CUP PRODUCTS ON MORSE HOMOLOGY OF MANIFOLDS
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MANABU AKAHO

ABSTRACT. We describe cup products on Morse homology of manifolds with
boundary. As an application, we define product structures on Floer homology
of Lagrangian submanifolds with Legendrian end in a symplectic manifold with
concave end. In particular, we show that these products satisfy the Leibniz
rules on the chain level.

1. INTRODUCTION

In this paper we describe cup products on Morse homology of manifolds with
boundary. As an application, we define product structures on Floer homology
of Lagrangian submanifolds with Legendrian end in a symplectic manifold with
concave end. In particular, we show that these products satisfy the Leibniz rules
on the chain level.

In [9] Witten invented Morse complex; For a Morse function on a closed man-
ifold, the complex is generated by the critical points, and the boundary operator
counts gradient trajectories between critical points of Morse index difference 1. The
homology of Morse complex is called Morse homology, and it is isomorphic to the
singular homology, see [4], [9] and Section 2. In [1] the author introduced Morse
complex of manifolds with boundary; For some Morse function on a compact mani-
fold with boundary, the complex is generated by the interior critical points and the
positive boundary critical points, and the boundary operator counts broken gradient
trajectories between generators of Morse index difference 1, and the homology is
isomorphic to the absolute singular homology, see [1] and Section 2. As an applica-
tion, the author introduced Floer homology for pairs of Lagrangian submanifolds
with Legendrian end in a symplectic manifold with concave end, see [1] and Section
5.

Although a single Morse function tells us the singular homology, Fukaya found
that we need three Morse functions to describe cup products in terms of Morse
theory, see [5] and Section 3; The cup products count gradient trees and satisfy the
Leibniz rules on the chain level. (In fact Fukaya invented A, structures among
smooth functions on a closed manifold, see [5].) In this paper we describe cup
products on Morse homology of manifolds with boundary, which also satisfy the
Leibniz rules on the chain level, see Section 3 and Section 4. As an application,
we define product structures on Floer homology of Lagrangian submanifolds with
Legendrian end in a symplectic manifold with concave end, see Section 5.
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We confirm our contents: In Section 2 we review Morse homology of compact
manifolds with and without boundary. We emphasize the importance of unsta-
ble manifolds of Morse functions to understand Morse complex. In Section 3, we
deal with cup products on Morse complex of compact manifolds with and without
boundary: First we describe the cup product in terms of unstable manifolds, and
secondly we heuristically obtain the cup products in terms of gradient trees. In
particular, we prove the Leibniz rules in terms of unstable manifolds in Section
3. In Section 4, we again review Morse complex of manifolds with boundary, and
prove the Leibniz rules on Morse complex of manifolds with boundary in terms
of gradient trees. Finally, in Section 5, we review Floer homology of Lagrangian
submanifolds with Legendrian end in a symplectic manifold with concave end, and
give product structures on the Floer homology, which satisfy the Leibniz rules on
the chain level.

2. MORSE HOMOLOGY OF MANIFOLDS WITH BOUNDARY

In this section, we briefly review Morse homology of manifolds with boundary,
introduced in [1]. But, before manifolds with boundary, we recall Morse homology
of closed manifolds, see also [4] and [9].

Let M be an n-dimensional oriented closed manifold, and g a Riemannian metric
on M. Let f be a Morse function on M. We denote by X the gradient vector field
on M with respect to f and g, i.e., Xy is given by df = g(Xy,-). Let ¢ : M — M
be the isotopy of —Xy, i.e., ¢, satisfy dy;/dt = =X o ¢, and ¢g(z) = x. Then,
for a critical point p of f, we define the stable manifold S, by

Sp = {xGMrtgglm%(I) —p},

and similarly, the unstable manifold U, by

U, = {x e M: t_l)lr_noogo(x) :p}.

Note that S, is diffeomorphic to the (n — p(p))-dimensional open ball, and U, is
diffeomorphic to the u(p)-dimensional open ball, where p(p) is the Morse index of
p. Moreover, S, and U, intersect transversely at only p. We may put orientations
of S, and U, so that the intersection number U, N S, is +1.

For a generic f, the unstable manifolds of f give a CW-decomposition of M. We
denote by M* = w(p) <k U, the k-skeleton. Then the connecting homomorphism
§p  Hp(MF MF1.7) — Hyp_(M*F1, M*=2;7) satisfy 0,1 o 6, = 0, and the
homology of the chain complex (H,(M*, M*~1;7),§,) is isomorphic to the singular
homology of M. On the other hand, under the natural identification

Hy(M*, M*"7) = € ZU,,
w(p)=Fk
the connecting homomorphism can be written as
GUp= > $(0W,NS,)U,,
n(g)=k—1

where W, := {&z € U, : f(z) > f(p) — ¢}, for some small ¢ > 0 so that W), is
diffeomorphic to a closed ball, and W), is the boundary of W, and §(0W, N S,) is
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the intersection number of 0W,, and S,. Note that this description was essentially
given by Milnor in [8], and tells us Morse homology. We define

u(p)=*k

which is isomorphic to Hy(M* M*=1;7Z) by identifying p with U,. Note that
an intersection point z € W, N S, corresponds to the unparameterized negative
gradient trajectory from p to ¢ passing through x, and we define M(p, q) to be the
set of unparameterized negative gradient trajectories from p to q. Then we define
a linear map 0y : Cr(f) = Cr_1(f) by

Op= > tMl(pq)q
wlg)=k—1
which coincides with d;, by identifying OW, N S, with M(p,q) as a 0-dimensional
oriented compact smooth manifold. Then, we obtain Morse complex (C.(f),0x),
and we call its homology Morse homology, which is isomorphic to the singular
homology of M.

The point of closed manifold case is that unstable manifolds give a CW-complex
and the boundary operator of Morse complex is nothing but the connecting homo-
morphism.

Next we review Morse homology of manifolds with boundary, see [1].

Let M be an n-dimensional oriented compact manifold with boundary 0M. We
identify a collar neighborhood of the boundary with [0,1) x OM, and denote by r
the standard coordinate on the first factor. Take a Riemannian metric g on M\ OM
such that gl 1)xom = %dr ® dr + rgans, where gsys is a Riemannian metric on
OM. Let f be a Morse function on M \ M which satisfies the following conditions:

e There is a Morse function fan on OM such that f|1)xaom = rfan; and
e If ~y is a critical point of fypr, then faar(7y) is not equal to zero.

We call v € OM a positive boundary critical point if 7 is a critical point of fgp; and
fonr () > 0, and similarly, we call § € M a negative boundary critical point if § is
a critical point of fopr and fanr(0) < 0. On the other hand, we call p € M \ OM an
interior critical point if p is a critical point of f. Note that we always use notation
~v,7" € OM for positive boundary critical points, 0,0’ € M for negative boundary
critical points, and p,p’ € M \ OM for interior critical points.

On the collar neighborhood (0, 1) x 9M, the gradient vector field Xy with respect
to fand gisrfy M% + X¢,,,, where Xy, ,, is the gradient vector field with respect
to fan and gonr, and we define a vector field X ¢ on M by

<. Xy, on M\ OM,
P71 Xjpus on {0} x OM.

We denote by @, : M — M the isotopy of ,yh ie., @, is given by dp,/dt =
—X o, and py(z) = x.

Remember that, in the closed manifold case, unstable manifolds give a CW-
complex. But, in the case of manifolds with boundary, unstable manifolds may not
give a CW-complex; We would explain this point. Denote by B* the k-dimensional
open ball, by Ek the k-dimensional closed ball, and by aﬁ’“ the boundary of Ek.
Moreover, we define H* := {(z1,...,21) : 23 + -+ + 22 < 1,2, > 0} and OH* :=
{(z1,...,25) € H* : 2, = 0}.
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As in the closed manifold case, for an interior critical point p € M \ OM, we
define the stable manifold .S}, by

Sp = {x e M: t_l)iinoo@(x) :p} C M\ oM,

and similarly, the unstable manifold U, by
U, := {w eEM: tl}r_nw@(x) :p} C M\ oM.

Note that S, is diffeomorphic to B () and U, is diffeomorphic to B#®P) More-
over, S, and U, intersect transversely at only p. We may put orientations of S,
and U, so that the intersection number U, N S5, is +1.

Next, for a positive boundary critical point v € OM, we define the stable mani-
fold S, by

Sy = {x eM: tllglm@t(x) = ’y} Cc M,

and the unstable manifold U, by

——00

U, := {xEM:tlim D, (x) —’y} C OM.

Note that U, is diffeomorphic to B*(Y)| where j(7) is the Morse index of + for the
Morse function far : OM — R, and S, is diffeomorphic to H n=#(¥) Moreover,
S, and U, intersect transversely at only v € M. We may put orientations of S,
and U, so that the intersection number U, N S, is 4+1. Similarly, for a negative
boundary critical point § € OM, we define the stable manifold S5 by

Ss = {x eEM: t_1>i+moo¢t(x) = (5} C OM,
and the unstable manifold Us by
Us = {ac eM: tl}r_n ?,(x) = 5} C M.

Note that Sj is diffecomorphic to B"~'~#() where u() is the Morse index of § for
the Morse function faas : OM — R, and Us is diffeomorphic to H*9+1 Moreover,
S5 and Us intersect transversely at only § € M. We may put orientations of Ss
and Us so that the intersection number Us N Sy is +1.

Note that, since Uy is not diffeomorphic to an open ball, the unstable manifolds
do not give a CW-decomposition of M if fys has negative boundary critical points.
Moreover, U, may be attached to the same dimensional Us, which is another reason
why the unstable manifolds do not give a CW-decomposition of M. But we have
some stratification of M, and obtain a chain complex whose homology is isomorphic
to H.(M;Z), the absolute singular homology of M. We would explain this chain
complex next.

Let f be generic. For a positive boundary critical point v € M, we fix a dif-
feomorphism i : BH) U, C dM, and extend i, to be a continuous map i :
E“(V) — OM. Note that i, may not be injective on 3?“(7). Let 61,...,0ny € OM
be the negative boundary critical points with p(d1) = -+ = p(dn) = p(y) — 1.
We also fix diffeomorphisms 5, : H*0)*+1 — Us. c M, for j = 1,...,N. Sup-
pose that there are k; negative gradient trajectories from v to d;. (k; might be
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0.) Let Hf(é")ﬂ,...,ng(é")—H be kj-copies of H*)F1 for j = 1,...,N. We
write {;1((]5], NOM)=A;U---U Ajkj C 8?”("’), where Aj; is a connected com-
ponent. Then we identify x € A;; with y € 8HZ-“(5")+1 if iy (z) = is,(y), and we

attach H{L(‘SI)H, ... ,H,’:SN)H to B
Gl

by this identification. Define e, to be the

interior of B U HM T .U H,QLJ(V(SN)H, which is homeomorphic to the pu(vy)-
dimensional open ball, and define a continuous map I, : e, — M whose restriction
on BHO), Hf(él)ﬂ, o H,’:Z(V&N)H iS4y, 45,5 - - -, U5y , T€Spectively. Note that I, is not

injective on Hf(éj)ﬂ J---u H,’:j(sj)ﬂ if k; > 2. Then we define
M= ) vu | uyu UJ Us
w(p)<k w(v)<k p(8)<k—1

where p is an interior critical point, 7 is a positive boundary critical point, and
is a negative boundary critical point. Note that MP* is homotopic to

U Up U U I, (eq).
w(p)<k w(v)<k
The connecting homomorphism 6y, : Hy(M*, M*=17) — Hj_(M*~1, M*¥=2;7)
satisfy 6,_1 0 0% = 0, and the homology of (H,(M*, M*~1;7Z),6.) is isomorphic to
H,.(M;Z), see [1]. On the other hand, under the natural identification
mH(MF MYz = @ zu,e P zr,
w(p)=Fk w(v)=k

the connecting homomorphism can be written as

WUy = > HOW,NS)Uy+ Y. HOW, NSy Ly,

w(p')=k—1 w(y')=k-1
Sely = > HOW, NS L+ > H(OW, N Ss)E(OWs N Sy ) U,
pn(y)=k-1 p(6)=k—1
p(p")=k—1

where p,p’ are interior critical points, v, are positive boundary critical points,
and § is a negative boundary critical point. Then, this description tells us our
Morse homology. We define

Cv(f) = B e P v,
w(p)=k n(y)=k
which is isomorphic to Hy(M*, M*~1;Z) by identifying p and v with U, and I,
respectively. We define M (p,p"), M(p,~"), Mn(7,7"), Mn(7,9), M(8,p’) to be the
sets of unparameterized negative gradient trajectories from p to p’ in M, p to
in M,y to~ in M, v to 6 in M, § to p’ in M, respectively. Then we define a
linear map 0 : Cr(f) = Cr_1(f) by

Opi= Y, M@+ D MmN,

w(p')=k—1 n(y')=k-1
Ohyi= Y, ML+ D EMN(y, 6)IM( PP,
n(y')=k-1 wu(0)=k—1

w(p)=k—1
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which coincides with 0y by identifying OW, N S, with M(x, ") as a 0-dimensional
oriented compact smooth manifold. This is our Morse complex, and its homology
is isomorphic to H,(M;Z), the absolute singular homology, see [1].

Note that we may also prove 0x_1 o 0y = 0 by observing the boundary of 1-
dimensional moduli spaces of unparameterized negative gradient trajectories, see
Section 4 and [1], which is very important for Floer homology of Lagrangian sub-
manifolds with Legendrian end in a symplectic manifold with concave end, see
Section 5 and [1].

There are some remarks about other related works; In [6] Kronheimer—-Mrowka
also studied Morse homology of manifolds with boundary. They considered the
double of a manifold with boundary and involution invariant Morse functions.
Then, they obtained similar Morse complex, and applied their Morse homology
to Seiberg-Witten Floer theory. In [7] F. Laudenbach also studied Morse homology
of manifolds with boundary. He considered pseudo-gradient vector fields and their
trajectories, and then obtained similar Morse homology.

3. CuP PRODUCTS

In this section, we observe cup products on Morse homology of manifolds with
boundary. But, before manifolds with boundary, we briefly review cup products on
Morse homology of closed manifolds, see [5].

In the previous section, we saw that a single Morse function tells us the singular
homology. On the other hand, in [5] Fukaya found that we need three Morse
functions to describe cup products in terms of Morse homology.

Let M be an n-dimensional oriented closed manifold, and g a Riemannian metric
on M. Let f; be a Morse function on M, for i = 1,2, 3. For a critical point p of f;, we
denote by SJ¢ and UJ* the stable manifold and the unstable manifold, respectively.

Let M} = Uoy<k UJ be the k-skeleton with respect to f;.

Suppose that f1, fo, f3 are generic so that Ugll , Ugj and Sszg intersect transversely.

Then, if p(p1) + p(p2) —n = p(ps), Ut NUSz N SJ3 is a 0-dimensional oriented
compact smooth manifold, and we define a linear map
ma: Hk'l (M{ﬁa Mfl_l; Z) ® sz (M2k.2a M2k2_1; Z)
— Hyy gy (METF277 MJrtR2mm =1 7)
by
ma(Uf @ UR) = > HULnURnSHUL,
u(ps)=ki+ka—n

where ﬁ(Ugll N U]fj N Sszg) is the number of the points in Ugll N szj N SIJ,E with sign,
where the sign comes from the intersection number. Then Fukaya essentially proved
the following theorem, see [5]:

Theorem 3.1 (Fukaya [5]). (1) We denote by 651,62 and 6% the connecting ho-
momorphisms for f1, fa and f3, respectively. Then we obtain the Leibniz rule: (We
omit the sign convention.)

