e1, e2, . . . , en} ⊂ ξγ(0) so
that {e1, Jξe1, . . . , en, Jξen} is a basis of ξγ(0). Put ei(t) = dϕTt/πei ∈ ξγ(t), and

then ∇γ̇ei(t) = 0 and ∇γ̇Jξei(t) = 0. So γ∗Jξ ◦ γ∗∇ ∂
∂t

is represented as J0
∂
∂t ,

where J0 is the standard complex structure on R2n. Since Du is of the form
1
2 (∇ ∂

∂s
+ J(u(s, t))∇ ∂

∂t
)− 1

2J(u)(∇J)(u)∂J(u) on (0,∞)× [0, π], it asymptotically

approaches the differential operator

1

2
(
∂

∂s
+ γ∗J ◦ γ∗∇ ∂

∂t
)

as s→∞.
We call γ nondegenerate if dϕTTγ(0)Λ and Tγ(T )Λ transversally intersect in ξγ(T ).

Then, if γ∗J ◦ γ∗∇ ∂
∂t
ζ(t) = 0 with ζ(0) ∈ R ∂

∂θ ⊕ Tγ(0)Λ and ζ(π) ∈ R ∂
∂θ ⊕ Tγ(T )Λ,

we have ζ(t) = c ∂∂θ , for c ∈ R.

We define Fv : TvW
1,p
σ (Ξ; γ) → Lpσ(Ξ; γ)v and Dv = dFv(0) : TvW

1,p
σ (Ξ; γ) →

Lpσ(Ξ; γ)v, for v ∈ W 1,p
σ (Ξ; γ), and Fw : TwW

1,p
σ (∆ρ) → Lpσ(∆ρ)w and Dw =

dFw(0) : TwW
1,p
σ (∆ρ)→ Lpσ(∆ρ)w, for w ∈W 1,p

σ (∆ρ), similarly.

Lemma 5.1. For w ∈W 1,p
σ (∆ρ), we write Fw(χ) = Fw(0) +Dwχ+Nw(χ). Then

there exists some constant C depending only on ‖∇w‖Lp(∆ρ) such that

‖Nw(χ)−Nw(χ′)‖Lpσ(∆ρ) ≤ C(‖χ‖W 1,p
σ (∆ρ) + ‖χ′‖W 1,p

σ (∆ρ))‖χ− χ
′‖W 1,p

σ (∆ρ),

for χ, χ′ ∈ TwW 1,p
σ (∆ρ) with ‖χ‖W 1,p

σ (∆ρ), ‖χ′‖W 1,p
σ (∆ρ) < C−1.

Proof. It is done by the Taylor expansion of Fw.

Nw(χ)−Nw(χ′) =

∫ 1

0

(1− t){d2Fw(tχ)(χ, χ)− d2Fw(tχ′)(χ′, χ′)}dt

=

∫ 1

0

(1− t){d2Fw(tχ)(χ, χ− χ′) + d2Fw(tχ)(χ, χ′)−

d2Fw(tχ′)(χ, χ′) + d2Fw(tχ′)(χ− χ′, χ′)}dt

and

d2Fw(tχ)(χ, χ′)− d2Fw(tχ′)(χ, χ′) =

∫ 1

0

d3Fw((1− s)tχ+ stχ′)(tχ− tχ′, χ, χ′)ds.

Then we can conclude

‖Nw(χ)−Nw(χ′)‖Lpσ(∆ρ)

≤ C(‖χ‖W 1,p
σ (∆ρ) + ‖χ‖W 1,p

σ (∆ρ)‖χ
′‖W 1,p

σ (∆ρ) + ‖χ′‖W 1,p
σ (∆ρ))‖χ− χ

′‖W 1,p
σ (∆ρ),

where C is some constant depending only on ‖∇w‖Lp(∆ρ). Take some large C if
necessary, and we obtain the inequality as in the lemma. �

We call u ∈ W 1,p
σ (Θ; γ) a punctured pseudo-holomorphic disc if ∂J(u) = 0.

Similarly, we define a punctured pseudo-holomorphic disc, for v ∈ W 1,p
σ (Ξ; γ). If

w ∈W 1,p
σ (∆ρ) satisfies ∂J(w) = 0, we call w a pseudo-holomorphic disc.
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6. Gluing Analysis

For simplicity, we assume that, for u ∈W 1,p
σ (Θ; γ), there exists

u ∈W 1,p
σ ((

T

π
log |z|, γ(

T

πi
log

z

|z|
))∗T ((0,∞)×N))

such that u = expgM
(Tπ log |z|,γ( Tπi log z

|z| ))
u on {z ∈ Θ| log |z| > 0}, and, for v ∈

W 1,p
σ (Ξ; γ), we assume that there exists

v ∈W 1,p
σ ((

T

π
log |z|, γ(

T

πi
log

z

|z|
))∗T ((−∞, 0)×N))

such that v = expgM
(Tπ log |z|,γ( Tπi log z

|z| ))
v on {z ∈ Ξ| log |z| < 0}. Then we define

u]ρv ∈W 1,p
σ (∆ρ) by

u]ρv =


u(eρz), for |z| ≤ e−1,

expgM
(Tπ log |z|,γ( Tπi log z

|z| ))
βu(log |z|)u(eρz), for e−1 < |z| ≤ 1,

exp
gM′

(Tπ log |z|,γ( Tπi log z
|z| ))

βv(log |z|)v(e−ρz), for 1 < |z| ≤ e,
v(e−ρz), for |z| > e,

where βu and βv are smooth cutoff functions such that

βu(s) =

{
1, for s ≤ −1,
0, for s ≥ 0,

and βv(s) =

{
0, for s ≤ 0,
1, for s ≥ 1.

For ζ ∈ TuW 1,p
σ (Θ; γ) and η ∈ TvW 1,p

σ (Ξ; γ), we similarly define ζ]ρη ∈ Tu]ρvW 1,p
σ (∆ρ)

by

ζ]ρη =


ζ(eρz), for |z| ≤ e−2,

βu(log |z|+ 1)ζ(eρz), for e−2 < |z| ≤ 1,
βv(log |z| − 1)η(e−ρz), for 1 < |z| ≤ e2,

η(e−ρz), for |z| > e2.

Lemma 6.1. Let u and v be punctured pseudo-holomorphic discs. For any ε > 0,
there exists some constant ρ0 depending only on ε, u and v such that

‖∂J(u]ρv)‖Lpσ(∆ρ) < ε,

for ρ > ρ0.

