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1 Introduction

There are several kinds of Floer homology:
e Floer homology for Lagrangian intersections [1],
e Floer homology for fixed points of symplectic diffeomorphisms [2],
e Floer homology in Yang-Mills theory [3].

Beyond them there exists Morse theory or Morse homology for infinite dimen-
tional manifolds. In this manuscript we will explain the theory with respect
to the first case.

2 Morse homology

Let M be a closed manifold of finite dimension and f : M — R a smooth
function. We call a point p critical if and only if df, = 0. Then we can obtain
a symmetric bilinear form Hf, : T,M x T,M — R called the Hessian. The
definition of H f, is

Hf,(u,v) = zn: O (p)a;b,
pA ij—=1 01’,(9303 I

where u = Y1, ai(a%i)p and v = Y7, bj(%)p. If Hf, is non-degenerate,
then we call the critical point non-degenerate, and we call the number of the
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( i (p)>
8:@8:@ 1<i,j<n

the Morse index of f at p. We shall use u(p) to denote the index. If all the
critical points of f are non-degenerate, then we call f a Morse function. In
fact, there are many Morse functions on M.

Let g be a Riemannian metric on M. For f : M — R there exists a unique
vector field gradf on M such that

g(v, gradf) = v(f).

We call gradf the gradient vector field of f. For critical points p and ¢ we
consider the set

negative eigenvalues of

M(p,q) :={x: R — M|t = —gradf, EIElOOlT(T) = p, lim z(7) = q}.

T—00

Note that R acts on M(p,q) by (a-z)(7) := z(7 + a) for a € R. We denote
the quotient by M(p, q).

Theorem 2.1 For generic Riemannian metrics M(p, q) is a smooth manifold
of dimension pu(p) — pu(q) — 1.

Moreover the following compactification theorem holds.

Theorem 2.2 (1) If u(p) — pu(q) — 1 = 0, then M(p,q) is compact. A
(2) If u(p) — u(q) — 1 = 1, then we have a suitable compactification of M(p, q)
so that the boundary is

U M(p,r) X M(r,q).

p(r)=p(p)—1

We can choose a suitable orientation of M(p, q) compatible with the compact-
ification.

Let C} be the Z-module whose basis elements are the critical points of
Morse index k,

Cy = @ Zp.

w(p)=*k

We define a linear map 0 : Cy — C%_1 in terms of the canonical bases by

Op= Y. tM(p.q)q,

n(g)=k—1
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where §M(p, q) counts the elements of M(p,q) with the orientation or sign.
Then we can calculate

~

00x = 0 > tM(z,y)y

w(y)=p(x)—1

- ¥ > EM(z )My, 2)z.

wy)=p(x)—1 p(z)=p(y)—1
From Theorem 2.2 (2) the number
S Mz y)iM(y, 2)
wy)=n(z)—1
1S zero.

Theorem 2.3 9? = 0 and the homology is isomorphic to the singular homol-
ogy of M.

We call the homology Morse homology. Here is an example [4]. (Here we omit
the signs. For simplicity the reader may consider the example over Z,.) Let
M be a 2-sphere and f the height function as in Figure 1.

p

Figure 1

The indices of the critical points are u(p) = p(g) = 2 and p(r) = 1 and
p(s) = 0. In this case M(p,r) and M(q,r) consist of one point and M(r, s)
consists of two points, and we can identify M (p, s) with an open interval and

A

compactify M(p, s) so that the boundary is M(p, ) x M(r, s) as in Figure 2.



4 Manabu AKAHO

—
N

Figure 2

We have
op=r, 0g=—r, Or =0, 0s =0,

and the homology is
Z[p + q] ® Z]s]

which is isomorphic to the singular homology of the sphere.

3 Symplectic preliminaries

Let M be a smooth manifold and w a 2-form on M. We call w a symplectic
form if and only if w is closed and non-degenerate. From the non-degeneracy
we can conclude that the dimension of M is even. We have the following
examples of symplectic manifolds:

e R? with w := X1, da; A dy;,
e Kaihler manifolds with Kéahler forms,

e Let X be a smooth manifold and (zy,...,z,) a local coordinate system.
We have a local coordinate system of the cotangent bundle 7*X such
that > | y;dz; corresponds to (1, y1, ..., Zn, ¥n). Then the 2-form w :=
Yo, dx; N\ dy; is a symplectic form on T*X.
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If a diffeomorphism f : (My,w;) — (Ma,ws) satisfies
[rwe = wr,

then we call f a symplectomorphism. For a smooth function H, : M x[0,1] — R
there exists a unique vector field X; such that

w(-, Xt) = dHt
We call X; a Hamiltonian vector field. Let {¢:}o<i<1 be the isotopy such that

%@ = Xiody,
oo = id.