§Pmy (Ul @ U2) = ma (6 UJT @ UJ2) £ mo (U @ 672U L2).

(2) This mo gives the cup product.
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Next we heuristically describe this msy in terms of gradient trees. Note that an
intersection point x € Ugll N UI{;2 N Sgg’ corresponds to the gradient tree (I1,l2,13)
such that

e [y : (—00,0] = M satisfies dl;/dt = —Xy, oly, and tlim [1(t) = p1 and
——00

11(0) = I;
o Iy : (—00,0] = M satisfies dly/dt = —Xy, oIy, and t_l)ir_n l2(t) = p2 and
15(0) = x; and

o I3:[0,00) — M satisfies dl3/dt = —Xy,0l3, and [3(0) = x and tlim I3(t) = ps.
—00

We denote by M (p1,pa,p3) the set of such gradient trees (I1,l2,13). Then, under
the identification Hy, (MF, M¥ 1. 7) 2= Oy, (f;), we may redefine the linear map
ma : Ci, (f1) ® Cky (f2) = Chythy—n(f3) by

ma(p1 ® p2) = Z M (p1, p2,3)P3-

p(ps)=p(p1)+up(p2)—n

Note that we may also prove the Leibniz rules by observing the boundary of 1-
dimensional moduli spaces of gradient trees, which is very important for Fukaya
category, see Section 4 and [5].

Next we observe cup products on Morse homology of manifolds with boundary.
In the case of closed manifolds, we used unstable manifolds to obtain the cup prod-
ucts. But, in the case of manifolds with boundary, we use the unstable manifolds
of interior critical points and I, : e, — M of positive boundary critical points.

Let M be an n-dimensional oriented compact manifold with boundary 0M. We
fix a collar neighborhood and a Riemannian metric on M \ OM as in Section 2.
Let f; : M\ OM — R be a Morse function which satisfies the same conditions
as in Section 2, for i = 1,2,3. We denote by fion the boundary Morse function
of f;, for i = 1,2,3. For an interior critical point p € M \ M of f;, we denote
by SJi ¢ M\ OM and UJ* C M\ OM the stable manifold and the unstable
manifold, respectively. For a positive boundary critical point v € M of figrr, we
denote by S{ C M and U{ C OM the stable manifold and the unstable manifold,
respectively, and similarly, for a negative boundary critical point 6 € M of fisnr,
we denote by Sgi C OM and U gi C M the stable manifold and the unstable
manifold, respectively. Remember that, in the previous section, we introduce the
notation I, : e, — M for a positive boundary critical point . Then, we use the
notation I,’; : efy — M for a positive boundary critical point 7 of f;gps, fori =1,2,3.

Note that UJt N UJ2 C dM, and if we push UJ2 into M \ dM slightly, then the
intersection points of U{ll and the pushed UA{; disappear, which means that the
intersection of U,chll and Ufg is not transversal. So we need some trick to get correct
intersection numbers as follows.

Let A; : [0,1] — [e,1] be a diffeomorphism so that A(0) = & and the restriction
of A\: on [2¢,1] is the identity, for small € > 0. Then, we define a smooth map
P : M — M by

be(z) = z, for x € M\ [0,1] x OM,
: (Aa(r)vy)7 for z = (7"7 y) S [O, 1] x OM.
Suppose that f1, f2, f3 and a small € > 0 are generic so that
L U;{faiﬁe(Ugj) and Sgg intersect transversely;
b U;{faws(Ug,j) and S,{g intersect transversely;
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Uli e o I2, : €2, — M and SI3 intersect transversely;

Ult e o I2, - €2, — M and SI3 intersect transversely;
I%l : e,ly1 — M, wE(U}{;“) and Sgg’ intersect transversely;

I i el — M, (UJ2) and SP? intersect transversely;

1 . .1 2 . .2 f3 3 .
L rey, = M,ye ol re5, — M and S;? intersect transversely; and

1. ,1 2 .2 f3 3
L, vey, = Mol 5, — M and 532 intersect transversely.

In fact we may take such generic f1, fo, f3 and a small € by the standard transversal-
ity argument in Morse theory. Then the following fiber products are 0-dimensional
oriented compact smooth manifolds, where the orientations come from the intersec-
tion numbers. Note that we use notation i, : B**) — U* and j, : B* 1) — g*
for diffeomorphisms:

{(21,22,23) € B"(’fl) x BHP2) 5 Broiee) iy (21) = the 0 i, (22) = jp, (3) },
for p1, pa and p3 with pu(p1) + p(p2) —n = p(ps);

{(@1, 22, 5) € BrPD x Brr2) o Br=09) 1y, (21) = 4z 0 i, (22) = iy (23) },
for p1, p2 and 3 with u(p1) + p(p2) —n = p(ys);

{(acl,xg,xg) € BH(p1) e%z x Bn—r(Ps) ip, (1) = e 0 132 (x2) = Jp, (xg)}, for
p1, 72 and pg with u(p1) + pu(y2) — n = pu(ps);

{(ZL‘l,JZQ,.’Eg) € BM(;Dl) X 6,2}/2 X anp,('yg) : ipl (xl) = ’l/)e o I,%Z(IEQ) = j,),s(l‘g)},
for p1, o and 3 with pu(p1) + p(y2) —n = p(y3);

{(z1,29,23) € €l x BHP2) x pr—ilps) . I} (1) = the 0 iy, (22) = jp, (3) }, for
y1, p2 and p3 with p(y1) + p(p2) —n = p(ps);

{(z1,20,23) € €] x B#P2) . Br—n(ys) I3 (#1) = e 0 ip, (T2) = iy (w3) },
for 71, py and 3 with p(v1) + p(p2) — n = p(y3);

{(z1,32,25) € el xe2, x B #(ps) I (x1) = Ye 0 I2, (22) = Jps (x3) }, for
Y1, Y2 and p3 with pu(y1) + p(y2) —n = u(ps); and

{(z1,32,23) € el xe2, x Br—r(1s) I (x1) = e 0 I2,(22) = oy (z3)}, for
Y1, Y2 and vz with p(y1) 4+ pu(y2) —n = pu(ys).

We denote by n(p1,p2,p3), n(p1,p2,73), . . the number of the points of the fiber
products above with sign, where the sign comes from the intersection number.
. . . ki ki— . ~ 'i i
Under the identification Hy, (M, M;" " Z) = €D, (), ZUfi @ D,.)=r, LI,
for i = 1,2, 3, we define a linear map

ma : Hy, (M, MF* Y 7) @ Hy, (M2, My>—1: 7)

k1+ko— ki+ka—n—1,
_>Hk1+k2*n(M31 2 n7M31 > vZ)

by
m2<U1{11 ® U1{22> = n<p17p27p3>U1{33 + Z n(p17p2773)l§,37
wu(ps)=ki+ka—n w(v3)=ki+ka—n
mQ(UZ{f ®L2/2) = n(p1772ap3)U£’ + n(p1772,'y3)133,
u(ps) n(vs)=ki1+ka—n

ma(L, @ U?) =

I
] <
+
&
|
3

n(pp)UE+ Y nlnpe ),
u(ps)=ki+ka—n n(vs)=ki1+ka—n

mo(I, ®I2) = Y nlmep)UR+ > nlnve ),

pu(p3)=ki+ka—n u(vs)=ki+ka—n
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where p1,p2 and p3 are interior critical points of fi, fo and fs3, respectively, and
1,72 and 3 are positive boundary critical points of fi, fo and f3, respectively.
Then we obtain the following theorem:

Theorem 3.2. (1) We denote by 671,62 and 573 the connecting homomorphisms
for f1, fo and f3, respectively. Then we obtain the Leibniz rules: (We omit the sign
convention.)

Fmy (U @ UZ) = ma(67 UL @ US2) & ma(US} @ 672U2),
§Pma(Ufl @ I2)) U @ I2) £ ma (U]} @ 672 12)),
§Pma (L), @ UJ?) (0111, @ UJ2) £ mao(I), @ 672U]2),

§oma(L), @ I2,)) = ma (671 I}, @ I2)) £ mo (I}, ®@ 67212)).

ma

ma2

(2) This mo gives the cup product.

Proof. We may think 4, : B*®) — M ¢.o0i, : B*®) — M, I, :e, — M and
e oL, : ey — M as chains, and hence my satisfies the Leibniz rules as in the case
of closed manifolds. O

Next we heuristically describe our ms in terms of gradient trees. We have to fix
all n(xq, *2,*3), 8 types! Note that we always use notation, for i = 1,2, 3,
e p;,pl,p! € M\ OM for interior critical points of f;;
® v, Vi, v € OM for positive boundary critical points of f;sar; and
e §;,0!,0! € OM for negative boundary critical points of fions.
First, we fix n(p1,p2,ps). Let p1,p2 and ps be interior critical points of f1, fa
and f3, respectively. Suppose p(p1) + p(p2) —n = u(ps). For small € > 0, we define

I.(p1,p2,p3) :=
{($1,£172,5173) e Brp1) o Brp2) o gn—i(ps) . ipy (T1) = Ve 0 ipy (T2) = Jipg (553)}

Since £ > 0 is small enough, for each (x1., Zac, z3c) € I.(p1, P2, p3), we may find a
smooth family {zs}sec(0,s such that zs := (14, Tas, ¥35) € Is(p1, p2,p3). Note that
(215, %2s, 3s) corresponds to a gradient tree (I14,las,l35) such that

o lis: (—00,0] = M\OM satisfies dl1,/dt = — Xy, oli,, and , lm l;5(t) =p1
——00
and [15(0) = ip, (214);
o Iy : (—00,0] = M\ OM satisfies dlas/dt = — Xy, 0lss, and t_l}r_n las(t) = po
and l25(0) = iy, (22,); and
o I3, :[0,00) = M\ OM satisfies dlzs/dt = — X, o lss, and l35(0) = jp, (235)
and lim I34(t) = ps.
t—o00
We define (wy, wa, w3) := lir%(acls,xgs, x3s). Note that ip, (w1) = ip, (W2) = jp, (w3).
5—
Then, when s — 0, (I15,l2s, l35) converges to (I1,12,13) such that
o Iy : (—00,0] = M\ OM satisfies dly/dt = —Xy, oly, and t_1>im L(t)=p
—0o0
and 11 (0) = ip, (w1);
o Iy : (—00,0) = M\ OM satisfies dly/dt = —Xy, o ly, and , lim I3(t) = pa
——00
and [5(0) = 4, (w2); and
e I3:[0,00) = M\ OM satisfies dlg/dt = — Xy, ols, and I3(0) = jp, (w3) and
tl_i)m l3(t) = Ps3.
o0
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We denote by M(p1, p2, p3) the set of such gradient trees (I1,l2,13). Then we obtain

n(p1, p2,p3) = M(p1, p2, p3).

Secondly, we fix n(p1, p2,73). Let p1, p2 be interior critical points of fi, fa, respec-
tively, and 73 a positive boundary critical point of f3sar. Suppose p(p1)+u(p2)—n =
1(v3). For small € > 0, we define

Ic(p1,p2,73) =
{(@1,22,25) € BHE) x BHPD 5 BRHO0) i (1) = Y 01y (22) = oo (3) |

Since € > 0 is small enough, for each (z1¢,22c, x3:) € I.(p1,p2,73), we may find a
smooth family {2}, such that s := (214, 225, 235) € Is(p1,p2,73). Note that
(15, Tas, T3s) corresponds to a gradient tree (I14,las,l35) such that

o 15 : (—00,0] > M\ OM satisfies dl1,/dt = — Xy, oly,, and t_l}I_Il l1s(t) = p1
and l15(0) = ip, (214);
o Iy, : (—00,0] = M\ OM satisfies dlos/dt = —X ¢, 0la,, and . lm los(t) = po
——00
and ly5(0) = ip, (22,); and
o I3 :[0,00) = M \ OM satisfies dlzs/dt = —Xy, ol3s, and l35(0) = j, (z35)
and lim ng(t> = 3.
t—o0
We define (wy, wa, w3) := lin%(ams,xgs, x35). Note that ip, (w1) = tp, (W2) = s (w3).
s—
Then, when s — 0, (I15,l2s, l35) converges to (I1,12,13) such that
o Iy : (—00,0] = M\ OM satisfies dly /dt = —Xy, oly, and tii{n L(t) =p
and [1(0) = ip, (w1);
e Iy : (—00,0] = M\ OM satisfies dly/dt = —Xy, oy, and tlim Io(t) = pa
——00
and l2(0) = 4, (w2); and
e I3:[0,00) = M\ OM satisfies dl3/dt = — Xy, ols, and [3(0) = j,(w3) and
Jim 13(2) = 3.
We denote by M(p1,pa,~y3) the set of such gradient trees (I1,l2,13). Then we obtain

n(p17P2773) = ﬁM(p17p2a73)~

Thirdly, we fix n(p1, 2, ps3). Let p1,ps be interior critical points of fi, f3, respec-
tively, and 72 a positive boundary critical point of fogas. Suppose p(p1)+p(y2)—n =
w(p3). For small € > 0, we define

I.(p1,72,p3) :==
{(l'l,Z’Q,-Ts) c B)u'(pl) X 6,2‘{2 X Bn—;uf(pi?») : Z.zn (le) = 1/)6 o 1,32 (xQ) = jp3 (x?))} .

Since € > 0 is small enough, for each (z1¢, T, 23:) € I(p1,72,p3), we may find
a smooth family {z}sec(0,s such that z := (215, Z2s, 235) € Is(p1,72,p3). There

are two possibilities: First aq, € B#(12) e?,, and secondly zo, € H{‘(él)ﬂ U---u

H,’:Z(V&N)H C 632. Suppose x5 € B“("fz)7 and then (215, 225, 235) corresponds to a
gradient tree (l1s, las, l35) such that

o lis: (—00,0] = M\ OM satisfies dl1,/dt = — X, oly,, and , lim [14(¢) =py
——00
and [15(0) = ip, (214);
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o Iy 1 (—00,0] — OM satisfies dlas/dt = —Xy,,,, © l2s, and tEEﬂ los(t) =72
and lp4(0) = I2, (25); and
o I3, :[0,00) = M\ OM satisfies dlzs/dt = —Xy, o l3s, and l35(0) = jip, (z35)
and lim I35(t) = ps.
t—o0
We define (w1, we,w3) := lir%($15,$23,$35). Then, when s — 0, I, converges to a
s—
broken trajectory (lp,l1) such that
e [y is a negative gradient trajectory of f; from p; to 1, where ~; is a positive
boundary critical point of figns with p(v4) +1 = p(p1); and
o I :(—00,0] — OM satisfies dly /dt = —X,,,, ©l1, and t_l>im l1(t) =] and
—00
11(0) = 132 (U)Q),
los converges to lo such that
o Iy : (—00,0] — OM satisfies dly/dt = —X,,,, ©l2, and t_l>ir_n I5(t) = 72 and
12(0) = 132 (U)Q),
and I3 converges to a broken trajectory (I3, l4) such that
e I3 :[0,00) = OM satisfies dl/dt = —Xy,,,, o I3, and I3(0) = IZ, (wy) and
tlim I5(t) = &5, where 04 is a negative boundary critical point of f3gps with
—00
11(d5) = pi(ps); and
e [, is a negative gradient trajectory of f3 from &5 to ps.