Proof. By the definition of u]ρv, we obtain

‖∂J(u]ρv)‖Lpσ(∆ρ)

≤ ‖∂J(expgM
(Tπ log |z|,γ( Tπi log z

|z| ))
βu(log |z|)u(eρz)‖Lpσ(∆ρ∩{e−1<|z|<1})

+‖∂J(exp
gM′

(Tπ log |z|,γ( Tπi log z
|z| ))

βv(log |z|)v(e−ρz)‖Lpσ(∆ρ∩{1<|z|<e})

≤ C(‖u‖W 1,p
σ (Θ∩{eρ−1<|z|<eρ}) + ‖v‖W 1,p

σ (Ξ∩{e−ρ<|z|<e−ρ+1})),

where C is some constant depending only on u and v. Hence we obtain ρ0 as in
the lemma. �

Define sgn : R→ {−1, 0, 1} by

sgn(s) =

 −1, for s < 0,
0, for s = 0,
1, for s > 0.
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Let Λ0 ⊂ R2n be the linear subspace corresponding to Tγ(0)Λ ⊂ ξγ(0) through the

basis {e1(0), Jξe1(0), . . . , en(0), Jξen(0)} and Λπ ⊂ R2n the linear subspace corre-
sponding to Tγ(π)Λ ⊂ ξγ(π) through the basis {e1(π), Jξe1(π), . . . , en(π), Jξen(π)}.
We remark that Λ0 and Λπ intersect transversely in R2n since γ is nondegenarate.
Moreover, we define

W 1,p(R×[0, π],R2n,Λ0,Λπ) = {χ ∈W 1,p(R×[0, π],R2n)|χ(0) ∈ Λ0 and χ(π) ∈ Λπ}
and

W 1,p([0, π],R2n,Λ0,Λπ) = {χ ∈W 1,p([0, π],R2n)|χ(0) ∈ Λ0 and χ(π) ∈ Λπ}.

Lemma 6.2. If σ > 0 is small enough, the operator ∂
∂s+J0

∂
∂t+sgn(s)σp : W 1,p(R×

[0, π],R2n,Λ0,Λπ)→ Lp(R× [0, π],R2n) is bijective, for 1 < p <∞.

Proof. This lemma is a modification of Lemma 2.4 in [8]. We shall give the
proof for p = 2. The operator B = J0

∂
∂t + sgn(s)σp : W 1,2([0, π],R2n,Λ0,Λπ) →

L2([0, π],R2n) is a self-adjoint operator on the Hilbert space L2([0, π],R2n) with
domain W 1,2([0, π],R2n,Λ0,Λπ). Since Λ0 and Λπ intersect transversely, if σ > 0
is small enough, then 0 is not an eigenvalue of B. Hence there is a splitting
L2([0, π],R2n) = E+⊕E− into the positive and negative eigenspaces of B. Denote
by P± : L2([0, π],R2n)→ E± the orthogonal projections. Define

K(s) =

{
e−BsP+, for s > 0,
−e−BsP−, for s ≤ 0,

and Q : L2(R× [0, π],R2n)→W 1,2(R× [0, π],R2n) by

Qχ(s, t) =

∫ ∞
−∞

K(s− τ)χ(τ, t)dτ,

and Q is the inverse of ∂
∂s +B. In fact

Qχ(s, t) =

∫ s

−∞
e−B(s−τ)P+χ(τ, t)dτ −

∫ ∞
s

e−B(s−τ)P−χ(τ, t)dτ,

and we can check ∂
∂sQχ+BQχ = χ and Q ∂

∂sχ+QBχ = χ directly. The proof for
p > 2 is the same as the one of Lemma 2.4 in [8]. �

For χ ∈ Tγ(0)(R×N), we denote by χ1 the R ∂
∂θ ⊕RXλ component of χ and by

χ2 the ξγ(0) component of χ.

Proposition 6.3. Let u and v be punctured pseudo-holomorphic discs and {(ρi, χi)}∞i=1

a sequence of pairs ρi ∈ R and χi ∈ Tu]ρivW
1,p
σ (∆ρi). Suppose that ρi → ∞ and

that ‖χi‖W 1,p
σ (∆ρi

) = 1, ‖Du]ρiv
χi‖Lpσ(∆ρi

) → 0 and χ1
i (1) = 0. Then there exists a

subsequence {(ρil , χil)}∞l=1 such that

‖χil‖W 1,p
σ (∆ρil

∩{e−3<|z|<e3}) → 0.

Proof. Fix N > 1. We may assume that u]ρiv(∆ρi∩{e−N < |z| < eN}) is contained
in a tubular neighborhood of (−N,N)×γ([0, T ]) in M]ρM

′. For χi : ∆ρi ∩{e−N <
|z| < eN} → (u]ρiv)∗T (M]ρM

′), we define χi : ∆ρi ∩ {e−N < |z| < eN} →
(Tπ log |z|, γ( Tπi log z

|z| ))
∗T (M]ρM

′) by

D exp
gM]ρiM

′

(Tπ log |z|,γ( Tπi log z
|z| ))

χi = χi,
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and we similarly define Du]ρiv
by

D exp
gM]ρiM

′

(Tπ log |z|,γ( Tπi log z
|z| ))

Du]ρiv
χi = Du]ρiv

χi.

We remark thatDu]ρiv
→ 1

2 ( ∂∂s+γ∗J◦γ∗∇ ∂
∂t

) on {e−N < |z| < eN} in the C0 topol-

ogy, i.e., if Du]ρiv
= 1

2 (ai
∂
∂s + bi

∂
∂t + ci), then ai → 1, bi →

(
0 −1
1 0

)
⊕ J0 and ci → 0

in the C0 topology. Think of χi|∆ρi
∩{e−N<|z|<eN} as a section χi : [−N,N ]×[0, π]→

(Tπ log |z|, γ( Tπi log z
|z| ))

∗T (M]ρM
′) through (s, t) = (log |z|, 1

i log z
|z| ). From ‖χi‖W 1,p

σ (∆ρi
) =

1, there exists C such that ‖eσ/pρi χi‖W 1,p([−N,N ]×[0,π]) < C, where e
σ/p
ρi : R→ R>0

is the function defined by

eσ/pρi (s) =

{
eσ(s+ρi)/p, for s ≤ 0,
e−σ(s−ρi)/p, for s > 0.