We call such an isotopy a Hamiltonian isotopy. From the definition we can
conclude that ¢, : M — M is a symplectomorphism.

Let L be an n-dimensional submanifold of M?". If w|y;, = 0, then we call
L a Lagrangian submanifold. We have the following examples of Lagrangian
submanifolds:

e 1l-dimensional submanifolds of Riemann surfaces,
e The zero-section Ox of T* X,

e Let {¢:}o<i<1 be a Hamiltonian isotopy and L a Lagrangian submanifold.
Then ¢;(L) is also a Lagrangian submanifold.

We will use the following theorem to calculate Floer homology.

Theorem 3.1 If L is a Lagrangian submanifold, then we can choose a neigh-
borhood N (L) of L which is symplectomorphic to a neighborhood N(0r) of the
zero-section of T* L, where L is identified with the zero-section.

4 Floer homology for Lagrangian intersections

Let f : X — R be a smooth function. We will consider H := for : T*X — R,
where m : T*X — X is the projection. For the (¢-independent) Hamiltonian
isotopy { ¢t bo<t<1 associated to H, ¢1(0x) is the graph of df in T* X, hence we
can identify the intersection points of 0y and ¢(0x) with the critical points of
f. Moreover, if f is a Morse function, then they intersect transversally. From
the Morse inequalities we can conclude
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Theorem 4.1 Let X be a closed manifold and f: X — R a Morse function.

Then
dim X

ﬁ{OX m¢1(OX)} 2 Z rankHl-(X).

1=0

We shall denote by 0’y the deformation of Ox under an isotopy. In comparison
with Theorem 4.1, if Ox and 0 intersect transversally, then we have the
following estimate, which is the best possible.

H{0x N0y} = x(X),

where x(X) is the Euler number of X. Floer proved the following theorem
conjectured by Arnold, which is an extension of Theorem 4.1.

Theorem 4.2 Let M be a compact symplectic manifold and L a Lagrangian
submanifold. We assume [p2 u*w =0 for u: D* — X such that w(0D?) C L.
If L and ¢,(L) intersect transversally, then
dim L
t{LN¢1(L)} > > rankH,(L,Z,).

1=0

We shall denote by L’ the deformation of L under an isotopy. If L and L’
intersect transversally, then we have the following estimate, which is the best
possible.

HLN L'} > Xx(L),
where x(L) is the Euler number of L.

Let M be a closed symplectic manifold and L a Lagrangian submanifold.
For a Hamiltonian isotopy {¢:}o<i<1 we define

Q:={l:]0,1] — M]|l(0) € L,I(1) € ¢1(L),! is homotopic to ¢;(x¢)},

where 2y € L is a fixed point, and we denote the universal covering space of
Q by .

Q= {u:0,1]x[0,1] — M|u(r,0) € L,u(r,1) € ¢1(L),u(0,t) = ¢(20)} /homotopy.

We introduce a function F': Q — R

1 1 ou Ou
F(u) ::/O dr/o dw(at,&)
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Lemma 4.3 Assume [p2u*w = 0 for u: D* — X such that w(0D?*) C L. If
up(1,t) = ui(1,t), then F(ug) = F(uy).

From this lemma we can regard F' as a function on 2, which is our Morse
function on an infinite dimensional manifold. The tangent space T;Q) at [ € §2
is

Ti0 = {£(t) € UTMIE(0) € Tyo)L,€(1) € Tiyda (L)}

(Strictly speaking, we need Sobolev spaces to define infinite dimensional man-
ifolds.) Before calculating the gradient vector field of F'; we note the following
fact.

Lemma 4.4 There exist Riemannian metrics g and almost complex structures
J such that

i g(“?”) :W(u’ J'U);
e g(u,v) = g(Ju, Jv).