We denote by M(p1,71) the set of such unparameterized negative gradient tra-
jectories ly, by My (71,72,05) the set of such gradient trees (I1,ls2,l3), and by
M54, ps) the set of such unparameterized negative gradient trajectories l4. Then,
if 29, € BH2) e?,, we may identify the set of such (z1c, 2o, 23c) with

U M(phVi) X MN(717’72u6§/’,) X M((;{/)WPS)
71,95
Next, suppose xo5 € Hf(él)+1 U--- UH,‘:I(fN)H, and then (x5, s, T35) corresponds
to a gradient tree (I14,las, 35, l4s) such that
o 15 : (—00,0] = M\ OM satisfies dl1,/dt = — Xy, oly,, and tii{[l lis(t) = p1
and l15(0) = ip, (214);
e [y is a negative gradient trajectory of fagps from 7o to 84, where &5 is a
negative boundary critical point of fagys with p(y2) = p(dh) + 1;
o I35 : (—00,0] = M\ OM satisfies dl3s/dt = — X, ol3s, and  lim I35(t) = 0
— 00
and l34(0) = I2, (x2); and
o Iy :[0,00) = M\ OM satisfies dlss/dt = —Xy, o lus, and l45(0) = jp, (z35)
and lim I34(t) = ps.
t—o0
We define (w17w2,w3) = 1111(1)(.731371‘23,3333). Then, when s — 0, (113712$7l337l43)
S5—
converges to (ly,la,13,14) such that
o Iy : (—00,0) = M\ OM satisfies dly /dt = —Xy, oly, and . lim {4 (t) =p1
——00
and [1(0) = ip, (w1);
e [y is a negative gradient trajectory of fagps from o to d;
o l3: (—00,0] = M\ OM satisfies diz/dt = —Xy, ol3, and  lim I35(t) = 0
—00

and I3(0) = IZ, (wy); and
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o I, :[0,00) = M\ OM satisfies dly/dt = — Xy, ols, and 14(0) = jp, (w3) and
Jim I3(t) = ps.

We denote by My (72,0%) the set of such unparameterized negative gradient tra-
jectories ly, by M(p1,d5,ps3) the set of such gradient trees (ly,l3,ly). Then, if
Tos € H{L(él)ﬂ U - -UH,’;SN)H C 6327 we may identify the set of such (z1¢, T2e, T3¢)
with

UMN '727 ) X M(plv 2»103)

6/
Then we obtain

n(p1,72,08) = > EM(p1, Y)EMN (31,72, 85)EM (35, ps)
71,95
+ZW (72, 85)§M(p1, 6%, p3).

2

How complicated they are! But we have to go ahead!

Fourthly, we fix n(p1,72,73). Let p; be an interior critical points of f;, and
~2, Y3 positive boundary critical points of fagns, fsanr, respectively. Suppose u(p1)+
1(y2) —n = p(y3). For small € > 0, we define

IE(plv'-YQa’y?)) =
{(37175627963) € B x 2 x BRI 1 (1) = e o 12 (w2) = (953)}
Since £ > 0 is small enough, for each (z1¢,z2c,23:) € I:(p1,72,73), we may find
a smooth family {zs}sc(0, such that z, := (214, 225, 235) € Is(p1,72,73). There
HLg.u
3/2. Suppose x5 € B*72) and then (215, T2s, T35) corresponds to a
gradient tree (l1s,las, l35) such that
o I : (—00,0] = M\OM satisfies dly5/dt = — Xy, oly5, and t_l}r_n lis(t) =
and 115(0) = ip, (214);
o lys 1 (—00,0] — OM satisfies dlas/dt = —Xy,,,, © l2s, and t_l)ir_n las(t) = o
and lo4(0) = ng (z2s); and
o I3, :[0,00) = M\ OM satisfies dlzs/dt = — Xy, o l3s, and l35(0) = j, (z35)
and tlim l35(t) = 3.
— 00

are two possibilities: First xqo4 € Br(12) 6,272, and secondly xo4 € Hf(él
H ,’C‘J(V&N)H Ce

We define (w1, ws,ws) := HH(I)(.’ElS,{EQS,.’L‘gs). Then, when s — 0, l;, converges to a
s—
broken trajectory (lg,l1) such that

e [y is a negative gradient trajectory of fi from p; to 1, where ~; is a positive
boundary critical point of figps with u(v4) +1 = u(p1); and

o [y (—oo 0] — OM satisfies dl; /dt = —Xy,,,, ol1, and . lim [4(t) =~} and
——00

1(0) = I3, (w2),

) =
and (las, I35) converges to (I2,13) such that

o ly: (—00,0] = OM satisfies dly/dt = —Xy,,,, ol2, and . lim I5(t) = v2 and

——00
12(0) = IZ,(w2); and
o 3:[0, oo) — OM satisfies dl3/dt = —Xj,,,, o l3, and I3(0) = IZ, (wy) and
tl_l)m l3(t) = s
oo
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We denote by M (p1,v;) the set of such unparameterized negative gradient tra-
jectories Iy, and My (v1,72,73) the set of such gradient trees (I1,l2,13). Then, if
Toe € BrO2) 63/2, we may identify the set of such (2., Zac, z3.) With

UM@1,91) x Mu (31,72, 73)-

7

Next, suppose Tos € Hf(él)ﬂ u--- UH,‘:}E;SN)H, and then (x5, s, x35) corresponds
to a gradient tree (l1s,l2s, I35, l4s) such that
o I : (—00,0] = M\OM satisfies dly5/dt = —Xy, oly5, and \ lim 114(¢) =py
——00
and 115(0) = ip, (214);
e [y, is a negative gradient trajectory of fagps from 7o to 04, where &5 is a

negative boundary critical point of fagps with p(ye) = (%) + 1;
e I35 : (—00,0] = M\ OM satisfies dlss/dt = — Xy, ol3s, and lim las(t) = &4
——00

and l,(0) = L2/2 (z2s); and
o Iy :[0,00) = M\ OM satisfies dlas/dt = —Xy, 0 lss, and l45(0) = j, (235)
and tli}m I35(t) = 73.

But, for our Morse functions, there is no broken trajectory (Iss,lss) from &5 to
vs since fagar(6%) < 0, fsoar(v3) > 0 and the values of fo, f3 must decrease along
the broken trajectory, and this case does not occur. Note that we do not have
such mechanism in Floer case, so the products on Floer homology would be more
complicated, see Section 5! Then we obtain

n(p1,¥2,73) = Y AM(p1, yDEMN (31,72, 73)-

v

Fifthly, we fix n(y1,p2,p3). Let pa, p3 be interior critical points of f3, f3, respec-
tively, and 1 a positive boundary critical point of f1gar. Suppose p(y1)+u(p2)—n =
w(p3). For small € > 0, we define

Is(’Yl,PZ»PB) =
{(w1,2,w5) € b, x BI0) x B0 1 (21) = . 0y, (w2) = g (w3) }

Since ¢ > 0 is small enough, for each (z1.,%2.,23.) € I.(71,p2,p3), we may
find a smooth family {s}.e(0,) such that zs := (z1s, T2, 735) € Ls(71,P2,P3)-
Since UJt © OM and ,(Uf2) € M\ OM, z1, € HVM\ gpfO) .y
H:IE;SN)H \ GHZI\(;SN)H C e,lh. Then (214, x2s, T3s) corresponds to a gradient tree
(los, llsa lgs, 135) such that

e los is a negative gradient trajectory of figp from 7, to 67, where &) is a

negative boundary critical point of fi15a; with p(vy1) = u(67) + 1;
o l15:(—00,0] = M\ OM satisfies dl;s/dt = —Xy, olys, and lim lis(t) = 0}
and [145(0) = I,il (z15);
o Iy, : (—00,0] = M\ OM satisfies dlos/dt = — Xy, 0la,, and , lm los(t) = po
——00

and ly5(0) = ip, (22,); and
o I3, :[0,00) = M \ OM satisfies dlzs/dt = —Xy, o l3s, and l35(0) = jp, (z35)
and tli}m I35(t) = ps.
o0



14 MANABU AKAHO

We define (wq,ws, w3) := lil%($1s,$gs,$3s). Then, when s — 0, (los,l1s, l2s, l35)
5>
converges to (lg,l1,12,13) such that
e [y is a negative gradient trajectory of figps from v to d4;
o Iy : (—00,0] = M\ OM satisfies dl, /dt = —Xy, ol;, and
and 11(0) = I}, (w1);
o Iy : (—00,0] = M\ OM satisfies dly/dt = —Xy, o ly, and t_ljr_n I5(t) = p2
and l2(0) = 4, (w2); and
e I3:[0,00) = M\ OM satisfies dl3/dt = — Xy, ols, and I3(0) = jp, (w3) and
75111’Il lg(t) = P3.
— 00

li
t——o0

We denote by My (7y1,07) the set of such unparameterized negative gradient tra-
jectories lg, M (07, p2,p3) the set of such gradient trees (I1,12,l3). Then we obtain

n(71,p2,p3) = 3 EMun (71, 61)M(8], p2, ps)-
51
Sixthly, we fix n(y1,p2,73). Let pa be an interior critical points of fa, and 1,3

positive boundary critical points of fisas, fsanr, respectively. Suppose p(vy1) +
w(p2) —n = p(ys). For small € > 0, we define

Ic(71,p2,73) =
{(@1,02,5) € el x B0 x B0 1L (21) = 0 01y, (w2) = oy (w3) }
Since ¢ > 0 is small enough, for each (z1c,%2:,%3:) € Ic(v1,p2,73), we may
find a smooth family {zs}.e(0,e) such that zs := (215, T2s,235) € Ls(71,P2,73)-
Since U1 € OM and ¢, (Uf2) € M\ OM, z1, € HICOT N\ ggp® .y
H,’:Z(V&N)H \ 61‘[51(;5N)+1 C e#l. Then (15,25, T3s) corresponds to a gradient tree
(los, lls, lzs, lgs) SllCh that
e lys is a negative gradient trajectory of figp from 1 to &), where §] is a
negative boundary critical point of fign with p(y1) = p(d]) + 1;
o l1;: (—00,0] = M\ OM satisfies dlys/dt = —Xy, olys, and Jim l1s(t) = 07
——o00
and 11,(0) = I, (x14);
o Iy : (—00,0] = M\ OM satisfies dlas/dt = — Xy, 0lss, and t_l}m las(t) = pa
—0o0
and lo5(0) = iy, (x2,); and
o I3, :[0,00) = M\ OM satisfies dlzs/dt = — Xy, o l3s, and l35(0) = j, (z35)
and lim I34(t) = 3.
t—o0
But, for our Morse functions, there is no broken trajectory (lis,lss) from 0] to s

since fiaar(01) < 0, faanr(v3) > 0 and the values of fi, f3 must decrease along the
broken trajectory, and this case does not occur. Then we obtain

n(717p27 73) =0.

Seventhly, we fix n(vy1,72,p3). Let ps be an interior critical points of f3, and
"1, Y2 positive boundary critical points of fians, fagar, respectively. Suppose u(vy1)+
w(v2) —n = u(ps). For small € > 0, we define

I.(v1,72,p3) :=

{(ml,xQ,xg) € e,lYl X 6,272 x BnTHPps) I,il (x1) =10 1,32(:82) = jps(l'g)}.
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Since € > 0 is small enough, for each (z1¢, z2c,23:) € (71,72, p3), we may find
a smooth family {zs}se(0,] such that x, := (715,725, 735) € Is(71,72,p3). Since

Ut € OM and 9. (UJ) € M\ OM, z1, € HYOVT\ gV gy g0

N

GHSI(V(SN)H - e}“. There are two possibilities: First zo, € BH(2) ¢ 6%27
’ 5/ ,
secondly xo4 € Hf(dl)ﬂ U---u H,’:JfﬂN s - 8,%/2. Suppose zos € B*72) and then

(15, T2s, T3s) corresponds to a gradient tree (lgs,l1s, l2s, l35) such that

and

e o5 is a negative gradient trajectory of figas from -1 to 87, where 7 is a
negative boundary critical point of figp with u(y1) = u(67) + 1;
o l15: (—00,0] = M\OM satisfies dl5/dt = —X g, oly,, and Jim lis(t) = 67
——0c0
and [145(0) = I;l (z15);
o lys 1 (—00,0] — OM satisfies dlas/dt = —Xy,,,, © las, and t_l)im las(t) = 72
—o0
and ly4(0) = I2, (2); and
o I3, :[0,00) = M\ OM satisfies dlzs/dt = — Xy, o lzs, and l35(0) = jp, (z35)
and lim I34(t) = ps.
t—o0
We define (wy,wsy, ws) := lir%(xls,a:gs,xgs). Then, when s — 0, (lps,l15, l2s) con-
S5—
verges to (lg,1,l2) such that

e [y is a negative gradient trajectory of fi5ps from ;1 to 67

ly : (—o0,0] — OM satisfies dl; /dt = —Xy,,,, oly, and Jim I1(t) = &7 and
——00
14(0) = I, (wy); and
o Iy : (—00,0] — OM satisfies dly/dt = —Xy,,,, ©l2, and t_l>im l2(t) = 2 and
—o0

12(0) = 132 (U)Q),
and I35 converges to a broken trajectory (I3, l4) such that
e I3 :[0,00) = OM satisfies dl/dt = —Xy,,,, o I3, and I3(0) = IZ, (wy) and
tlim I3(t) = &%, where 8% is a negative boundary critical point of f3gps with
— 00
11(05) = pu(ps); and
e [, is a negative gradient trajectory of f3 from 65 to ps.

We denote by My (y1,d7) the set of such unparameterized negative gradient tra-
jectories lg, My (87,7v2,04) the set of such gradient trees (11, 12,13), and M(%, p3)
the set of such unparameterized negative gradient trajectories l4. Then, if zo, €
BH#(2) ¢ 632, we may identify the set of such (x1c, zae, x3:) With

U MN(’yl)éll/) X MN( 3/772a6g) X M((sgap?))

oS
67,04

Next, suppose Tgs € Hf(‘sl)H U---UH
to a gradient tree (I1s,l2s, l3s, l4s) such that

“SN/)H, and then (z1, Tas, T35) corresponds
e lys is a negative gradient trajectory of figas from 71 to 87, where §7 is a
negative boundary critical point of fipar with p(vy1) = p(87) + 1;
o l15: (—00,0] = M\OM satisfies dly5/dt = —X ¢, oly,, and Jim lis(t) = o7
——00

and 115(0) = I (x15);
e [y, is a negative gradient trajectory of fogas from ~o to 85, where 8% is a
negative boundary critical point of fagys with u(y2) = p(d) + 1;



16 MANABU AKAHO

o I35 : (—00,0] — M\OM satisfies dlzs/dt = —X g, olz,, and tLiEn l35(t) = 04
and I34(0) = I2, (2); and
o 4, :[0,00) = M\ OM satisfies dlss/dt = —Xy, o lss, and 145(0) = jip, (z35)
and lim I35(t) = ps.
t—o0
We define (wy, wse, ws) := lin(l)(xls, Zos, T3s). Then, when s — 0, (los, l1s, l2s, I35, l4s)
s—
converges to (lo,l1,12,13,14) such that
e [y is a negative gradient trajectory of fi5as from ~q to 67
e [ : (—00,0] = M\ OM satisfies dl; /dt = —X, oly, and Jim Ii(t) =67
and 1,(0) = I} (w1);
e [y is a negative gradient trajectory of fagps from 75 to 65;
e l3: (—00,0] - M\ OM satisfies dls/dt = — Xy, o l3, and Jim I3(t) = &4
——00
and I3(0) = I2, (wy); and
o Iy :[0,00) = M\ OM satisfies dly/dt = — Xy, o ls, and 14(0) = jp, (w3) and
Jim 13(t) = ps.
We denote by My (y1,d7) the set of such unparameterized negative gradient tra-
jectories Iy, My (72, 05) the set of such unparameterized negative gradient trajec-
tories la, M(6Y,8%,p3) the set of such gradient trees (I1,l3,l4). Then, if 295 €
Hf((s;)ﬂ U.- U H}it(5ﬁv/)+1
with X

C e

%,» we may identify the set of such (T1e, Toe, T3e)

U Mu(11,87) x Mu(3,85) x M(67, 85, ps).
51’7%'
Then we obtain

n(v1,72,p3) = Y M (71, 67 )M (87, 72, 55 )EM(SY, ps)

61,95
+ Z fMN (71, 07)EM N (72, 05)EM (87, 05, p3).
5y 5y

Finally, we fix n(y1,7v2,73) at last! Let 71,72 and 73 positive boundary critical
points of fianr, feans and faonr, respectively. Suppose pu(v1) + p(72) —n = p(v3).
For small € > 0, we define

I (v1,72,73) i=
{(xl,xg,xg) € e}n X 6,272 x BnH(s) I% (1) = 1. 0152 (22) = jiys (3:3)} .