Then, by the Rellich’s theorem, there exists χN ∈ Lp([−N,N ] × [0, π]) and a

subsequence {(ρil , χil)}
∞
l=1 such that ‖χN − e

σ/p
ρil

χil‖Lp([−N,N ]×[0,π]) → 0. We omit
to mention subsequences hereafter. By the Gärding inequality, we have

‖eσ/pρi χi − eσ/pρj χj‖W 1,p([−N+1,N−1]×[0,π])

≤ C(‖Du]ρiv
(eσ/pρi χi − eσ/pρj χj)‖Lp([−N,N ]×[0,π]) + ‖eσ/pρi χi − eσ/pρj χj‖Lp([−N,N ]×[0,π]))

≤ C(‖eσ/pρi Du]ρiv
χi − eσ/pρj Du]ρiv

χj‖Lp([−N,N ]×[0,π]) + ‖eσ/pρi χi − eσ/pρj χj‖Lp([−N,N ]×[0,π])),

where C is a constant depending only on u and v. We already know ‖eσ/pρi χi −
e
σ/p
ρj χj‖Lp([−N,N ]×[0,π]) → 0. And moreover,

‖eσ/pρi Du]ρiv
χi − eσ/pρj Du]ρiv

χj‖Lp([−N,N ]×[0,π])

≤ ‖Du]ρiv
χi‖Lpσ(∆ρi

∩{e−N<|z|<eN}) + ‖Du]ρj v
χj‖Lpσ(∆ρj

∩{e−N<|z|<eN})

+‖(Du]ρiv
−Du]ρj v

)χj‖Lpσ(∆ρj
∩{e−N<|z|<eN})

≤ ‖Du]ρiv
χi‖Lpσ(∆ρi

∩{e−N<|z|<eN}) + ‖Du]ρj v
χj‖Lpσ(∆ρj

∩{e−N<|z|<eN})

+C‖Du]ρiv
−Du]ρj v

‖C0([−N,N ]×[0,π])‖χj‖W 1,p
σ (∆ρj

∩{e−N<|z|<eN})

→ 0,

where ‖Du]ρiv
−Du]ρj v

‖C0([−N,N ]×[0,π]) = ‖ai−aj‖C0([−N,N ]×[0,π])+‖bi−bj‖C0([−N,N ]×[0,π])+

‖ci−cj‖C0([−N,N ]×[0,π]). Then we can conclude ‖eσ/pρi χi−e
σ/p
ρj χj‖W 1,p([−N+1,N−1]×[0,π]) →

0, and ‖χN−e
σ/p
ρi χi‖W 1,p([−N+1,N−1]×[0,π]) → 0. Define χ∞ by χ∞|[−N+1,N−1]×[0,π] =

χN . We remark that ‖χ∞‖W 1,p(R×[0,π]) < C from supN,i ‖e
σ/p
ρi χi‖W 1,p([−N,N ]×[0,π]) <
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C. Moreover,

‖1

2
(
∂

∂s
+ γ∗J ◦ γ∗∇ ∂

∂t
)χ∞ +

1

2
sgn(s)

σ

p
χ∞‖Lp([−N,N ]×[0,π])

≤ ‖1

2
(
∂

∂s
+ γ∗J ◦ γ∗∇ ∂

∂t
)(χ∞ − eσ/pρi χi)‖Lp([−N,N ]×[0,π])

+‖1

2
(
∂

∂s
+ γ∗J ◦ γ∗∇ ∂

∂t
)eσ/pρi χi +

1

2
sgn(s)

σ

p
χ∞‖Lp([−N,N ]×[0,π])

≤ ‖1

2
(
∂

∂s
+ γ∗J ◦ γ∗∇ ∂

∂t
)(χ∞ − eσ/pρi χi)‖Lp([−N,N ]×[0,π])

+‖eσ/pρi

1

2
(
∂

∂s
+ γ∗J ◦ γ∗∇ ∂

∂t
)χi‖Lp([−N,N ]×[0,π])

+‖ − 1

2
sgn(s)

σ

p
eσ/pρi χi +

1

2
sgn(s)

σ

p
χ∞‖Lp([−N,N ]×[0,π])

≤ C‖χ∞ − eσ/pρi χi‖W 1,p([−N,N ]×[0,π])

+‖eσ/pρi

1

2
(
∂

∂s
+ γ∗J ◦ γ∗∇ ∂

∂t
)χi − eσ/pρi Du]ρiv

χi‖Lp([−N,N ]×[0,π])

+‖eσ/pρi Du]ρiv
χi‖Lp([−N,N ]×[0,π]) + C‖χ∞ − eσ/pρi χi‖Lp([−N,N ]×[0,π])

≤ C‖χ∞ − eσ/pρi χi‖W 1,p([−N,N ]×[0,π])

+‖1

2
(
∂

∂s
+ γ∗J ◦ γ∗∇ ∂

∂t
)−Du]ρiv

‖C0([−N,N ]×[0,π])‖χi‖W 1,p
σ (∆ρi

∩{e−N<|z|<eN})

+‖Du]ρiv
χi‖Lpσ(∆ρi

∩{e−N<|z|<eN}) + C‖χ∞ − eσ/pρi χi‖Lp([−N,N ]×[0,π])

→ 0.

Then we can conclude 1
2 ( ∂∂s + γ∗J ◦ γ∗∇ ∂

∂t
+ sgn(s)σp )χ∞ = 0 which is equivalent

to the following equations:

1

2
(
∂

∂s
+

(
0 −1
1 0

)
∂

∂t
+ sgn(s)

σ

p
)χ1
∞ = 0,

1

2
(
∂

∂s
+ J0

∂

∂t
+ sgn(s)

σ

p
)χ2
∞ = 0.

Put χ1
∞ = x ∂

∂θ + yXλ and z = x + iy, and the first equation turns out to be
1
2 ( ∂∂s + i ∂∂t + sgn(s)σp )z = 0. By the separation of variables, we can solve this

equation and z = ce
σ/p
0 , for some c ∈ R. Moreover, from the assumption χ1

i (1) = 0,
we have χ1

∞ = 0. Concerning the second equation, we get χ2
∞ = 0 from Lemma 6.2.

Then ‖eσ/pρi χi‖W 1,p([−3,3]×[0,π]) → 0, which implies ‖χi‖W 1,p
σ (∆ρi

∩{e−3<|z|<e3}) →
0. �

We define KerDu = {ζ ∈ TuW 1,p
σ (Θ; γ)|Duζ = 0}.

Lemma 6.4. There exists some constant C depending only on u such that

‖n‖W 1,p
σ (Θ) ≤ C‖Dun‖Lpσ(Θ)

for n ∈ (KerDu)⊥ = {n ∈ TuW 1,p
σ (Θ; γ)|

∫
Θ
〈n, ζ〉ασ/p(|z|)dxdy = 0 for ζ ∈ KerDu}.