We will use t-dependent ¢; and J; satisfying the above conditions. We define
a metric on {2 by

€.6) = [ al@@).&0)d, 6.6 e T

Then we can calculate

@) = [w(%.e)a
: b “\ar
L [(dl
dl
= | —,—J
<dt7 t€>
dl
= | i—,¢&]).
( tdt7€>
Hence, gradF' = Jt%. (Strictly speaking Jt% is not an element of T;{) because
of the boundary conditions.) Moreover, we can conclude that (dF'); = 0 if and

only if % = 0, which implies that [ is a constant map to L N ¢1(L). Then we
will consider the following sets, for p and ¢ € L N ¢1(L):

M(p.q) = {u ‘R—Q ’ gu = —gradF, lim u(7,[0,1]) = p, lim u(7,[0,1]) = q}-

T
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Note that R acts on M(p, q) by (a-u)(7,t) := u(r +a,t) for a € R. We denote
the quotient by M(p,q). We can express % = —gradF as

ou ou
7 + J(u(r, t))a =

which is a non-linear elliptic partial differential equation.

0,

Theorem 4.5 Assume that L and ¢1(L) intersect transversally. We can as-
sign a number p(p) to each p € L N ¢1(L), and for generic t-dependent
almost complex structures the M(p,q) are smooth manifolds of dimension

n(p) — p(q) — 1.

The transversality of L N ¢1(L) corresponds to the non-degeneracy of critical
points of Morse functions. Moreover the following compactification theorem
holds.

Theorem 4.6 Assume [p:u*w =0 for u: D* — X such that uw(0D?) C L.
(1) If pu(p) — p(q) — 1 =0, then M(p,q) is compact.

(2) If u(p) — u(q) — 1 = 1, then we have a suitable compactification of M(p,q)
so that the boundary is

U M(p,r) X M(r,q).

p(r)=u(p)—1

We will construct an analogue of Morse homology. Here we will use co-
efficients in Z,. (To construct the chain complex over Z we need suitable
orientations of M(p, q).) Let Ck be the Zy-vector space over the intersection
points of L and ¢1(L) of u(p) =k,

Ck = @ ng

w(p)=k

We define a linear map 0 : C, — C}_1 in terms of the canonical bases by

=Y iM® 9

m(a)=k—1

where §M (p, q) counts the elements of M(p, q) modulo 2. Then we can calcu-
late

~

90x = 0 > tM(z,y)y

w(y)=p(z)—1

_ > EM(z,y)EM(y, 2)z.

wy)=p(@)—1 p(z)=p(y)—1
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From Theorem 4.6 (2)

S Mz y)iM(y, 2)

w(y)=p(z)—1

is zero modulo 2.
Theorem 4.7 9 = 0.

We call the homology Floer homology for Lagrangian submanifolds L and
¢1(L). Although we used J; to construct Floer homology, the following theo-
rem holds.

Theorem 4.8 There is an isomorphism of vector spaces between Floer ho-
mologies for generic J; and J;. Moreover the Floer homologies for (L, p1(L))
and (L, ¢} (L)) are isomorphic.

To calculate Floer homology we can choose convenient Hamiltonian isotopies
from Theorem 4.8. If H; is small enough, then ¢;(L) is in N(L), where N (L)
is the neighborhood as in Theorem 3.1. Moreover we choose H; so that we can
identify ¢ (L) with the graph of dh in N(0;), where h is a Morse function. We
shall use f to denote —h in the following lemma.

Lemma 4.9 We consider a metric on X which, on N(L), is induced by a
metric g on L, and also almost complex structures J on X which, on N(L),
maps the vertical tangent vectors to horizontal tangent vectors with respect to
the Leuvi-Chwita connection of g. If x : R — L satisfies

e = —gradf,
then o 5
T - T B
E + Jt(x<7—7 t))a — 07

where T(1,t) == ¢u(x(7)) and J; := dnJor".

We can identify LN ¢q (L) with the set of critical points of f and the boundary
operator of Floer homology with the one of the Morse homology over Zs.

Theorem 4.10 The Floer homology for L and ¢1(L) is isomorphic to the
singular homology of L over Zs.
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Hence

tH{L N (L)}

= the number of the generators of the Floer’s chain complex for L and ¢;(L)
the rank of the Floer homology for L and ¢;(L)
= the rank of the Morse homology of L over Z,

v

= the rank of the singular homology of L over Z,.

This completes the proof of Theorem 4.1.
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