Since € > 0 is small enough, for each (z1c,z2e,23:) € Ic(71,72,73), we may find
a smooth family {z4}se(0,] such that z := (715, 725, 735) € Is(71,72,73). Since
USt € OM and . (Uf2) € M\ OM, 2y, € HYOVT I\ oE O gy g+t

8H51(V5N)+1 C el . There are two possibilities: First x5 € Br(2) e% and

71 27
! 5/ ,
secondly xo4 € Hf([sl)ﬂ U---u Hg}fﬂN A C 6,%/2. Suppose a5 € B*72) and then

(15, T2s, T3s) corresponds to a gradient tree (lgs,l1s, l2s, l35) such that

e los is a negative gradient trajectory of figas from v to 87, where 87 is a
negative boundary critical point of fipar with u(vy1) = p(67) + 1;
o lis: (—00,0] = M\OM satisfies dly5/dt = —Xy, oly,, and Jim lis(t) = o7
——00

and 114(0) = I (215);
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los 1 (—00,0] — OM satisfies dlos/dt = —Xy,,,, © l2s, and tEEﬂ las(t) = 72

and lp4(0) = I2, (25); and
l3s 1 [0,00) = M \ OM satisfies dls,/dt = — X, o l3s, and l35(0) = jps(23s)
and tli}rn I35(t) = 73.

But, for our Morse functions, there is no broken trajectory (l1s,las) from 67 to s
since f1aar(07) < 0, fson(v3) > 0 and the values of fi, f3 must decrease along the

broken trajectory, and this case does not occur. Next, suppose zos € HY' G+ Ly

8 .
HSL,N )—H, and then (x5, Tas,x3s) corresponds to a gradient tree (I1s,l2s, l3s, l4s)
such that
e los is a negative gradient trajectory of figas from v to 87, where &7 is a

negative boundary critical point of fipar with p(vy1) = p(8y) + 1;
lis : (—00,0] = M\ OM satisfies dlys/dt = — Xy, olys, and tLiEn lis(t) = o7
and 114(0) = I (15);
los is a negative gradient trajectory of fogps from 2 to 84, where 84 is a
negative boundary critical point of fagys with u(y2) = u(dy) + 1;
lgs : (—00,0] — M\ OM satisfies dl3,/dt = — Xy, olss, and Jim l3s(t) = 04
— 00

and l34(0) = 1,32 (z25); and
lys : [0,00) = M \ OM satisfies dlys/dt = — Xy, 0 lys, and l45(0) = jp, (x3s)
and tlim l35(t) = 3.

—>00

But, for our Morse functions, there is no gradient tree (I15,l3s, l4s) from &7, 85 to 3
since fi1a0(07) < 0, fagns(64) < 0, fsonr(3) > 0 and the values of f1, fa, f3 must
decrease along the gradient tree, and this case does not occur. Then we obtain

n(71772a ’73) =0.

Now we redefine the linear map mg : Ck, (f1) @ Ck, (f2) = Cky+ke—n(f3) by

ma(p1,p2) == Y 4M(p1,p2,ps)ps + D tM(p1,p2,v3)7s,

p3 3
ma(p1,72) == Y M1, v )EMN (Y, 72, 65)EM(55, ps)ps
71,05,P3
+ > M (72, 85)EM(p1, 65, ps)ps
85.p3
+ > EMP,YDEMN (91, 72, Y3) 73,

’Y{ »Y3

mz(’h,pz) = Z ﬂMN(%,5/1)ﬁM(51,p2,p3)p3,

81.p3
ma(71,72) == Z EMN (71,07 )EM N (87, 2, 05 )EM(O5, p3)p3
81,84 ,p3

+ Y M (. )M (2, 65)EM(SY 65, pa)ps.

67,65 ,p3

Note that the dimension of each moduli space above is 0. Then we obtain the
following theorem from Theorem 3.2:
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Theorem 3.3. We denote by 071,072 and 0% the boundary operators of Morse
complez for f1, fo and f3, respectively. Then we obtain the Leibniz rule: (We omit
the sign convention.)

T3ma (%1 ® x9) = Mo (1 %1 Rxa) £ Mo (¥ ® 872%y),

where x; is an interior critical point of f; or a positive boundary critical point of
Jiom, fori=1,2.

Note that we may also prove this theorem by observing the boundary of 1-
dimensional moduli spaces of gradient trees, see Section 4, which is very important
for product structures on Floer homology of Lagrangian submanifolds with Legen-
drian end in a symplectic manifold with concave end, see Section 5.

4. GRADIENT TREES

In this section, we prove the Leibniz rules on Morse homology of manifolds with
boundary in terms of gradient trees. But, before the Leibniz rules, we briefly review
the proof of Jx_1 0 9 = 0 in terms of gradient trajectories, see [1].

First we recall our settings. Let M be an n-dimensional oriented compact man-
ifold with boundary OM. We identify a collar neighborhood of the boundary with
[0,1) x OM, and denote by r the standard coordinate on the first factor. Take a
Riemannian metric g on M \ M such that g[,1)xon = %dr ® dr + rgenr, where
gonm is a Riemannian metric on OM. Let f be a Morse function on M \ 9M which
satisfies the following conditions:

e There is a Morse function faas on dM such that f|1)xonm = rforr; and
e If ~ is a critical point of fyar, then foar(7) is not equal to zero.

We call v € OM a positive boundary critical point if 7 is a critical point of fgp; and
fanr(y) > 0, and similarly, we call § € OM a negative boundary critical point if § is
a critical point of fopr and fapr(0) < 0. On the other hand, we call p € M \ OM an
interior critical point if p is a critical point of f. Note that we always use notation
v,v',v" € M for positive boundary critical points, d,d’,8” € OM for negative
boundary critical points, and p,p’, p” € M \ OM for interior critical points. On the
collar neighborhood (0,1) x M, the gradient vector field X ; with respect to f and
gisr faM% + X4y, Wwhere Xy, is the gradient vector field with respect to faas
and ganr, and we define a vector field X ; on M by

<, X¢, on M\ OM,
P71 Xjpus on {0} x OM.

We define the moduli spaces of gradient trajectories. Let p, p’ be interior critical
points of f. We denote by M(p,p’) the set of maps I : R — M \ OM such that
al —
— = —Xy; and
L] at £y an . /
. tllznool(t) = p and tlggol(t) =p.

We define an equivalence relation | ~ I if [(t) = I'(t + ¢), for some ¢ € R, and we
denote by M(p,p’) the set of the equivalence classes. Similarly, we define M(p,~)
for an interior critical point p of f and a positive boundary critical point v of faas,
and M (4, p) for a negative boundary critical point ¢ of fsps and an interior critical
point p of f. Let ~,7' be positive boundary critical points of fgp;. We denote by
M (7,7') the set of maps [ : R — dM such that
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ol —
° pn = —Xy; and

. . /

o t_l)n_nool(t) =~ and tliglol(t) ="
We define an equivalence relation I ~ I" if I(t) = I'(t + ¢), for some ¢ € R, and
we denote by My (v,7") the set of the equivalence classes. Similarly, we define
My (7,6) for a positive boundary critical point v of fsrs and a negative boundary
critical point 6 of fapr, and My (6,0") for negative boundary critical points §, ¢’
of fanrr- Note that, since there is no negative gradient trajectories from a negative
boundary critical point d to a positive boundary critical point v, My (d,v) = 0.
Then we have the following theorem, see [1]:

Theorem 4.1. We may take a generic f so that the following hold:
(a) M(p,p’) is an orientable smooth manifold of dimension u(p) — u(p') — 1. If
dim M(p,p’) = 0, then M(p,p’) is compact. If dim M(p,p’) = 1, then M(p,p’)

can be compactified into M(p,p’), whose boundary is
oMp.p) = |J  M@p") x M@ p)

u(p”)=p(p)—1

u U M) x Mu(7,8) x M(8,p),

w(y)=p(p)—1
n(8)=p(y)-1

where p” is an interior critical point, v is a positive boundary critical point, and §
is a negative boundary critical point.

(b) M(p,~) is an orientable smooth manifold of dimension p(p) — p(vy) — 1. If
dim M(p,v) = 0, then M(p,~) is compact. If dim M(p,~v) =1, then M(p,v) can
be compactified into M(p,), whose boundary is

oMp) = | Mer)xMeyu | Mp) x Ma(, ),
w(p)=p(p)—1 p(y)=p(y)—1
where p' is an interior critical point, and ' is a positive boundary critical point.
(c) M(6,p) is an orientable smooth manifold of dimension u(6) — p(p). If
dim M (6,p) = 0, then M(6,p) is compact. If dim M(d,p) = 1, then M(4,p) can
be compactified into M(J, p), whose boundary is

oM@p) = | MED)xME DU ) Ma(6.8) x M@ p),
w(p")=p(d) n(8)=p(6)—1
where p' is an interior critical point, and &' is a negative boundary critical point.
(d) Mn(v,7') is an orientable smooth manifold of dimension u(y) — p(y") — 1.
If dim My (vy,v") = 0, then My (~v,") is compact. If dim My (v,v') = 1, then
M (7,7 can be compactified into My (7,v'), whose boundary is

oMn(vY)= | My x My(¥"7),
(Y =p(v)-1
where v is a positive boundary critical point.
(e) Mn(~,0) is an orientable smooth manifold of dimension u(y) — u(d) — 1.
If dim My (v,d) = 0, then My(v,0) is compact. If dim My(vy,0) = 1, then
M (7,68) can be compactified into My (7,d), whose boundary is

OMy(v,0)= ) My Y )M, 00 | Ma(,8)xMn(8,6),

p(Y)=p(y)—1 u(6)=p(y)—-1
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where v is a positive boundary critical point and &' is a negative boundary critical
point.

Note that we put the orientation on moduli spaces which comes from the inter-
section number of US| I} : ef — M and S}.

We may list every boundary components of 1-dimensional moduli spaces in Theo-
rem 4.1 without omission by chasing critical points so that we obtain 1-dimensional
moduli spaces after gluing gradient trajectories. Note that there is no broken neg-
ative trajectory from a negative boundary critical point to a positive boundary
critical point.

We also have similar arguments for My (d1, d2), which we need for Morse complex
of fanr, but we do not use My (91, d2) in this paper, see [1].

Remember that we defined

Ci(f) = P e @ 7,

u(p)=k p(v)=Fk

and the linear map 9y : Ck(f) — Cr_1(f) by

Opi= Y. M@+ D M),

n(p’)=k—1 n(y')=k-1

Oy = > AMyAYY D M (y OIM(S, PP
n(y')=k-1 n(0)=k—1
n(p)=k-1

We already proved the following theorem in Section 2 by considering the con-
necting homomorphisms. Here we prove the theorem by observing the boundary of
1-dimensional moduli spaces of unparameterized gradient trajectories.

Theorem 4.2. 9;_1 09 = 0.
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Proof. First we prove Oi_1 o dipp = 0, for an interior critical point p.

Op—100kp

- {Z tM(p, )0+ tM(p, 7’)7’}
P’ Y
= iM(p,p) {Z M " )"+ M, v”)v”}
p// ,Y//
+ Y iM(p,y {ZﬁMN VAV D AMN (Y SEM(S, p")p ”}
,Y/

¥ 8,p"

—Z {ZW (. P )EMP . P") + > iM(p,y )ﬁMN(7/75)ﬁM(5ap//)}P//

~',0

+Z{Zﬁ/\/{ppﬁ./\/l 7" +ZﬁMp, ﬁMN(Ww)}"y

1" p/

S OM(p " + S 8OM(p. A"
p// ’Y//
—0.

Note that we use Theorem 4.1 (a) and (b) at @) Hence Ok—1 0 0kp = 0.
Next we prove ;1 o Jry = 0, for a positive boundary critical point 7.

Or—1 00Ky

= Ok {wam’w + ) M (7, SEM(S, p’)p’}

v 8,p’

=> tMn(1.7) {ZﬁMN VAN D M (Y, 6)EM(6,p")p ”}
~

8,p”

+) M (7, 6)EM(S, ) {ZﬁMp ) p”+ZﬁM A }

8,p’

= {Z AM (7, Y WMN (Y S)EM(S, ") + D EMN (7, 6)EM(6, p )M (P, p") } v

p” 7.0 8,p’

Y v 8,p’

+Z{ZﬁMN77)ﬁMN('V V') Y My, 6)EM(S, p)EM (D', Y )}7

We define n(v,p”) and n(v,~"”) by
D100y =Y n(v,p" )"+ Y n(v,7" )"

p"’ vy

"
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Then
n(y,0") =Y SMN (1 M (Y M) + D M (v, O)EM(S, )M 1)
v',0 o,p
DS My (7, 8 M (8, M, ") + 3 M (7, O)EM(8, ) 2M (' ")
5,8 8,p’

=D My, 8) Y EMN (8, OIMS,p") + D EM(S p M, D)
5’ 5 p’

DS My (1, 8)80M( )
5/
=0.

Note that we use Theorem 4.1 (e) at (i), and Theorem 4.1 (c) at © Next we have

n(1,7") = > AMN (A NWMN (") + D M (v, M8, M (D7),

ol 8,p’

By Theorem 4.1 (d), the first term is equal to $0M n(7,~"), and the second term
is equal to 0 since there is no broken negative trajectory from a negative boundary
critical point  to a positive boundary critical point 7", and we obtain n(vy,~"”) = 0.
Hence 0x_1 0 9y = 0. O

Note that we may also prove the invariance of Morse homology in terms of
gradient trajectories, i.e., we may define a homotopy between Morse complexes,
which induces an isomorphism of Morse homology. See the details in [1].

Next we prove the Leibniz rules in terms of gradient trees.