Proof. Suppose that there exists a sequence {ni}∞i=0 of ni ∈ (KerDu)⊥ such that
‖ni‖W 1,p

σ (Θ) = 1 and ‖Duni‖Lpσ(Θ) → 0. Fix N > 1. By the Rellich’s theorem there
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exist a subsequence {nil}∞l=1 and n∞ ∈ Lpσ(Θ) such that ‖n∞−nil‖Lpσ(Θ∩{|z|<eN}) →
0. We omit to mention subsequences hereafter. By the Gärding inequality

‖ni − nj‖W 1,p
σ (Θ∩{|z|<eN−1})

≤ C(‖Du(ni − nj)‖Lpσ(Θ∩{|z|<eN}) + ‖ni − nj‖Lpσ(Θ∩{|z|<eN}))

→ 0,

and ‖n∞ − ni‖W 1,p
σ (Θ∩{|z|<eN}) → 0. Moreover,

‖Dun∞ −Duni‖Lpσ(Θ∩{|z|<eN}) ≤ C‖n∞ − ni‖W 1,p
σ (Θ∩{|z|<eN}) → 0,

and Dun∞ = 0. Since ‖ni‖W 1,p
σ (Θ) = 1, ‖n∞‖W 1,p

σ (Θ) = 1. So n∞ ∈ KerDu, which

contradicts to ni ∈ (KerDu)⊥. Hence there is no such sequence as {ni}∞i=1, and
there exists some constant C as in the lemma. �

We define

V ⊥ρ =

{
χ ∈ Tu]ρvW 1,p

σ (∆ρ)
∣∣∣ ∫∆ρ

〈χ, ζ]ρη〉βσ/pρi (|z|)dxdy = 0 for ζ ∈ KerDu and η ∈ KerDv

and χ1(1) = 0

}
.

Since χ1(1) ∈ R( ∂∂θ )γ(0), the codimension of V ⊥ρ in Tu]ρvW
1,p
σ (∆ρ) is equal to

dim KerDu + dim KerDv + 1.

Proposition 6.5. Let u and v be punctured pseudo-holomorphic discs. Then there
exist some constants ρ0 and C depending only on u and v such that

‖χ‖W 1,p
σ (∆ρ) ≤ C‖Du]ρvχ‖Lpσ(∆ρ),

for ρ > ρ0 and χ ∈ V ⊥ρ .

Proof. Let {(ρi, χi)}∞i=1 be a sequence of pairs ρi ∈ R and χi ∈ V ⊥ρi . Suppose that
ρi → ∞ and that ‖χi‖W 1,p

σ (∆ρi
) = 1 and ‖Du]ρiv

χi‖Lpσ(∆ρi
) → 0. Define smooth

cutoff functions βΘ, β[−3,3] and βΞ on ∆ρ such that

βΘ(z) =

{
1, for |z| ≤ e−3,
0, for e−2 < |z|,

β[−3,3](z) =

 0, for |z| < e−3,
1, for e−2 < |z| < e2,
0, for e3 < |z|,

βΞ(z) =

{
0, for |z| < e2,
1, for e3 < |z|,

and βΘ + β[−3,3] + βΞ ≡ 1. Then

‖χi‖W 1,p
σ (∆ρi

) ≤ ‖βΘχi‖W 1,p
σ (∆ρi

) + ‖β[−3,3]χi‖W 1,p
σ (∆ρi

) + ‖βΞχi‖W 1,p
σ (∆ρi

).

From Proposition 6.3, ‖β[−3,3]χi‖W 1,p
σ (∆ρi

) → 0. Due to the support of βΘχi, we

may think of βΘχi ∈ Tu]ρivW
1,p
σ (∆ρi) as βΘχi ∈ TuW

1,p
σ (Θ). Let {e1, . . . , el}

be an orthonormal basis of KerDu, i.e.,
∫

Θ
〈ei, ej〉ασ/p(|z|)dxdy = δij . Decompose

βΘχi into ki+ni, where ki =
∑l
j=1

∫
Θ
〈βΘχi, ej〉ασ/p(|z|)dxdyej and ni = βΘχi−ki.

Then ‖βΘχi‖W 1,p
σ (∆ρi

) = ‖βΘχi‖W 1,p
σ (Θ) ≤ ‖ki‖W 1,p

σ (Θ)+‖ni‖W 1,p
σ (Θ). By definition,

for ej ∈ KerDu, ∫
∆ρi

〈χi, ej]ρi0〉βσ/pρi (|z|)dxdy = 0.
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And, due to the support of ej]ρi0,∫
∆ρi

〈χi, ej]ρi0〉βσ/pρi (|z|)dxdy

=

∫
Θ

〈χi, ej]ρi0〉ασ/p(|z|)dxdy

=

∫
Θ

〈βΘχi, ej〉ασ/p(|z|)dxdy +

∫
Θ

(1− βΘ)〈χi, ej]ρi0〉ασ/p(|z|)dxdy.

Moreover,∣∣∣∣∫
Θ

(1− βΘ)〈χi, ej]ρi0〉ασ/p(|z|)dxdy
∣∣∣∣ ≤ C

∫
Θ∩{eρi−3<|z|<eρi−1}

|χi||ej |ασ/p(|z|)dxdy

≤ C‖χi‖C0(∆ρi
)‖ej‖Lpσ(Θ∩{eρi−3<|z|<eρi−1}).

Since ‖χi‖W 1,p
σ (∆ρi

) = 1, we have ‖χi‖C0(∆ρi
) ≤ C. Hence

∫
Θ
〈βΘχi, ej〉ασ/p(|z|)dxdy →

0, and ‖ki‖W 1,p
σ (Θ) → 0. From Proposition 6.3, Lemma 6.4 and

‖Duni‖Lpσ(Θ) = ‖Du(ki + ni)‖Lpσ(Θ)

= ‖Du(βΘχi)‖Lpσ(Θ)

= ‖Du]ρiv
(βΘχi)‖Lpσ(∆ρi

)

≤ C(‖χi‖Lpσ(∆ρi
∩{e−3<|z|<e−2) + ‖Du]ρiv

χi‖Lpσ(∆ρi
)),

we obtain ‖ni‖W 1,p
σ (Θ) → 0. Hence ‖βΘχi‖W 1,p

σ (∆ρi
) → 0. Similarly, we can prove

‖βΞχi‖W 1,p
σ (∆ρi

) → 0, and finally we have ‖χi‖W 1,p
σ (∆ρi

) → 0, which contradicts

to ‖χi‖W 1,p
σ (∆ρi

) = 1. Hence there is no such sequence as {(ρi, χi)}∞i=1, and there

exists some constant C as in the proposition. �

Corollary 6.6. Suppose that Du : TuW
1,p
σ (Θ; γ)→ Lpσ(Θ; γ)u and Dv : TvW

1,p
σ (Ξ; γ)→

Lpσ(Ξ; γ)v are surjective. Then there are some constants ρ0 and C depending only
on u and v such that, for ρ > ρ0, there exists Gu]ρv : Lpσ(∆ρ)u]ρv → V ⊥ρ which
satisfies

Du]ρvGu]ρv = id,

‖Gu]ρvκ‖W 1,p
σ (∆ρ) ≤ C‖κ‖Lpσ(∆ρ).

Proof. From Proposition 6.5, if κ ∈ KerDu]ρv ∩ V ⊥ρ , then κ = 0 and

dim KerDu]ρv ≤ codimV ⊥ρ = dim KerDu + dim KerDv + 1.

We remark that, for small σ > 0, the spectral flow tells us

IndexDu]ρv = IndexDu + dim Kerγ∗J ◦ γ∗∇ ∂
∂t

+ IndexDv,

where Index means the Fredholm index. In fact dim Kerγ∗J ◦ γ∗∇ ∂
∂t

= 1. Then

the surjectivity of Du and Dv implies that

dim KerDu]ρv = dim KerDu + dim KerDv + 1 + CokerDu]ρv.

Hence we obtain dim KerDu]ρv = codimV ⊥ρ and dim CokerDu]ρv = 0, which imply

that KerDu]ρv ⊕V ⊥ρ = Tu]ρvW
1,p
σ (∆ρ) and Du]ρv : V ⊥ρ → Lpσ(∆ρ)u]ρv is surjective,

and isomorphic. We define Gu]ρv by the inverse of Du]ρv, and the constant C as in
the corollary is derived from the one of Proposition 6.5. �
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We give Newton’s method to find pseudo-holomorphic discs near to approximate
pseudo-holomorphic discs [1] and [2].

Proposition 6.7. For w ∈ W 1,p
σ (∆ρ), suppose that there exists some constant C

which satisfies the following conditions:

• ‖Nw(χ)−Nw(χ′)‖Lpσ(∆ρ) ≤ C(‖χ‖W 1,p
σ (∆ρ)+‖χ′‖W 1,p

σ (∆ρ))‖χ−χ′‖W 1,p
σ (∆ρ),

for χ, χ′ ∈ TwW 1,p
σ (∆ρ) with ‖χ‖W 1,p

σ (∆ρ), ‖χ′‖W 1,p
σ (∆ρ) < C−2/4.

• There exists Gw : Lpσ(∆ρ)w → TwW
1,p
σ (∆ρ) such that DwGw = id and

‖Gwκ‖W 1,p
σ (∆ρ) ≤ C‖κ‖Lpσ(∆ρ).

• ‖Fw(0)‖Lpσ(∆ρ) ≤ C−3/16.

Then there exists χ ∈ TwW 1,p
σ (∆ρ) such that ‖χ‖W 1,p

σ (∆ρ) ≤ C−2/4 and Fw(χ) = 0,

which implies ∂J(exp
gM]ρM′
w χ) = 0.

Proof. For χ ∈ KerDw, we define Fχ : Lpσ(∆ρ)w → Lpσ(∆ρ)w by

Fχ(κ) = −Fw(0)−Nw(χ+Gwκ).

Put χ′ = 0 in the first condition, and ‖Nw(χ)‖Lpσ(∆ρ) ≤ C‖χ‖2W 1,p
σ (∆ρ)

. Then

‖ − Fw(0)−Nw(χ+Gwκ)‖Lpσ(∆ρ)

≤ ‖Fw(0)‖Lpσ(∆ρ) + ‖Nw(χ+Gwκ)‖Lpσ(∆ρ)

≤ ‖Fw(0)‖Lpσ(∆ρ) + C‖χ+Gwκ‖2W 1,p
σ (∆ρ)

≤ ‖Fw(0)‖Lpσ(∆ρ) + C(‖χ‖W 1,p
σ (∆ρ) + C‖κ‖Lpσ(∆ρ))

2.

For x, y ∈ Lpσ(∆ρ)w,

‖ −Nw(χ+Gwx) +Nw(χ+Gwy)‖Lpσ(∆ρ)

≤ C(‖χ+Gwx‖W 1,p
σ (∆ρ) + ‖χ+Gwy‖W 1,p

σ (∆ρ))‖Gwx−Gwy‖W 1,p
σ (∆ρ)

≤ C2(2‖χ‖W 1,p
σ (∆ρ) + C‖x‖Lpσ(∆ρ) + C‖y‖Lpσ(∆ρ))‖x− y‖W 1,p

σ (∆ρ).

DefineBχ = {χ ∈ KerDw|‖χ‖W 1,p
σ (∆ρ) < C−2/8} andBκ = {κ ∈ Lpσ(∆ρ)w|‖κ‖Lpσ(∆ρ) <

C−3/8}. Then, if χ ∈ Bχ, Fχ : Bκ → Bκ and

‖Fχ(x)− Fχ(y)‖Lpσ(∆ρ) ≤
1

2
‖x− y‖Lpσ(∆ρ),

for x, y ∈ Bκ. By the contraction theorem, for each χ ∈ Bχ, we can find κχ such
that Fχ(κχ) = κχ which implies

−Fw(0)−Nw(χ+Gwκχ) = κχ.

Define f(χ) = Gwκχ, and

Fw(0) +Dw(χ+ f(χ)) +Nw(χ+ f(χ)) = 0

since χ ∈ KerDu and DwGw = id. This implies

∂J(exp
gM]ρM′
w (χ+ f(χ))) = 0,

for ‖χ‖W 1,p
σ (∆ρ) < C−2/8. And ‖χ+ f(χ)‖W 1,p

σ (∆ρ) ≤ C−2/8 + CC−3/8 = C−2/4.

�
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Finally, we glue the punctured pseudo-holomorphic discs u and v. From Lemma
5.1, there is ρ1 such that, for ρ > ρ1, there exists some constant C1 which satisfies
the first condition of Proposition 6.7. Similarly, from Corollary 6.6, we have ρ2

such that, for ρ > ρ2, there exists some constant C2 and the second condition of
Proposition 6.7 holds. And, from Lemma 6.1, there is ρ3 such that, for ρ > ρ3,
there exists some constant C3 which satisfies the third condition of Proposition 6.7.
Put ρ0 = max(ρ1, ρ2, ρ3) and C = max(C1, C2, C3), and we can apply Proposition
6.7 to our w = u]ρv, for ρ > ρ0, and get a pseudo-holomorphic disc near to w.