Let f; be our Morse function on M \ OM, and fiopr : 9M — R the boundary
Morse function of f;, for ¢ = 1,2,3. We define the moduli spaces of gradient trees.
Let p1,p2,ps be interior critical points of f1, fa, f3, respectively. We denote by
M(p1,p2,ps3) the set of gradient trees (I,l2,13) such that

o [1:(—00,0] = M\ OM satisfies dl; /dt = —X s, and t_l)ir_n I1(t) = p1;
e Iy :(—00,0] = M\ OM satisfies diy/dt = —X g, and . lUm () = po;
——00
e I3:[0,00) = M\ OM satisfies di3/dt = —X y, and tlim I3(t) = p3; and
—00

[ ] ll(O) = ZQ(O) = l3(0)
Similarly, we define M(p1,p2,7v3), M(p1,02,p3), M(d1,p2,p3) and M(61,02,p3).
Note that M(p1,d2,73), M(d1,p2,73) and M(d1,d2,73) are empty since there is
no broken negative trajectory from a negative boundary critical point to a positive
boundary critical point. Let 1, 2, 3 be positive boundary critical points of fiaas,
foom, faam, respectively. We denote by My (y1,72,73) the set of gradient trees
(l1,12,13) such that

e 1 :(—00,0] — OM satisfies diy /dt = —X ¢, and t_l)ir_nooll(t) = y;

ly : (—00,0] — OM satisfies dly/dt = —X 4, and tliznooll(t) = o;
o I3:[0,00) — OM satisfies di3/dt = —X y, and tiirfnooll(t) = ~3; and
11(0) = 12(0) = 13(0).
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Similarly, we define MN(")/l,’)/Q, (53)7 MN('yl, 52, 53), MN(51, Y2, 53) and MN(51, 52, 53)
Note that My (71, 92,73), Mn(01,72,73) and My (d1, 02, v3) are empty since there
is no broken negative gradient trajectories from a negative boundary critical point
to a positive boundary critical point.
Note that we always use notation, for i = 1,2, 3,

o p;,p;,pi € M\ OM for interior critical points of f;;
e v, Vi, v € OM for positive boundary critical points of f;sar; and
e 0;,0.,0! € OM for negative boundary critical points of f;gns.

177

Then we have the following theorem:

Theorem 4.3. We may take generic f;, fori=1,2,3, so that the following hold:
(£) M(p1,p2,p3) is an orientable smooth manifold of dimension u(p1) + u(p2) —

w(p3)—n. Ifdim M(p1, p2, p3) = 0, then M(p1,p2, p3) is compact. If M(p1,p2,p3) =
1, then M(p1,p2,ps3) can be compactified into M(p1,p2,p3), whose boundary is

aﬂ(p17p27p3) = U M(plvpll) X M(p/17p2ap3)

p(py)=p(p1)—1

U U M (p2, py) X M(p1,ph, p3)

u(py)=p(p2)—1

U U M(pl7p27pg’)) XM(pé7p3)

u(ps)=p(ps)+1

U U M(p1, 1) X My (71,61) x M(61, p2, p3)

w(v1)=p(p1)—1
p(61)=p(y1)-1

U U M(p2,72) X My (72,02) x M(p1,02,p3)

p(y2)=p(p2)—1
w(62)=p(02)—1

U U M(p1,p2,73) x Mn(73,03) x M(d3,ps3)
1(y3)=n(d3)+1
1(83)=p(p3)
U U M(p1,71) X M(p2,72) X Mn (71,72, 03) x M(d3,p3).

w(v)=p(p1)-1
w(y2)=p(p2)—1
w(d3)=p(p3)

(g) M(p1,p2,73) is an orientable smooth manifold of dimension u(p1)+ p(p2) —
w(vz)—n. Ifdim M(p1, p2,v3) = 0, then M(p1, p2,73) is compact. If M(p1,pa,3) =
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1, then M(p1, p2,73) can be compactified into M(p1,p2,73), whose boundary is

OM(prp2ys) = | Mupl) x M(p),p2,7s)
w(py)=p(p1)-1

) U M(p27pl2) XM(plapéa’)B)

p(py)=p(p2)—1

U U M(p1,p2,p3) X M(ps3,73)

p(p3)=p(y3)+1

U U M(p1,p2,75) X Mn(75,73)
1(yg)=p(ys)+1

u o U Meum) x M, 72) x My (31,72, 7).-

p(v1)=p(p1)—1
p(v2)=p(p2)—1

(h) M(p1, d2,p3) is an orientable smooth manifold of dimension p(py)+ u(d2) —
w(ps)—n+1. If dim M(p1,d2,p3) = 0, then M(p1, d2,ps3) is compact. If M(p1,0d2,p3) =

1, then M(p1,d2,p3) can be compactified into M(p1,d2,p3), whose boundary is

OM(p1,02,p3) = U M(p1,pi) x M(p},02,p3)

p(ph)=p(p1)-1

U U M(p1,m) x My (71,61) X M(61,62,p3)

p(y1)=p(p1)—1
p(01)=p(y11)—-1

U U M(627p2) XM(p]Janp?))

p(p2)=p(62)

U U M (62,85) x M(p1,85,p3)

1) =p(32)—1

U U M(p1,82,p5) x M(ps,p3)

p(ps)=p(ps)+1

U U M(p1,71) x My (71,02,63) x M(3,p3).

p(r1)=n(p1)—1
p(63)=p(p3)

(i) M(61,p2,p3) is an orientable smooth manifold of dimension u(d1) + pu(p2) —
w(ps)—n+1. If dim M(d1, p2, ps) = 0, then M (61, p2,p3) is compact. If M(01,p2,p3) =
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1, then M(61,p2,p3) can be compactified into M(01,pa,p3), whose boundary is

OM(S1,p2,p3) = | M(1,p1) x M(p1,p2,ps)

w(p1)=p(61)

U U Mn(81,8}) x M(5}, pa2,ps)
p(0))=p(d1)—1

U U M(p27pl2) XM(617p/27p3)

p(psy)=p(p2)—1

U U M(p2,72) X My (72,02) X M(61,62,p3)

p(y2)=p(p2)—1
p(02)=p(y2)—1

@] U M(617p27p£’)) XM(péaPS)

p(ps)=p(ps)+1

U U M(p2,72) x Mn(61,72,03) x M(d3,p3).

p(v2)=p(p2)—1
p(63)=p(p3)

(G) Mn(71,72,83) is an orientable smooth manifold of dimension p(vy1)+u(y2)—
w(d3) —n+ 1. If dim My (y1,72,93) = 0, then My (v1,72,03) is compact. If
M (71,72,63) = 1, then My (v1,72,03) can be compactified into My (1,72, 63),
whose boundary 1is

OMn(,72:03) = | Mu(r,91) x Mu(4,72,0s)

p(v)=p(r1)-1

U U My (71,01) X M (01,72, 03)

w(81)=p(y)-1

U U MN(’-Y27’YQ) X MN(’-Y17’Y£353)

p(vg)=p(y2)—1

U U M (72, 02) X Mn(71,02,03)

m(82)=p(y2)—1

u U M (71,72,73) X My (73,03)
p(vs)=p(d3)+1

U U Mx(n,72,65) x My (85, 83).
(84)=1e(53) +1

(k) M(61,0d2,p3) is an orientable smooth manifold of dimension p(01) + p(d2) —
[L(pg)*n+2 IfdiInM((Sla 52ap3) = 0’ then./\/l(él, 52ap3) is compact. IfM(517 52;])3) =
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1, then M(61,02,p3) can be compactified into M(81, b, p3), whose boundary is

OM(01,02,p3) = U M (d1,01) x M(01,02,p3)

(6 =pe(51) 1

u U M,p1) x M(p1,82,ps)
w(p1)=p(d1)

U U M (02, 05) x M(31,03,p3)
1(5)=r(62)—1

U U M(627p2) XM<5lap25p3)
w(p2)=p(d2)

U U M(61,62apg) X M(pé7p3)
n(ps)=p(ps)+1

U U M (61,02,63) x M(3,p3)-
w(03)=p(ps)

(1) My (81,72,03) is an orientable smooth manifold of dimension pu(d1)+ p(y2)—

w(ds) —n+ 1. If dim My(81,72,93) = 0, then Mpy(d1,72,03) is compact. If

M (81,72,03) = 1, then My (81,72,03) can be compactified into My (81,72, 03),
whose boundary is

amN((sl?’YQa(;?)) = U MN(6176,1) X MN(61772353)
(8 =e(51)—1

U U Mx(zb) x My (61,7, 03)

p(vg)=p(v2)—1

U U M (7y2,02) X My (61, 62,63)

p(d2)=p(y2)—1

U U M (82,72, 05) X My (85, 03).
w(03)=p(d3)+1

(m) My (71,72,73) is an orientable smooth manifold of dimension p(y1) +
p(v2) —p(y3) —n+1. If dim My (y1,72,73) = 0, then M (71,72,73) is compact. If

M (1,72,73) = 1, then My(71,72,73) can be compactified into My (71,72,73),
whose boundary is

IMnN(1,72,73) = U My (71,71) X M (71,72,73)
w(y)=p(v1)—1

u U M (v2,73) X My (71,72, 73)
w(yg)=p(v2)—1

U J My(er2.7) x Mu(vh,7s)-
n(yz)=p(v)+1
Note that we put the orientation on moduli spaces which comes from the inter-

section number of UY, I* : e — M and S}.

We omit the proof of Theorem 4.3. We may list every boundary components of
1-dimensional moduli spaces in Theorem 4.3 without omission by chasing critical
points so that we obtain 1-dimensional moduli spaces after gluing gradient trees.
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Note that there is no broken negative trajectory from a negative boundary critical
point to a positive boundary critical point.

Remember that we defined the linear map ms : C, (f1)®Cr, (f2) = Cry+ko—n(f3)
by

ma(p1,p2) == Y 4M(p1,p2, ps)ps + > tM(p1,p2, ¥3) s,

p3 T3
ma(p1,72) = Y EM(p1, )M (91,72, 03)EM (33, s )ps

71,03,p3

+ Z fMu (72, 62)M(p1, 62, p3)ps

02,p3

=+ Z ﬂM(ph’yl)ﬁMN(’Yla 725 73)733

1,73

ma(y1,p2) = Z EMN (71, 01)8M (01, p2, p3)p3,

01,p3

ma(,72) = Y EMn (31, 00)EMN (81,72, 03)EM (63, ps)ps

61,03,p3

+ ) My (1, 61) M (Y2, 82) M (81, 62, p3)ps.

01,02,p3

We already proved the Leibniz rules in Theorem 3.3 by considering intersection
of U, I : ef — M, S} and their images by .. Here we prove the Leibniz rules by
observing the boundary of 1-dimensional moduli spaces of gradient trees.

Theorem 4.4. We denote by 071,07 and 073 the boundary operators of Morse
complex for f1, fo and fs, respectively. For interior critical points p1,pe of f1, fa,
respectively, we obtain the Leibniz rule: (We omit the sign convention.)

ma(pr, p2) = ma (07 p1, pa) £ ma(p1, 07po).

Proof. First we calculate 72my(py, pa).

07 ma(pr, p2) = 07 {Z tM(p1,p2,p3)ps + ZﬁM(pl,pzmg)vs}

p3 3

— Z fM(p1, p2, p3)EM (p3, P3)p3

P3,P5

+ > #M(p1, p2, p3) M (ps, v5) Vs

3,74

+ > iM(pr, pa2, 13) M (43, 75) 74

V3,75

+ D EM(p1,p2,38) M (33, 63)EM (83, ).

~3,03,0%
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Next we calculate mo (871 p1, p2) and mo(p1, 02py).

p’l Y1

my(07 py,pa) = my (Z EM(p1,p1)pt + ZﬁM(plm)%,pz>

=D tM(p1, p)EM(DY, P2, P3PS

PP

P15

+ Y EM(pr, )M (1, 61)8M (81, p2, P ).

71,01,p5

mo (pl, 3'f2p2) = ma (Pl» Z le(PQ»P/Q)plz + Z ﬁM(an 72)72)

P/g V2
= > M (p2, py)tM(p1, b, Pl )1
22
+ Y #M(pa, ps)EM (p1, b, V5) V5
D55
+ ) EM(p2, 2) M (pr, )M (11, 72, 63)§M (33, Pl )l

Y2,P5,71,03

+ > EM(p2, 12) My (72, 62) M (1, 62, p5)ps

Y2,P%,02

+ Z ﬁM(p% VQ)ﬁM(pla vl)ﬂMN(’h”YQa FYZ,’))FYI/S

Y2,75,71
We define n(plap27p£’>) and n(p17p277§) by

2 ma(p1, p2)—ma (871 p1, pa) £ ma(p1, 872ps)

= n(p1,p2. )P + > n(p1,p2,74)75

Py 75
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Then

n(plaPQapé)
=D M (P1,p2,p3)tM (s, p5) + D EM(p1, P2, 78)E M (73, 83) EM (33, 1)

P3 73,03

+ > EM(pr, pOIM(PL, 2, p5) + D EM (1, 1)EM N (1, 61)8M (81, pa, Pl)

I 71,01

+ D EM(pa, ph)EM (p1,ph, 1) + Y EM (p2,72)E M (2, 02)8M (p1, 62, 1)

DY 2,02

+ > EM(pr ) EM (P2, 12) EM N (91, 72, 03)EM (33, p)

V1,772,063

D 4oM(p1, p2, ps)

=0.

Note that we use Theorem 4.3 (f) at @© Moreover,

n(pl7p2775/3) = Z ﬁM(p17p2>p3)ﬁM(p37/yé> + Z ﬁM(pIJPQa’YS)ﬁMN(’y377‘/3)

p3 Y3
+ > EM(pr, P)EM(P), p2,75) + Y 8M(pa, Ph)EM (p1, P, 73)
2 P

+ Z M (pr, 71)iM (P2, 72) M (71,72, 73)

V1,72

(i) ﬁam(pl y P2, 7;3)
0.

Note that we use Theorem 4.3 (g) at (é)- Hence we obtain /5mq(p1,ps) =
ma (871 py, p2) £ ma(p1, 072py). -

Theorem 4.5. For an interior critical point p1 of f1 and a positive boundary
critical point vo of faonr, we obtain the Leibniz rule: (We omit the sign convention.)

" ma(p1,72) = m2(07 p1,72) £ ma(p1, 07272).
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Proof. First we calculate 073mo(p1,72).

0Fma(pr,y2) = 07 ¢ D EM(p1, )M (1,72, 3)8M (33, p3)ps

Y1,03,P3

+ > My (y2,62)8M(p1, 62, p3)ps

d2.,p3

+ ) EM(pr, )M (1,72, 73)73}

V1,73

= > M, y)EMy (11,72, 03)8M (s, ps)AM (ps, PPl

P3,71,03,P3

+ ) EM(pr, )M (1,72, 03)EM (83, p3)EM (D3, 74) 74
V5,71,03,P3

(A)
+ D EMu (32, 62)EM(p1, 62, p3)EM (s, PPk

p5,02,p3

+ D M (32, 62)tM(p1, 62, p3)EM (P3, 75) Vs (B)

v5,02,D3

+ ) M, )EMN (31,792, 78) EM Y (38,7575

V51,73

+ ) IM(pL)EM (1,72, 1) M (3, 03)EM (3, Pl ).