7. Degenerate Reeb chords

In this section, we discuss the gluing constructions of pseudo-holomorphic discs
with degenerate Reeb chords, i.e., we do not assume that γ is nondegenerate. We
can use Lemma 5.1, Lemma 6.1, Lemma 6.4 and Proposition 6.7, where we do not
need the nondegeneracy.

Let d be the dimension of Tγ(0)Λ∩(dϕT )−1Tγ(π)Λ. We may choose ei as in Section

5 such that {e1, . . . , ed} is a basis of Tγ(0)Λ ∩ (dϕT )−1Tγ(π)Λ and {e1, . . . , en} is

a basis of Tγ(0)Λ. Then, if γ∗J ◦ γ∗∇ ∂
∂t
ζ(t) = 0 with ζ(0) ∈ R ∂

∂θ ⊕ Tγ(0)Λ and

ζ(π) ∈ R ∂
∂θ ⊕ Tγ(π)Λ, we have ζ(t) = c ∂∂θ ⊕

∑d
i=1 ciei(t), for c, ci ∈ R.

Suppose that (dϕT )−1Tγ(π)Λ is spanned by {e1, . . . , ed, fd+1, . . . , fn}, where fi ∈⊕n
i=d+1(Rei⊕RJξei). Let Λ0 ⊂ R2(n−d) be the (n−d)-dimensional linear subspace

corresponding to
⊕n

i=d+1 Rei ⊂
⊕n

i=d+1 Rei⊕RJξei and Λπ ⊂ R2(n−d) the (n−d)-

dimensional linear subspace corresponding to
⊕n

i=d+1 Rfi ⊂
⊕n

i=d+1 Rei⊕RJξei.

We remark that Λ0 and Λπ intersect transversely in R2(n−d). Moreover, we define

W 1,p(R×[0, π],R2(n−d),Λ0,Λπ) = {χ ∈W 1,p(R×[0, π],R2(n−d))|χ(0) ∈ Λ0 and χ(π) ∈ Λπ}

and

W 1,p([0, π],R2(n−d),Λ0,Λπ) = {χ ∈W 1,p([0, π],R2(n−d))|χ(0) ∈ Λ0 and χ(π) ∈ Λπ},

and obtain the following lemma in a completely similar way to Lemma 6.2.

Lemma 7.1. If σ > 0 is small enough, the operator ∂
∂s+J0

∂
∂t+sgn(s)σp : W 1,p(R×

[0, π],R2(n−d),Λ0,Λπ)→ Lp(R× [0, π],R2(n−d)) is bijective, for 1 < p <∞.

For χ ∈ Tγ(0)(R×N), we denote by χ1 the R ∂
∂θ⊕RXλ⊕

⊕d
i=1 Rei(0)⊕RJξei(0)

component of χ and by χ2 the
⊕n

i=d+1 Rei(0) ⊕ RJξei(0) component of χ, and
obtain the following lemma in a completely similar way to Lemma 6.3.

Proposition 7.2. Let u and v be punctured pseudo-holomorphic discs and {(ρi, χi)}∞i=1

a sequence of pairs ρi ∈ R and χi ∈ Tu]ρivW
1,p
σ (∆ρi). Suppose that ρi → ∞ and

that ‖χi‖W 1,p
σ (∆ρi

) = 1, ‖Du]ρiv
χi‖Lpσ(∆ρi

) → 0 and χ1
i (1) = 0. Then there exists a

subsequence {(ρil , χil)}∞l=1 such that

‖χil‖W 1,p
σ (∆ρil

∩{e−3<|z|<e3}) → 0.

We define

V ⊥ρ =

{
χ ∈ Tu]ρvW 1,p

σ (∆ρ)
∣∣∣ ∫∆ρ

〈χ, ζ]ρη〉βσ/pρi (|z|)dxdy = 0 for ζ ∈ KerDu and η ∈ KerDv

and χ1(1) = 0

}
.
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Since χ1(1) ∈ R( ∂∂θ )γ(0)⊕
⊕d

i=1 Rei(0), the codimension of V ⊥ρ in Tu]ρvW
1,p
σ (∆ρ) is

equal to dim KerDu+dim KerDv +d+1. Then we obtain the following proposition
in a completely similar way to Proposition 6.5.

Proposition 7.3. Let u and v be punctured pseudo-holomorphic discs. Then there
exist some constants ρ0 and C depending only on u and v such that

‖χ‖W 1,p
σ (∆ρ) ≤ C‖Du]ρvχ‖Lpσ(∆ρ)

for ρ > ρ0 and χ ∈ V ⊥ρ .

Corollary 7.4. Suppose that Du : TuW
1,p
σ (Θ; γ)→ Lpσ(Θ; γ)u and Dv : TvW

1,p
σ (Ξ; γ)→

Lpσ(Ξ; γ)v are surjective. Then there are some constants ρ0 and C depending only
on u and v such that, for ρ > ρ0, there exists Gu]ρv : Lpσ(∆ρ)u]ρv → V ⊥ρ which
satisfies

Du]ρvGu]ρv = id,

‖Gu]ρvκ‖W 1,p
σ (∆ρ) ≤ C‖κ‖Lpσ(∆ρ).

Proof. From Proposition 7.3, if κ ∈ KerDu]ρv ∩ V ⊥ρ , then κ = 0 and

dim KerDu]ρv ≤ codimV ⊥ρ = dim KerDu + dim KerDv + d+ 1.

We remark that, for small σ > 0, the spectral flow tells us

IndexDu]ρv = IndexDu + dim Kerγ∗J ◦ γ∗∇ ∂
∂t

+ IndexDv,

where Index means the Fredholm index. In fact dim Kerγ∗J ◦γ∗∇ ∂
∂t

= d+1. Then

the surjectivity of Du and Dv implies that

dim KerDu]ρv = dim KerDu + dim KerDv + d+ 1 + CokerDu]ρv.

Hence we obtain dim KerDu]ρv = codimV ⊥ρ and dim CokerDu]ρv = 0, which imply

that KerDu]ρv ⊕V ⊥ρ = Tu]ρvW
1,p
σ (∆ρ) and Du]ρv : V ⊥ρ → Lpσ(∆ρ)u]ρv is surjective,

and isomorphic. We define Gu]ρv by the inverse of Du]ρv, and the constant C as in
the corollary is derived from the one of Proposition 7.3. �

Finally, we glue the punctured pseudo-holomorphic discs u and v. From Lemma
5.1, there is ρ1 such that, for ρ > ρ1, there exists some constant C1 which satisfies
the first condition of Proposition 6.7. Similarly, from Corollary 7.4, we have ρ2

such that, for ρ > ρ2, there exists some constant C2 and the second condition of
Proposition 6.7 holds. And, from Lemma 6.1, there is ρ3 such that, for ρ > ρ3,
there exists some constant C3 which satisfies the third condition of Proposition 6.7.
Put ρ0 = max(ρ1, ρ2, ρ3) and C = max(C1, C2, C3), and we can apply Proposition
6.7 to our w = u]ρv, for ρ > ρ0, and get a pseudo-holomorphic disc near to w.

8. Non-surjective Cauchy-Riemann operators

In this section, we discuss the gluing constructions of Kuranishi maps as in [3]
with non-surjective linearized Cauchy-Riemann operators, i.e., we do not assume
that Du and Dv are surjective.

For u ∈W 1,p
σ (Θ; γ), ImDu ⊂ Lpσ(Θ; γ)u is closed and du = dimLpσ(Θ; γ)u/ImDu

is finite. We define Eu ⊂ Lpσ(Θ; γ)u by a du-dimensional linear subspace such
that ImDu + Eu = Lpσ(Θ; γ)u. Let {eu1 , . . . , eudu} be a basis of Eu. Similarly, for

v ∈ W 1,p
σ (Ξ; γ), ImDv ⊂ Lpσ(Ξ; γ)v is closed and dv = dimLpσ(Ξ; γ)v/ImDv is
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finite. We define Eu ⊂ Lpσ(Θ; γ)u by a dv-dimensional linear subspace such that
ImDv + Ev = Lpσ(Ξ; γ)v. Let {ev1, . . . , evdv} be a basis of Ev.

For a ∈ Eu and b ∈ Ev, we define a]ρb ∈ Lpσ(∆ρ)u]ρv by

a]ρb =


a(eρz), for |z| ≤ e−3,

βu(log |z|+ 2)a(eρz), for e−3 < |z| ≤ 1,
βv(log |z| − 2)b(e−ρz), for 1 < |z| ≤ e3,

b(e−ρz), for |z| > e3,

and Eu]ρv = {a]ρb|a ∈ Eu and b ∈ Ev} ⊂ Lpσ(∆ρ)u]ρv. Since the norm on the

quotient L
p

σ(∆ρ)u]ρv = Lpσ(∆ρ)u]ρv/Eu]ρv is given by ‖ · ‖Lpσ(∆ρ) = infk∈Eu]ρv ‖ ·
+k‖Lpσ(∆ρ), we obtain ‖ · ‖Lpσ(∆ρ) ≤ ‖ · ‖Lpσ(∆ρ), and slight modifications of Lemma

5.1 and Lemma 6.1, where we do not need the surjectivity, hold.

Lemma 8.1. For w ∈W 1,p
σ (∆ρ), we write Fw(χ) = Fw(0) +Dwχ+Nw(χ). Then

there exists some constant C depending only on ‖∇w‖Lp(∆ρ) such that

‖Nw(χ)−Nw(χ′)‖Lpσ(∆ρ) ≤ C(‖χ‖W 1,p
σ (∆ρ) + ‖χ′‖W 1,p

σ (∆ρ))‖χ− χ
′‖W 1,p

σ (∆ρ),

for χ, χ′ ∈ TwW 1,p
σ (∆ρ) with ‖χ‖W 1,p

σ (∆ρ), ‖χ′‖W 1,p
σ (∆ρ) < C−1.

Lemma 8.2. Let u and v be punctured pseudo-holomorphic discs. For any ε > 0,
there exists some constant ρ0 depending only on ε, u and v such that

‖∂J(u]ρv)‖Lpσ(∆ρ) < ε,

for ρ > ρ0.

Now we prove the new lemma.

Lemma 8.3. Let u and v be punctured pseudo-holomorphic discs and {(ρi, χi)}∞i=1

a sequence of pairs ρi ∈ R and χi ∈ Tu]ρivW
1,p
σ (∆ρi). Suppose that ρi → ∞ and

that ‖χi‖W 1,p
σ (∆ρi

) = 1, ‖Du]ρiv
χi‖Lpσ(∆ρi

) → 0. Then ‖Du]ρiv
χi‖Lpσ(∆ρi

) → 0.

Proof. From ‖Du]ρiv
χi‖Lpσ(∆ρi

) → 0, there exists a sequence of ki ∈ Eu]ρiv such that

‖Du]ρiv
χi+ki‖Lpσ(∆ρi

) → 0. And from ‖χi‖W 1,p
σ (∆ρi

) = 1, we have ‖Du]ρiv
χi‖Lpσ(∆ρi

) <

C. Hence we may think that ‖ki‖Lpσ(∆ρi
) < 2C. Put

ki =

du∑
p=1

cupie
u
p]ρi0 +

dv∑
q=1

cvqi0]ρie
v
q ,

for cupi, c
v
qi ∈ R. Because ‖ki‖Lpσ(∆ρi

) < 2C, there exist cup and cvq such that

limi→∞ cupi = cup and limi→∞ cvqi = cvq after taking subsequences if necessary. Then
we put

k′i =

du∑
p=1

cupe
u
p]ρi0 +

dv∑
q=1

cvq0]ρie
v
q ,
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and ‖Du]ρiv
χi + k′i‖Lpσ(∆ρi

) → 0. Moreover, due to the support of the elements of

Eu]ρiv, we have

‖Du]ρiv
χi + k′i‖Lpσ(∆ρ)

= ‖Du(βu(log |z| − ρi + 1)χi(e
−ρiz)) +

du∑
p=1

cupβu(log |z| − ρi + 2)eup‖Lpσ(Θ)

+‖Dv(βv(log |z|+ ρi − 1)χi(e
ρiz)) +

dv∑
q=1

cvqβv(log |z|+ ρi − 2)evq‖Lpσ(Ξ).

And there is some constant C > 0 such that

‖Du(βu(log |z| − ρi + 1)χi(e
−ρiz)) +

du∑
p=1

cupβu(log |z| − ρi + 2)eup‖Lpσ(Θ)

≥ ‖Du(βu(log |z| − ρi + 1)χi(e
−ρiz)) +

du∑
p=1

cupe
u
p‖Lpσ(Θ) − C

du∑
p=1

‖eup‖Lpσ(Θ∩{eρi−3<|z|}).