P5,Y1,73,03

Note that the line (A) is equal to 0 since there is no broken negative trajectory

from a negative boundary critical point d3 to a positive boundary critical point 4,

and similarly, the line (B) is equal to 0 since there is no broken negative trajectory

from a negative boundary critical point d2 to a positive boundary critical point 5.
Next we calculate mo(071p1,72) and ma(p1, 0272).

ma(071p1,72) = ma [ Y EM(pr, p)PE + D EM(p1, 1) 71,72

Py 71
= Y My, POEM@L 7)EMN (71,72, 03) M (85, PPl

P1,P5,71,03

+ Y EM(p1, PEMN (2, 62)EM(P), 82, 1)

P],P5,02

+ ) ML pDEM P )M (1,72, 3) %5

PLyY5571

+ ) M1, )M (71, 61)EM (81,72, 05)§M (83, b )l

~1,P%,01,03

+ D M1, )M (71, 50)EM N (Y2, 62)EM (81, 62, 1y ).

V1,01,02
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ma(p1,0772) = ma [ p1, Y BMN(2,9)% + > M (2, 02)EM (02, p2)p2

Y2 d2,p2
= ) My, )M (D1, 7)EMN (1,75, 83) M (83, PPl
Y3:P5,71,03
+ ) AMN (72, %)M (5, 62) 8 M (p1, 62, 15 )
75,02
+ D M (2,7 EM (P )M (71,725 7573
Y2, V35 71
+ Y EMu(y2, 62)8M (52, p2)EM (p1, pa, P5)Ph
02,p2,P3
+ Y M (72, 82)8M (82, p2)EM (p1, 2, 75) Y- (&
02,P2,73

Note that the line (C) is equal to 0 since there is no broken negative gradient
trajectory from a negative boundary critical point d to a positive boundary critical
point 4.

We define n(p1,72, p5) and n(p1,y2,7%) by

075ma(p1,v2) —ma2 (07 pa, 72) £ ma(p1, 07272)

= n(p1,72,P5)ps + > n(p1,72,75)%-
P V3
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Then

n(p1,v2,05) = Y M1, )M (91,72, 63)EM (33, ps)iM (ps, pl)

71,63,P3

+ 52 My (2, 82)8M (p1, 02, p3)EM (ps, D) (D)
2,P3

+ 25 HM(p1,71)EM N (71,72, ¥8)EMy (33, 03)EM (53, ph)
Y1,73,03

+ Zé M (p1, PEM (P, )My (11,72, 63)§M (35, )
P1,71,03

+ 262 EM(p1, p)EM i (2, 82)EM (), 82, 1) (E)

+5125 M (p1, 71 )M N (71, 01) M N (01,72, 3)EM (83, P)
1,73,03

+6; EM(p1, 1)EMN (1, 61)EM Uy (2, 62)8M (61, 62, 05)  (F)
1,02,73

+ 25 HM(p1, 1) EM N (2, ¥ M N (1,75, 03)EM (53, ph)
V1,752,603

+ Eg‘ MUy (2, V)M N (%%, 62)8M (p1, 62, 1h) (G)
V5,02

+ 52 M (72, 62)EM (52, p2) M (p1, p2. 1h). (H)
2,P2

By Theorem 4.1 (e), the line (G) is equal to

> {ﬂaMN('}/Qv 0a) + > M (72, 6) M (8, 52)} tM(p1,02,p5).  (I)

Y2 a62 (%,

Note that §0M(py,d2) is equal to 0. Then, by Theorem 4.3 (h), the sum of the
lines (D), (E), (F), (H) and (I) is equal to

D AMn (72, 82) {ﬁﬁM(phfs%pé) + ) ﬁM(ph%)ﬂMN(’hﬁ%53)!1/\4(53,17%)} :
P 1,03
(J)
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Note that §OM (p1, 62, p4) is equal to 0. Hence n(py, 2, ps) is equal to

n(p1,y2,05) = Y EM(p1, 7)) My (11,72, 63)EM (53, ps) EM (ps, ph) (K)

71,03,P3

+ Z fM(p1, Y1) AMN (71,72, 73) EM N (73, 03) M (03, p3)
Y1,73,03

+ D M, POEM(PE 1 )M (1,72, 33)EM (8, p5) (L)
P1,71,03

+ Y EMpL )M (71, 81)EM (31,72, 63)EM (83, p5)
01,73,03

+ ) M1, )M (2, )My (71,75, 83)EM (3, )
Y1:75503

+ Z EM(p1, 71)EM N (72, 02)EM v (71, 02, 03)EM (83, p3).
71,02,03

Moreover, by Theorem 4. 1 (c), the line (K) is equal to

D M1, 1)EMN (1,72, 55) {ﬁaM(ég,pg> + ZﬁMng,ag)nM(ag,pg)} :
71,03 o4

(M)
and, by Theorem 4.1 (b), the line (L) is equal to

Z {ﬂaM(pla’yl) + ZﬁM(plv’y{)ﬁMN(’Yia’yl)} nMN(717’727§3)ﬁM(537pé)

1,93 7
o o (N)
Note that $0M(ds, p) and §0M (p1,71) are equal to 0. Hence n(p1, 72, ph) is equal
to

n(p1,y2:0h) = Y IM(pr71)EMN (71,72, 03)EM v (33, 05)EM (35, pl)

~1,03,0%

+ ) AMpL ) EMN (11,72, 73) AM N (93, 03)EM (83, P5)

V1,73,03

+ > ML ADEMN (7, 71)EM N (11,72, 83)EM (S5, P5)

’Y{ 71,03

+ ) EM(pr )M (71, 61)EM N (81,72, 05)8M (33, Pl

61,73,03

+ Z ﬁM(pla Vl)ﬁMN(’)/Qu Wé>ﬁMN(’yl7 Véu 53)11/\/1(53,?{3)

71,’7§753

+ D ML M (92, 02)E My (31, 62, 63) M (33, P5).-

71,02,83

Then, by Theorem 4.3 (j), n(p1, 72, p5) is equal to
> 4M(p1,71)EOM i (1,72, 03)§M (83, ) = 0.

71,63
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Next we have

n(p1,v2,7%) = D M1, )M (71,72, 95)EM N (3, 74)

71,73
+ > M (pr, POIM (DL, 1) EM N (1,72, 75)
P71
+ Y M1, )M (2,9 M (71575, 75)
Y175
b
& D EM(pr, v M (71572, V) EM N (73, 75)
V1,73
+ > IM(pL, YDEMN (7 1) EM N (71,72, 75)
’Yiy'h
+ > EM(pr )M (2, ¥ EMN (1,95, 75)
’Yl"Yé
) > 4M(pr, 1) EOMu (71,72, 75)
71
= 0.

Note that we use Theorem 4.1 (b) at ® and Theorem 4.3 (m) at ™ Hence we
obtain 872ma(p1,y2) = ma (071 p1,v2) £ ma(p1, 0/272). O

Theorem 4.6. For a positive boundary critical point v1 of fion and an interior
critical point py of fa, we obtain the Leibniz rule: (We omit the sign convention.)

9 ma (1, p2) = M2 (07 1, pa) £ ma(1,072po).

Proof. First we calculate 0/3my(v1,p2).

O ma(y1,p2) = 07 Y EMN (31, 61)EM (81, pa, p3)ps

p3,01

> M (1, 80)8M(81, pa, ps) M (ps, ph)ps

P4,01,p3

+ > My (71, 61)8M(81,p2, p3)iM(ps, vs)vs. (O)

v3,01,P3

Note that the line (O) is equal to 0 since there is no broken negative gradient
trajectory from a negative boundary critical point d; to a positive boundary critical
point 3.
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Next we calculate mo (87141, p2) and ma(y1, 0/2ps).

ma (07 71, p2) = ma [ Y AMN (1,90 + D EMN (71, 80)EM(S1, p1)pr, pe

i 01,p1
10/3,7{’51
+ Y M (y1, 61)EM(S1, p1)EM (pr, pa, P5)Ph
p5,01,01
+ ) My (9, 0)EM(B1, pL)EM (P, P2, 75) 7. Q)
v3,01,P1

Note that, by Theorem 4.1 (e), the line (P) is equal to

Z EM N (1, 01)BM N (07, 61) M (61, D2, D).

P%,01,01

Moreover, the line (Q) is equal to O since there is no broken negative gradient
trajectory from a negative boundary critical point d; to a positive boundary critical
point 3. Moreover,

ma(y1, 072pa) = ma [ 71, Y #M(pa, pb)ph + Y EM(p2,72)72

D5 Y2

= > tMu(, 60)EM (P2, ph)EM (61, P, P )P

P3,01,P5

+ ) My (0, 00)EM (P2, ¥2)EM (81,72, 03)EM (63, )Pl

P%,01,72,03

+ D M (1, 80)8M (P2, Y2) EM N (72, 62)§M (51, 02, )b

P5,01,72,02
We define n(vy1,p2,p5) and n(y1, p2,73) by

0%5ma (1, p2) —ma2 (07 v, p2) £ ma(71,072p2)
= n(y1,p2,05)P5 + Y n(y1,p2, %)%

P V5
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Then
n(y1,p2,05) = Y My (71,61)8M(01, p2, p3)EM (ps, pl)
01,3
+ ) My (3, 6)EM N (81, 61)EM (51, s, PS)
51 51
+ Z M (71, 01)EM (01, p1 )M (p1, P2, D5)
81,p1
+ ) EMN (71, 81)8M (p2, ph) M (61, 1, 1h)
1,ph
+ Z EMN (71, 01) M (D2, 72) EM N (01,72, 03)EM (33, p3)
81,72,03
+ Z EMN (71, 01) M (D2, 72) EM N (72, 02)BM (61, 02, P3)
01,72,02
D3 M (31, 61)0M (61, p2. )
_o.

Note that we use Theorem 4.3 (i) at D Hence n(y1,p2,p5) = 0. Moreover,
n(y1,p2,7%) = 0. Hence we obtain 0/2ma(v1, p2) = ma2 (07171, p2) £ ma(y1,072p2).
O

Theorem 4.7. For positive boundary critical points ~v1,v2 of fiom, feom, respec-
tively, we obtain the Leibniz rule: (We omit the sign convention.)

0 ma(y1,72) = ma (07 71, 72) £ ma (1, 8729).
Proof. First we calculate 072ma(y1,72).

dFma (1, 72) = 0% { > My (71, 61)8MN (81,72, 63)EM (83, p3)ps

P3,01,03

+ > My (v, 00)M N (72, 52) M (61, 527193)]93}

p3,01,02

= Z M (71, 01) M N (61,72, 03)EM (03, p3) M (ps3, p3)ps

p5,p3,01,03
+ > M (1, 00)8My (61,72, 63)8M (83, p3) M (P, 73) 73
¥3,P3,01,03

(R)
+ Z M (71, 01)EM N (72, 02)BM (61, 82, p3 ) EM (ps, P5) D5
p5,p3,01,02
+ Z EMN (71, 01)EM N (72, 62)EM (01, 02, p3)EM (p3, 73)73-
¥3,P3,01,03

(S)
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Note that the line (R) is equal to 0 since there is no broken negative gradient
trajectory from a negative boundary critical point d3 to a positive boundary critical
point 73, and similarly, the line (S) is equal to 0 since there is no broken negative
gradient trajectory from a negative boundary critical point §; or d; to a positive
boundary critical point ;.

Next we calculate ma (0711, v2) and ma(y1, 0727,).

ma2 (0771, 72)

=my | D EMN (v, )9 + Y M (1, 61)EM(81, p1)p1, 2

¥ 01,P1

> M (v YDEMN (Y, 61) M (61, Y2, 3)EM (35, Pl )l

v1,p5,01,03

+ D EMN (7 Y DEMN (315 61)EM N (72, 82)8M (81, 62, 15 )

V1:P5,01,02

+ Y M, 6)EM(S1, p)EM(p1, YDEM N (7], Y2, 63) M (S5, PPl
81,P1,P%5,71,93
(T)

+ Z EM (71, 01)EM (01, 1) EM N (72, 02)EM (p1, 62, p3) D3

81,p1,P%,02

+ > M (1, 6)EM(S1, pOEM (1, YDEMN (1,72, 73) 78 (U)

81,P1,73,7Y]

Note that the line (T) is equal to 0 since there is no broken negative gradient tra-
jectory from a negative boundary critical point §; to a positive boundary critical
point ~f, and similarly, the line (U) is equal to 0 since there is no broken nega-
tive gradient trajectory from a negative boundary critical point §; to a positive
boundary critical point ;. Moreover,

ma(v1,07272)

ma | 71, Y AMN (12,7075 + D EM (32, 62) M (S2, p2)ps

Vs 02,p2
= > My (2, )M (1, 61) M (61,75, 03)EM (53, Pl )Pl
’Yé7p/3751753
+ ) M (2, )M (1, 61)EM N (vh, 62)EM (81, 82, D)l
~v%,p%,01,02
+ ) My (2, 02) M (B2, p2) M (11, 61)EM (81, p2, )5
02,p2,p%,01

We define n(v1,72,p5) and n(y1,72,73) by
073ma(1,72) —ma2 (07 v1,72) £ ma(y1,07272)
= n(y,72,05)05 + > 13,72, 75)75-

D3 V3
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Then
n(n,72,05) = Y My (31, 61)EMN (81,72, 83)8M (83, p3) M (p3, ) V)
P3,01,03

+ ) M (1, 00)EM N (2, 62)8M (81, 6, p3)EM (ps, p5) - (W)

P3,01,62
+ > My DEMN (9], 00)EM N (61, 72, 83)EM (33, p5) - (X)

71,01,03
+ D My DEMN (3, 00)EM N (2, 62)8M (61, 62, p5) (V)

71,01,02
+ Y M (1, S)EM (81, )M (72, 82)EM(p1, 62, 05)  (Z)

51.,p1,02
+ ) M (72,9 M (1, 1) EM N (81,75, 63)§M (53, ) (A)

75,01,03
+ Y M (2, )M (71, 61)EM N (5, 62)EM (81, 85, 95) (BY)

¥4.01.02
+ Y M (32, 82)EM (82, p2)EM N (71, 81)EM(S1, p2, 1) (C)

02,p201

By Theorem 4.1 (e),pthe line (Y) is equal to
D AM(n, S)EMN (87, 61)EM N (2, 02)EM (81, 62, ), (D)
81,01,02

and similarly, the line (B’) is equal to

Y M (2, 8)EM (71, 61)EM v (8, 62)EM (31, 62, 5 ). (E)
0%,01,02

Then, by Theorem 4.3 (k), the sum of the lines (W), (D), (Z), (E’) and (C’) is
equal to

Z M N (71, 61)EM N (72, 62) {ﬁa/\/l(51,527p3 +ZﬁMN (61,02, 03)8M (03, p3) }

1,62 03
F7
Note that §OM(d1, 2, ps) is equal to 0.
By Theorem 4.1 (c), the line (V) is equal to
D M (7, 00)EM (81,72, 63) M (85, 65) M(85, ph ), (&)
51,04,05

and, by Theorem 4.1 (e), the line (X) is equal to

D My (71, 8)EM (87, 61)8M v (81,72, 05)8M (S5, b ). (H)

01,01,03

Then, by Theorem 4.3 (1), the sum of the lines (A’), (F’), (G’) and (H’) is equal to
> M (1, 0080 Mn (61,72, 53)4M (35, ply) = 0.

61,03
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Hence n(v1,72,p3) = 0. Moreover, n(v1,72,73) = 0. Therefore, d/*my(v1,72) =
ma (07141, 72) £ ma(v1,022). -

At last, we finish proving the Leibniz rules in terms of gradient trees!

Theorem 4.8. We denote by 011,072 and 03 the boundary operators of Morse
complez for f1, fo and fs, respectively. Then we obtain the Leibniz rule: (We omit
the sign convention.)