Hence Du(βu(log |z|−ρi+1)χi(e
−ρiz)) ∈ ImDu converges to

∑du
p=1 c

u
pe
u
p ∈ Eu, and

the limit is equal to 0 and cup = 0. Similarly we obtain cvq = 0. Hence k′i = 0 and
‖Du]ρiv

χi‖Lpσ(∆ρi
) → 0. �

From Lemma 8.3 and Proposition 7.2, we obtain the following proposition.

Proposition 8.4. Let u and v be punctured pseudo-holomorphic discs and {(ρi, χi)}∞i=1

a sequence of pairs ρi ∈ R and χi ∈ Tu]ρivW
1,p
σ (∆ρi). Suppose that ρi → ∞ and

that ‖χi‖W 1,p
σ (∆ρi

) = 1, ‖Du]ρiv
χi‖Lpσ(∆ρi

) → 0 and χ1
i (1) = 0. Then there exists a

subsequence {(ρil , χil)}∞l=1 such that

‖χil‖W 1,p
σ (∆ρil

∩{e−3<|z|<e3}) → 0.

And similarly, from Lemma 8.3, we obtain the following proposition which is a
slight modification of Proposition 7.3.

Proposition 8.5. Let u and v be punctured pseudo-holomorphic discs. Then there
exist some constants ρ0 and C depending only on u and v such that

‖χ‖W 1,p
σ (∆ρ) ≤ C‖Du]ρvχ‖Lpσ(∆ρ)

for ρ > ρ0 and χ ∈ V ⊥ρ .

Proof. Let {(ρi, χi)}∞i=1 be a sequence of pairs ρi ∈ R and χi ∈ V ⊥ρi . Suppose that
ρi → ∞ and that ‖χi‖W 1,p

σ (∆ρi
) = 1 and ‖Du]ρiv

χi‖Lpσ(∆ρi
) → 0. From Lemma

8.3, ‖Du]ρiv
χi‖Lpσ(∆ρi

) → 0. Then we obtain the same contradiction in the proof

of Proposition 6.5, and hence there is no such sequence as {(ρi, χi)}∞i=1, and there
exists some constant C as in the proposition. �

Corollary 8.6. There are some constants ρ0 and C depending only on u and v
such that, for ρ > ρ0, there exists Gu]ρv : L

p

σ(∆ρ)u]ρv → V ⊥ρ which satisfies

Du]ρvGu]ρv = id,

‖Gu]ρvκ‖W 1,p
σ (∆ρ) ≤ C‖κ‖Lpσ(∆ρ).
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Proof. Here we denote by Du]ρv the composition of Du]ρv and the projection

Lpσ(∆ρ)u]ρv → L
p

σ(∆ρ)u]ρv. From Proposition 8.5, if κ ∈ KerDu]ρv ∩ V ⊥ρ , then
κ = 0 and

dim KerDu]ρv ≤ codimV ⊥ρ = dim KerDu + dim KerDv + d+ 1.

We remark that, for small σ > 0, the spectral flow tells us

IndexDu]ρv = IndexDu + dim Kerγ∗J ◦ γ∗∇ ∂
∂t

+ IndexDv.

In fact dim Kerγ∗J ◦ γ∗∇ ∂
∂t

= d+ 1 and dimEu]ρv = dim CokerDu + dim CokerDv.

Then

dim KerDu]ρv = dim KerDu + dim KerDv + d+ 1 + dim CokerDu]rhov − dimEu]ρv.

Since dimEu]ρu − (dim KerDu]ρv − dim KerDu]ρv) ≤ dim CokerDu]ρv, we obtain

dim KerDu]ρv = codimV ⊥ρ

and

dim KerDu]ρv − dim KerDu]ρv = dimEu]ρv − dim CokerDu]ρv

which imply that KerDu]ρv ⊕V ⊥ρ = Tu]ρvW
1,p
σ (∆ρ) and Du]ρv : V ⊥ρ → L

p

σ(∆ρ)u]ρv
is surjective, and isomorphic. We can define Gu]ρv by the inverse of Du]ρv, and the
constant C as in the corollary is derived from the one of Proposition 8.5. �

We give Newton’s method to construct a Kuranishi map. The proof is completely
similar to that of Proposition 6.7.

Proposition 8.7. For w ∈ W 1,p
σ (∆ρ), let Ew ⊂ Lpσ(∆)w be a finite dimensional

linear subspace and L
p

σ(∆)w = Lpσ(∆)w/Ew. Suppose that there exists some con-
stant C which satisfies the following conditions:

• ‖Nw(χ)−Nw(χ′)‖Lpσ(∆ρ) ≤ C(‖χ‖W 1,p
σ (∆ρ)+‖χ′‖W 1,p

σ (∆ρ))‖χ−χ′‖W 1,p
σ (∆ρ),

for χ, χ′ ∈ TwW 1,p
σ (∆ρ) with ‖χ‖W 1,p

σ (∆ρ), ‖χ′‖W 1,p
σ (∆ρ) < C−2/4.

• There exists Gw : L
p

σ(∆ρ)w → TwW
1,p
σ (∆ρ) such that DwGw = id and

‖Gwκ‖W 1,p
σ (∆ρ) ≤ C‖κ‖Lpσ(∆ρ).

• ‖Fw(0)‖Lpσ(∆ρ) ≤ C−3/16.

Then there exists a map f : {χ ∈ KerDw|‖χ‖W 1,p
σ (∆ρ) < C−2/8} → V ⊥ρ such that

Fw(χ+ f(χ)) = 0 ∈ Lpσ(∆)w which implies ∂J(exp
gM]ρM′
w (χ+ f(χ))) ∈ Ew.

Finally, we construct the Kuranishi map. From Lemma 8.1, there is ρ1 such
that, for ρ > ρ1, there exists some constant C1 which satisfies the first condition
of Proposition 8.7. Similarly, from Corollary 8.6, we have ρ2 such that, for ρ > ρ2,
there exists some constant C2 and the second condition of Proposition 8.7 holds.
And, from Lemma 8.2, there is ρ3 such that, for ρ > ρ3, there exists some constant
C3 which satisfies the third condition of Proposition 8.7. Put ρ0 = max(ρ1, ρ2, ρ3)
and C = max(C1, C2, C3), and we can apply Proposition 8.7 to our w = u]ρv, for

ρ > ρ0, and get the Kuranishi map sw(χ) = ∂J(exp
gM]ρM′
w (χ + f(χ))) ∈ Ew on

{χ ∈ KerDw|‖χ‖W 1,p
σ (∆ρ) < C−2/8}.

We remark that, if sw(χ) = 0, then exp
gM]ρM′
w (χ+f(χ)) is a pseudo-holomorphic

disc near to w.
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