8f3m2(*1 ® *g9) = m2(af1 k1 ®%2) £ ma(x ® 8f2*2),

where x; is an interior critical point of f; or a positive boundary critical point of
fiaM} fO’I”i = 172

There is a remark about other related works; In [2] J. Bloom also studied product
structures on Morse homology of manifolds with boundary; In fact he studied some
A structure on Morse homology of manifolds with boundary, and he applied his
A structures to Seiberg—Witten Floer theory.

5. PRODUCT STRUCTURES ON FLOER HOMOLOGY

In this section, we define product structures on Floer homology of Lagrangian
submanifolds with Legendrian end in a symplectic manifold with concave end, and
observe the Leibniz rules on the chain level. But, before the product structures, we
briefly recall the Floer homology, see [1].

Let M be a non-compact symplectic manifold with symplectic form w, and N a
compact contact manifold with contact form A. Suppose that we have a compact
subset K C M such that M \ K is diffeomorphic to (—o0,0) x N. Moreover, we
assume that w = d(e‘\) on (—o00,0) X N, where ¢ is the standard coordinate on
the first factor. We call M \ K = (—00,0) x N C M a concave end of M. We
denote by R the Reeb vector field of (N, ), and by £ the contact distribution of
(N,)). Let (R x N,d(e!)\)) be the symplectization of (N, ). Note that we may
have compatible almost complex structures J on R x N such that J % = R and
JE = &, and we also have compatible almost complex structures J on M, we use
the same notation, such that the restriction of J on the concave end (—oo,0) x N
satisfies J% = R and J¢ = €.

Let Ao, A1 be a Legendrian submanifolds in N. We call a map v : [0,7] — N
a positive Reeb chord if 4 = Ro~v and v(0) € A; and v(T) € Ay, and similarly
we call a map 0 : [0,7] — N a negative Reeb chord if § = Rod and 6(0) € Ay
and §(T) € Ay. For each positive Reeb chord v : [0,T7] — N with v(0) € A4
and y(T) € Ag, we assume that dér(Ty0)A1) and T’ 1yAg intersect transversely
in &,(1), where ¢, : N — N is the isotopy generated by the Reeb vector field, and
similarly we also assume that dér(T50)Ao) and TsryA; intersect transversely in
&s(1), for each negative Reeb chord ¢ : [0,7] — N with 6(0) € Ag and §(T') € A;.
Note that, once we have such transversality condition, Reeb chords are isolated.
Let Ly and L; be transversely intersecting Lagrangian submanifolds in M such
that LO|(—oo,0)><N = (—00,0) X Ap and L1|(70070)><N = (—00,0) x A;.

In this section, we always use the notation p,p’ for intersection points of LoN Ly,
~,7' for positive Reeb chords, and 4, ¢ for negative Reeb chords.

We define the moduli spaces of pseudoholomorphic strips. For p,p’ € Lo N Ly,
we denote by M(p,p’) the set of unparameterized pseudoholomorphic maps w :
R x [0,1] — M such that
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e duoi=Jodu, where i is the standard complex structure on R x [0, 1];

e u(R,0) C Lo and u(R,1) C Ly; and

o limy, oo u(t,[0,1]) = p and lim; oo u(t, [0,1]) = p'.
For p € Ly N Ly and a positive Reeb chord 7 : [0,7] — N, we denote by M(p,~)
the set of unparameterized pseudoholomorphic maps « : R x [0,1] — M such that
duoi=Jodu;
u(R,0) C Ly and u(R,1) C Ly;
lim—, oo u([0,1],¢) = p; and
For large t > 0, u(t,[0,1]) C (—00,0) x N and lim; o, m1 0 u(t,s) = —oo
and limy_,oo m2 0 u(t, s) = y(T(1 — s)),

where 7 @ (—00,0) X N — (—00,0) is the projection on the first factor and s :
(=00,0) x N — N is the projection on the second factor. Similarly we define
M(4,p) and M(6,7), for a negative Reeb chord ¢ : [0,7] — N. Next, for positive
Reeb chords v : [0,7] — N and +' : [0,7"] — N, we denote by My(v,7’) the
set of unparameterized pseudoholomorphic maps u : R x [0,1] = R x N up to the
R-translation of R x N such that

duoi=Jodu;

u(R,0) CR x Ag and u(R,1) C R x Ay;

limy oo m ou =00 and limy_, o o o u(t,s) = (T (1 — s)); and

limg_, oo ™1 0 u = —00 and lim;_y o 7 0 u(t, s) = v (T7'(1 — s)),

where 1 : Rx N — R is the projection on the first factor and 75 : Rx N — N is the
projection on the second factor. Similarly, for a positive Reeb chord 7 : [0,T] = N
and a negative Reeb chord ¢ : [0,7'] — N, we denote by My(v,d) the set of
unparameterized pseudoholomorphic maps u : R x [0,1] — R x N up to the R-
translation of R x N such that

duoi=Jodu;

u(R,0) C R x Ag and u(R),1 C R x Ay;

limyy oo m 0w = 00 and limy_, o Mo o u(t, s) = y(T(1 — s)); and

limg_, oo ™1 0 u = 00 and limy_, o ™2 0 u(t, s) = §(1"s).

For a negative Reeb chords ¢ : [0,T] — N,4’" : [0,7'] — N, we denote by My (4,¢")
the set of unparameterized pseudoholomorphic maps « : R x [0,1] = R x N up to
the R-translation of R x N such that

e duoi=Jodu;

e u(R,0) CR x Ap and u(R,1) CR x Ay;

e lim;, o7 ou=—o0 and lim;_, o m o u(t, s) = §(T's); and
e limy ., m ou =00 and limy_,o 2 0 u(t, s) = 6'(T"s).

We remark that, for a negative Reeb chord ¢ : [0,7] — N and a positive Reeb
chord «y : [0,7'] — N, there is no pseudoholomorphic map v : R x [0,1] = R x N
such that

e duoi=Jodu;

o u(R,0) C R x Ag and u(R,1) C R x As;

e lim; , 7 ou=—o0 and lim;_, o, w0 u(t,s) = §(Ts); and
o lim; o m ou = —o00 and lim;_,o 3 0 u(t, s) = Y(T'(1 — s))

because of the maximal principle. Hence My (d,v) = 0.
Now we observe these moduli spaces. In this paper we call the following pseu-
doholomorphic maps bubbles.
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eu:D:={ze€C:|z] <1} = M such that u(0D) C Lo or u(0D) C Ly,
and [, u*w < oo;
e u:H:={z=z+iye C:y >0} - R x N such that u(0H) C R x Ag or
u(9H) C Ay, and [ u*A < oo; and
e u:C — R x N such that [ u*\ < oo.
To define our Floer homology, we have to avoid bubbles as above.

Theorem 5.1. Suppose no bubble and moduli spaces are transversal. For sim-
plicity, we assume that the dimension of the moduli spaces are independent of the
homotopy types of pseudoholomorphic maps.

(a) M(p,p’) is a finite dimensional smooth manifold. If dim M(p,p’) =0, then
M(p,p’) is compact. If dim M(p,p’) = 1, then M(p,p’) can be compactified into
M(p,p’), whose boundary is

(p;p

oM UMn”wMMapuUMp,xwmmﬁxM@ﬂx
p" Y50
where p”’ € Lo N Ly, 7y is a positive Reeb chord, and § is a negative Reeb chord.
(b) M(p,v) is a finite dimensional smooth manifold. If dim M(p,~) = 0, then
M(p,7) is compact. If dim M(p,v) = 1, then M(p,~y) can be compactified into

M(p,~), whose boundary is
OM(p,v) U/\/lp, x M(p', vy UUMp, ) X My ('),

>
U U M p7fY) X MN(’-Y/75) X M((Sy’Y)a
756
where p' € Lo N Ly, 7' 15 a positive Reeb chord, and § is a negative Reeb chord.
() M(4,p) is a finite dimensional smooth manifold. If dim M(§,p) = 0, then
M(6,p) is compact. If dim M(d,p) = 1, then M(J,p) can be compactified into

M(8,p), whose boundary is
OM(8,p) = JM(5,p') x M(p, p) UUMNcScS)xM( "),

%
UUM@wxMM%MxMQM,
7,0
where p' € Lo N Ly, 7 48 a positive Reeb chord, and 6 is a negative Reeb chord.
(d) My (v,7') is a finite dimensional smooth manifold. If dim My (v,v") =
0, then Mn(v,v') is compact. If dim My (v,v") = 1, then Mn(y,7') can be
compactified into My (v, ) whose boundary is

IMy (7,7 UMN (1,7") x M ("7,

~!

where 7" is a positive Reeb chord.

(€) Mn(7,9) is a finite smooth manifold. If dim My (v, ) =0, then My (7,9)
is compact. Ifdim My (v,8) =1, then My (7, 0) can be compactified into My (v, 0),
whose boundary 18

OMn(7,8) = [ JMn(1,7") x Mu(/,8) U Mn (7, 6') x Mn(8',6),
v [

where ' is a positive Reeb chord and &' is a negative Reeb chord.
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(£) M(8,v) is a finite smooth manifold. If dim M(5,~v) = 0, then M(d,v) is
compact. If dim M(8,7) = 1, then M(6,7) can be compactified into M(8,), whose
boundary is

OM(5,7) UM&pop, U [ M(6,7) x My (y,8) x M(8',7)
/5/

UUMNaa)xM MU JM(8.4) x My (+',7),
&’ '
where p € Lo N Ly, v is a positive Reeb chord, and §' is a negative Reeb chord.

We omit the proof of Theorem 5.1. Note that we may list every boundary
components of 1-dimensional moduli spaces in Theorem 5.1 without omission by
chasing intersection points and Reeb chords so that we obtain 1-dimensional moduli
spaces after gluing pseudoholomorphic strips. Note that, in Morse homology, there
is no broken negative trajectory from a negative boundary critical point to a positive
boundary critical point. But, in Floer case, we have broken pseudoholomorphic
strips in M from a negative Reeb chord to a positive Reeb chord.

We define
C(Lo,In) == P Zpd P Zov,
peELoNLy y:A1—Ao

where 7 is a positive Reeb chord, and define a linear map 0 : C'(Lo, L1) — C (Lo, L1)
by

Op = Z tM(p,p)p + Z tM(p, Y)Y,

0y :=ZﬁMN(7 ) +ZﬁMN Y OEME,A )Y + D> M (y, OIM(S, P )P,
v 8,y o,p’
where each moduli space is a 0-dimensional component. Note that the definition of
0 is slightly different from the boundary operator of Morse complex.
As in the Morse case, Theorem 4.2, we can prove the following theorem by
observing the boundary of 1-dimensional components of the moduli spaces of pseu-
doholomrophic strips in Theorem 5.1. We omit the proof.

Theorem 5.2. Suppose no bubble, and 9o d = 0.

We obtain a chain complex (C(Lg, L1), 9), and its homology is our Floer homol-
ogy.

Next we observe the Leibniz rules.

Let M be a symplectic manifold with concave end as before, and L; a Lagrangian
submanifold with Legendrian end (—o0,0) x A; in M, for ¢ = 0,1,2. We assume
that each pair L; and Lj, ¢ # j, intersect transversely and the Reeb chords are
isolated as before. In this case we call a map ;; : [0,7] — N a positive Reeb chord
for (L;, L;) if 4;; = Ro~;;, and v;;(0) € A; and ~,;;(T) € A;, and similarly we call a
map &;; : [0,T] — N a negative Reeb chord for (L;, L;) if § = Ro d, and §(0) € A;
and 51-]- (T) S Aj.

Let D := {z € C: |z|] < 1}, and we take 29, 21,22 € 0D in clockwise order.
We define 3 := D \ {2z, 21, 22}, and we denote by Iy C X the open arc between
zg and z1, by I3 C 0% the open arc between z; and zo, and by lo C 9% the open
arc between zo and zy5. For ¢ = 0,1,2, we may take an neighborhood U; C D
of z; such that there are biholomorphic maps ¢; : (—00,0) x [0,1] — U; \ {z:}
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with limy_, o @;(t,8) = z;, for i = 1,2, and ¢ : (0,00) x [0,1] — Up \ {20} with
limy 00 ¢0(t, 5) = 20.

We define the moduli spaces of pseudoholomorphic triangles. For pg; € Lo N
Li,p12 € L1 N Ly, po2 € Lo N Lo, we denote by M(po1,p12,po2) the set of pseudo-
holomorphic maps u : ¥ — M such that

e duoi=Jodu, where i is the standard complex structure on ;

e u(lg) C Lo,u(ly) C Ly and u(ly) C Lo; and

o limy ., uo ¢1(t,s) = po1, limp_oou o ¢o(t,s) = p12 and limy o u o

¢0(t7 S) = Po2-

For ppy € Lo N Ly,p12 € Ly N Ly and a positive Reeb chord 7oz : [0,7] — N
for (Lg, La), we denote by M(po1,pi2,Yo2) the set of pseudoholomorphic maps
u : X — M such that
duoi=Jodu;
u(lp) C Lo,u(ly) C Ly and u(ly) C Lo;
lim; oo uo ¢1(t, ) = po1 and limy—, oo w0 ¢a(t, s) = p12; and
For large t > 0, uo ¢ (t,[0,1]) C (—00,0) x N and lim;_,oo 1 ouo ¢ (t, s) =
—o00 and lim;_, o T2 0 w0 Po(t, 5) = Y02 (T(1 — 8)),

where 1 : (—00,0) X N — (—00,0) is the projection on the first factor and s :
(—00,0) x N — N is the projection on the second factor. For a negative Reeb
chord dq; : [O,T] — N for (Lo,Ll) and p1o € L1 N Lo, po2 € Lo N Lo, we denote by
M (01, P12, P02) the set of pseudoholomorphic maps u : ¥ — M such that

e duoi=Jodu;

o u(lo) C Lo,u(ll) C Ly and U(ZQ) - LQ;

e For large —t > 0, u o ¢1(¢,[0,1]) C (—00,0) x N and lim;, o 7m ouo

¢1(t,s) = —oo and limy_, _ o, 2 0o w0 @1 (t,s) = do1(T's); and

o limy .o uoda(t,s) = pi2 and limy_, o w0 Po(t, 8) = po2.
Similarly, we define M (do1, P12, Y02), M(po1, 012, Po2), M(po1, 012, Yoz ), M(do1, 012, Poz)
and M (do1,012,702). For positive Reeb chords ~;; : [0,T;;] — N for (L;, L;), we
denote by My (701, 712; 702) the set of pseudoholomorphic maps u : ¥ — R x N up
to the R-translation of R x N such that

e duoi=Jou;

e u(lp) CR x Ap,u(ly) CR x Ay and u(lz) C R x Ag;

L] limt_>_oo T 0o0UO (;51 = oo and limt_,_oo T OUO Qﬁl(t, 8) = 701(T01(1 - S)),

o limy ., 7 ouo @y =00 and lim;,_o m2 0w o Pa(t,s) = y12(T12(1 — 3));
and

o lim;_,o m 0 uo Py = —00 and limy_,o, T2 0 w0 Po(t, s) = Yoo (To2(1 — s)),

where 7 : R X N — R is the projection on the first factor and 73 : Rx N — N
is the projection on the second factor. For positive Reeb chords v;; : [0,7T;;] —
N for (L;,L;) and a negative Reeb chord dp2 : [0,7p2] — N, we denote by
M (701,712, 902) the set of pseudoholomorphic maps v : ¥ — R x N up to the
R-translation of R x N such that

duoi=Jouwu;

u(lp) CR x Ag,u(l;) CR x Ay and u(lz) C R x Ag;

limté,oo T OUOo ¢1 = oo and limt*),()o 9 O U O d)]_(t, S) = 701(T01<1 — 8)),
limt_>_oo T OUO° (Z)2 = oo and limt_)_oo T O U O d)g(t, 8) = ’)/12(T12(1 — S)),
and

o lim; ., 0ouo gy =00 and lim;_, o w2 0w o Po(t, s) = doa(Tp2s).
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Similarly, we define My (801,12, Y02); M (801,712, 602), M N (Y01, I12, Y02), M N (701, I12, F02)
and My (do1, 012, d02). We remark that, for negative Reeb chords §;; : [0, T;;] — N

and a positive Reeb chord ~gs : [0, Tp2] — N, there is no pseudoholomorphic maps

such that

o duoit=Jou;

o u(lp) CR x Ag,u(ly) CR x Ay and u(lz) C R x Ag;

e lim;, mouo¢p; =—oc and limy_,_ o 72 0 wo ¢1(t,s) = do1(T019);

o lim;, o7 ouops =—00 and lim;, o 72 0 w0 Pa(t, s) = d12(T125); and
e limy ., 0ouo Py =—00 and lim;_, T2 0 w0 Pg(t, ) = Yo2(T12(1 — 8))

because of the maximal principle. Hence My (g1, d12, Y02) = 0.
Now we observe these moduli spaces. Note that we always use notation, for
i=0,1,2,

® pij, Py, Pi; € Li 0 Ly;
° %J,%’j,%’; for positive Reeb chords for (L;, L;); and

® 4ij,0;;,0;; for negative Reeb chords for (L;, L;).

Then we have the following theorem:

Theorem 5.3. Suppose no bubble and moduli spaces are transversal. For sim-
plicity, we assume that the dimension of the moduli spaces are independent of the
homotopy types of pseudoholomorphic maps.

(g8) M(po1,p12,Po2) 18 a finite dimensional smooth manifold. If dim M (po1,p12,po2) =
0, then M(po1,p12,po2) is compact. If M(po1,pi2,po2) = 1, then M(po1, p12; po2)
can be compactified into M(po1, p12, po2), whose boundary is

OM(por, pr2, poz) = | M(por, ph1) x M(ply, P12, po2)

Po1

U |J Mlpor,v01) x Mu(yo1,601) x M(So1, pr2, poz)
Yo1,601

U UM(P12,Z7I12) x M(po1, P2, Po2)
Pia

U (J Mpi2,m2) x M (712, 612) X M(pot, 612, po2)
V12,012

UJM(por, pr2, phz) X M(pha, pos)
Po2

U |J M(por,pr2,702) X Mu (702, 602) X M(b02, po2)
V02,602

U J Mo qon) x M(pra, y12) x My (o1, 712, 602) X M(So2, poz)-
Yo01,712,002

(h) M(po1,p12,702) is a finite dimensional smooth manifold. If dim M(po1, p12, Yo2) =
0, then M(po1,p12;702) is compact. If M(po1,pi2;702) = 1, then M(po1, p12;,Yo2)
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can be compactified into M(po1, p12,Yo2), whose boundary is

IM(por, pi2,02) = UM(POMan) x M(po1, P12 Y02)

Po1

U J Mlpor,v01) x Mn(y01,601) X M(So1, p12, Y02)
Yo1,801

UJM(pr2, pi2) x M(por, P2, 702)
Pia

U U M(p12,712) X MnN(7112,612) X M(po1, d12,Y02)
712,612

U M(por; pr2; poz) x M(poz,Y02)
Po2

U UM(pm,Pu,%/)z) x M (Y92 Y02)
Y02

U {J M(or,p12,702) X Mn (o2, 02) X M (02, 702)
7627502

U |J M@or,701) x M(pr2,112) x Mu (Y01, 712, Y02)
01,712

U lJ Mor,r01) x M(pra,112) X My (Yo1, 712, 602) X M (802, 702)-
Y01,Y02,002

(i) M (do1, P12, po2) is a finite dimensional smooth manifold. If dim M(do1, P12, Po2) =
0, then M(do1,p12,po2) is compact. If M(So1,p12,p02) = 1, then M(do1, p12, Po2)
can be compactified into M(do1,p12,P02), whose boundary is

IM (o1, P12, po2) = UM(5017P61) x M(poy, P12: Po2)

Po1

UM (So1,801) x M(81,p12,po2)
501

U |J M(or1,701) x M (y01,601) x M(Sh1, P12, o2)
Y0100,

U J Mlpi2, m2) x M (do1,712, 602) X M (802, poz)
Y12,601

U UM(Pm,p/n) x M(do1, P2, Po2)
Pla

U U M(p12,712) X MN(’YIQ,(SIQ) X M(501,512,p02)
Y12,012

U UM(501,p127P02) X M(pog» Poz)
Do

U U M (601, P12, 702) X Mn (702, 002) X M(bo2, Po2)
Y02,602

U | MGorv01) x M(prz,mz) x My (Yo1, 712, 6o2) x M (o2, poz)-

~Yo1,712,002
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(3) M(do1, p12,702) i a finite dimensional smooth manifold. If dim M (501, p12,Y02) =

O, then M(5017p12;702) iicompact. If M(501’p127702) = 1, then M((sol,plg,"}/og)
can be compactified into M(do1,p12,%02), whose boundary is

OM(dor, pr2,v02) = M (o1, po1) x M(por, p12,702)

Po1

UM (o1, 801) x M(81,p12,702)
801

U | M(or,v01) x M (o1, 691) ¥ M(Sp1, P12, 702)
Y0104,

U J xM(pr2, 112) M (801, 112, 802) X M(S02,702)
V12,002

U UM(Pmap/n) x M (801, P2, Po2)
Pla

U U M(p12,712) X My (712, 012) X M(J01, 612, Po2)
V12,012

U M(Bo1, pr12, poa) X M(po2,702)
Po2

U UM(501,Z712,’YG2) x My (Y02, 702)
Y02

U U M (801, P12, Y02) X M (Y02, d02) X M(do2,702)
“/62,502

U |J M(Gor,701) x M(pr2,12) x M (01,712, 702)
01,712

U JM(pr2, m12) x My (So1, 712, Y02)
Y12

U J Morv01) x M(pra, m2) x My (o1, 712, 02) X M (602, Y02)-
01,712,002

(k) M(po1, 12, po2) is a finite dimensional smooth manifold. If dim M(po1, 612, po2) =
0, then M(po1,d12, po2) is compact. If M(po1,0d12,po2) = 1, then M(po1, d12, po2)
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can be compactified into M(po1, 612, Do2), whose boundary is

OM(por, 612, p02) = M(po1,pi1) X M1, 012, po2)
Po1

U J Mo, vo1) x M (o1, 601) X M(8o1, 612, poz)

~Yo1,001

U M(br2,p12) x M(por. pr2; po2)

P12

U J M(612,712) x Mu(m12,815) x M(po1, 615, poz)

Y12,04,
UM (612, 675) x M(p1, 89, po2)

’
612

U J Mo, vo1) x M (o1, 612, 602) X M (o2, poz)

~Yo1,002

U UM(P01,5127P62) x M (a2 Po2)

/
Po2

U |J Mo, d12,702) x My (Y02, 802) X M (o2, po2)

702,802

U |J  Moro) x M(812,72) x M (Yo1,712,002) X M(So2, poz)-

~Yo1,Y12,002

(1) M(po1,12,702) 18 a finite dimensional smooth manifold. If dim M(po1, 612, 702) =
0, then M(po1,d12,702) s compact. If M(po1,0d12,%02) = 1, then M(po1, 12, Y02)
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can be compactified into M(po1, 612, Y02), whose boundary is

M (por, 612, 702) = M (por, por) x M(poy, 612, 702)

P01

U |J Mpor,v01) x My (Yo1,801)M (o1, 612, 702)
Yo1,001

U UM(5127P12) x M(po1, p12,702)
P12

U J M(612,712) x My (m2,815) x M(por, 615, 702)
V12,075

U UMN(5127 d12) X M(pot, 612, 702)
012

U |J Mlpor,v01) x M (Y01, 612, 602) x M(Bo2,702)
Yo1,602

U JM(por, vo1) x Mn (o1, 612, Y02)
o1

U JM(po1, 612, po2) x M(poz, Y02)
po2

U U Mor,612,702) x Mu (192, 602) x M (802, 702)
Y42:002

U JM(por, 612, %) X Mn (62, Y02)
Y02

U U M(por,Y01) X M(b12,712) X Mn (Y01, 7125 Y02)
Yo1,712

U J Mo o) x M(812,72) x My (Yo1, 712, 602) X M(So2,Y02)-
Yo1,712,002

(m) M (do1, 12, p02) is a finite dimensional smooth manifold. If dim M(do1, 812, Po2) =
0, then M(501, 512,])02) 1S compact. If M(dgl, 512,])02) = 1, then M(501, (512,])02)
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can be compactified into M(8o1, 012, po2), whose boundary is

aﬂ(%h 512;1002) = UM((S(H»PM) X M(P()h 5127]902)

Ppo1

U U M(b01,701) X My (701,801) X M (801,012, Po2)
Y0104,

U UMN(50175(I)1) x M(81, 012, Poz)
851

u U M(b12,712) X Mn (001,712, 002) X M (02, Po2)
Y12,002

U UM(5127P12) x M(8o1, P12 po2)
P12

U U M(d12,712) X M (712,812) X M(do1, 072, Po2)
Y12,01,

U UMN(5127 d12) X M(do1, 972, Po2)
P

U U M(801,701) X M (Y01, 612, 602) X M (o2, Po2)
Yo1,002

u UMN((SOL 12, 002) X M(do2, po2)
d02

U UM(6017 5127}?62) X M(p€)2ap02)
Po2

U U M(bo1,012,702) X Mn (Y02, 02) X M (02, Po2)
Y02,002

U J MBor,v01) x M(812,712) X Mu (Y01, 712, 602) X M (o2, poz)-
Yo1,712,002

(n) M(801, d12,Y02) is a finite dimensional smooth manifold. If dim M(do1, 812,702) =
0, then M(do1,612,702) is compact. If M(bo1,012,702) = 1, then M(do1,d12,702)
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can be compactified into M(So1,12,702), whose boundary is

OM (801, 612,702) = | M(Bo1,por) x M(por,d12,702)

Po1

U U M(301,701) X My (701, 001) X M(31,d12,702)
701,001

UM (So1,801) x M(8y, 612, v02)
561

U U M(612,712) X M (801,712, 002) X M (02, 702)
V12,602

U UM(512,P12) X M(do1p12,702)
P12

U U M(d12,712) X M (712, 015) X M(Jo1, 012, %02)
712,015

U UMN(51275/12) x M(bo1, 015, 702)
P

U U M(601,701) X My (Y01, 012, d02) X M (o2, Y02)
701,602

U UM(501,512,P02) x M(poz2; 702)
Po2

U U M(Bo1, 012, 792) X Mn (Y025 002) X M (do2,Y02)
V025002

U UM(50175127762) X My (7025 Y02)
Vo2

U U M(801,701) X M(b12,712) X Mn(701,7125Y02)
Yo1sY12

U U M(bo1,701) X M(d12,712) X MnN (701,712, d02) X M (02, Y02)
701,712,602

U UM(612,712) x M (801,712, 002)
Y12

U UM(501,’Y01) X Mn (o1, 012, Y02)
o1

U UMN(501,512,502) x M (002, Y02)-
do2

(0) Mn (701,712, 702) 18 a finite dimensional smooth manifold. If dim My (701, V12, Yo2) =
0, then My (01,712, Y02) s compact. If Mx(Yo1,712,702) = 1, then My (Y01, 712, Yo2)
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can be compactified into HN(VM,%Q,VOQ), whose boundary is

OMn (o1, 712, Y02) = M (01,761) ¥ M (Y01, 112, 702)
Y01
UM (m2,712) X M (01, ¥iz: Y02)
Y2
U UMN(701,712,762) X M (702, Y02)-

’
Yo2

Completely, similar arguments hold for My (701,712, d02); Mn (01, 712, 702), M (do1, V12, d02)
My (Y01, 012, Y02), M (Y01, 012, do2) and My (do1, 612, d02). Note that My (do1, 12, Y02) =
() because of the mazimal principle.

We omit the proof of Theorem 5.3. We may list every boundary components of
1-dimensional moduli spaces in Theorem 5.3 without omission by chasing intersec-
tion points and Reeb chords so that we obtain 1-dimensional moduli spaces after
gluing pseudoholomorphic maps. Note that, in Morse homology, there is no broken
negative gradient trajectory from a negative boundary critical point to a positive
boundary critical point. But, in Floer case, we have broken pseudoholomorphic
maps in M which connect a positive Reeb chord and a negative Reeb chord.
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We define a linear map ms : C(LQ, L1) X C(Ll, LQ) — O(Lo,Lg) by

ma(po1, p12) == Y #M(po1, p12, po2)poz + Y #M (por, P12, 702) 702,

Po2 Yo2

> #M(por, v01)EMn (Yo, Y12, S02) EM (02, Po2)po2

~Y01,002,P02

+ Y EM(por Yo )M (o1, Y12, 802)EM (802, Y02) Y02

701,002,702

+ Z fMn (712, 612)BM (Po1, 612, Po2)po2

012,P02

+ D My (2, 612)8M (por, 612, Y02) Y02

012,702

+ ) #M(por, YoM (Y01, 712, Y02) Y02,

Yo01,702

ma (o1, p12) = Z §Mn (Yo1, 601)BM (So1, P12, Po2)Po2

d01,P02

+ ) M (01, 001)EM (01, P12, Y02) V02,

301,702

m2(’701,712) = Z ﬁMN(’Yoh501)11/\/11\/(501,712,502)11-/\/1(502,]?02)]?02

301,002,P02

+ > My (o1, 000)EMN (So1, 12, Go2) M (S02, 702) 02

301,602,702

+ ) M (01, 001) M (112, 612)8M (S01, 612, Po2)Po2

d01,012,P02

+ > M (o1, S0 )M (112, 612)EM (S01, 12, 702) 02

001,012,702

+ Z EM (Y01, do1)EM (d01, Y01 EM N (7015 712, d02) EM (02, Poz) oz

301,7H1,902,P02

+ D M (o1, 01)EM (S01, 761 EM N (Y1, 112, 602) M (802, Y02) Y02

’
301,741,0025Y02

+ ) M (o1, d0)EM v (Jo1, 112, Y02) Y02

301,702

+ Y My (Yor, 601)EM (Bo1, Yo EMN (Yor, Y12, Y02) Y02,

7
801,701,702

mz(POb 712) :

where the dimension of each moduli space is 0.

Note that the definition of mso is more complicated than the cup product in
Morse complex. But, as in the Morse case, Theorem 4.8, we can prove the following
theorem by observing the boundary of 1-dimensional moduli spaces of pseudoholo-
morphic maps in Theorem 5.3. We omit the proof.
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Theorem 5.4. We denote by 801 : C(LQ,Ll) — C(Lo,lq),alg : O(Ll,Lg) —
C(L1, La) and 0oz : C(Lo, La) — C(Lg, L2) the boundary operators of Floer com-
plexes. Then we obtain the Leibniz rule:

3027712(*01, *12) = m2(301*017 *12) + m2(*01, 312*12),

where *;; is a generator of C(L;, L;).
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