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1 Introduction

There are several kinds of Floer homology:

• Floer homology for Lagrangian intersections [1],

• Floer homology for fixed points of symplectic diffeomorphisms [2],

• Floer homology in Yang-Mills theory [3].

Beyond them there exists Morse theory or Morse homology for infinite dimen-
tional manifolds. In this manuscript we will explain the theory with respect
to the first case.

2 Morse homology

Let M be a closed manifold of finite dimension and f : M → R a smooth
function. We call a point p critical if and only if dfp = 0. Then we can obtain
a symmetric bilinear form Hfp : TpM × TpM → R called the Hessian. The
definition of Hfp is

Hfp(u, v) :=
n∑

i,j=1

∂2f

∂xi∂xj

(p)aibj,

where u =
∑n

i=1 ai(
∂

∂xi
)p and v =

∑n
j=1 bj(

∂
∂xj

)p. If Hfp is non-degenerate,

then we call the critical point non-degenerate, and we call the number of the
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negative eigenvalues of (
∂2f

∂xi∂xj

(p)

)

1≤i,j≤n

the Morse index of f at p. We shall use µ(p) to denote the index. If all the
critical points of f are non-degenerate, then we call f a Morse function. In
fact, there are many Morse functions on M .

Let g be a Riemannian metric on M . For f : M → R there exists a unique
vector field gradf on M such that

g(v, gradf) = v(f).

We call gradf the gradient vector field of f . For critical points p and q we
consider the set

M(p, q) := {x : R → M |ẋ = −gradf, lim
τ→−∞x(τ) = p, lim

τ→∞x(τ) = q}.

Note that R acts on M(p, q) by (a · x)(τ) := x(τ + a) for a ∈ R. We denote
the quotient by M̂(p, q).

Theorem 2.1 For generic Riemannian metrics M̂(p, q) is a smooth manifold
of dimension µ(p)− µ(q)− 1.

Moreover the following compactification theorem holds.

Theorem 2.2 (1) If µ(p)− µ(q)− 1 = 0, then M̂(p, q) is compact.
(2) If µ(p)−µ(q)− 1 = 1, then we have a suitable compactification of M̂(p, q)
so that the boundary is

⋃

µ(r)=µ(p)−1

M̂(p, r)× M̂(r, q).

We can choose a suitable orientation of M̂(p, q) compatible with the compact-
ification.

Let Ck be the Z-module whose basis elements are the critical points of
Morse index k,

Ck :=
⊕

µ(p)=k

Zp.

We define a linear map ∂ : Ck → Ck−1 in terms of the canonical bases by

∂p :=
∑

µ(q)=k−1

]M̂(p, q)q,
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where ]M̂(p, q) counts the elements of M̂(p, q) with the orientation or sign.
Then we can calculate

∂∂x = ∂
∑

µ(y)=µ(x)−1

]M̂(x, y)y

=
∑

µ(y)=µ(x)−1

∑

µ(z)=µ(y)−1

]M̂(x, y)]M̂(y, z)z.

From Theorem 2.2 (2) the number
∑

µ(y)=µ(x)−1

]M̂(x, y)]M̂(y, z)

is zero.

Theorem 2.3 ∂2 = 0 and the homology is isomorphic to the singular homol-
ogy of M .

We call the homology Morse homology. Here is an example [4]. (Here we omit
the signs. For simplicity the reader may consider the example over Z2.) Let
M be a 2-sphere and f the height function as in Figure 1.
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Figure 1

The indices of the critical points are µ(p) = µ(q) = 2 and µ(r) = 1 and
µ(s) = 0. In this case M̂(p, r) and M̂(q, r) consist of one point and M̂(r, s)
consists of two points, and we can identify M̂(p, s) with an open interval and
compactify M̂(p, s) so that the boundary is M̂(p, r)×M̂(r, s) as in Figure 2.
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Figure 2

We have

∂p = r, ∂q = −r, ∂r = 0, ∂s = 0,

and the homology is

Z[p + q]⊕ Z[s]

which is isomorphic to the singular homology of the sphere.

3 Symplectic preliminaries

Let M be a smooth manifold and ω a 2-form on M . We call ω a symplectic
form if and only if ω is closed and non-degenerate. From the non-degeneracy
we can conclude that the dimension of M is even. We have the following
examples of symplectic manifolds:

• R2n with ω :=
∑n

i=1 dxi ∧ dyi,

• Kähler manifolds with Kähler forms,

• Let X be a smooth manifold and (x1, . . . , xn) a local coordinate system.
We have a local coordinate system of the cotangent bundle T ∗X such
that

∑n
i=1 yidxi corresponds to (x1, y1, . . . , xn, yn). Then the 2-form ω :=∑n

i=1 dxi ∧ dyi is a symplectic form on T ∗X.
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If a diffeomorphism f : (M1, ω1) → (M2, ω2) satisfies

f ∗ω2 = ω1,

then we call f a symplectomorphism. For a smooth function Ht : M×[0, 1] → R
there exists a unique vector field Xt such that

ω(·, Xt) = dHt.

We call Xt a Hamiltonian vector field. Let {φt}0≤t≤1 be the isotopy such that

{
d
dt

φt = Xt ◦ φt,
φ0 = id.

We call such an isotopy a Hamiltonian isotopy. From the definition we can
conclude that φt : M → M is a symplectomorphism.

Let L be an n-dimensional submanifold of M2n. If ω|TL = 0, then we call
L a Lagrangian submanifold. We have the following examples of Lagrangian
submanifolds:

• 1-dimensional submanifolds of Riemann surfaces,

• The zero-section 0X of T ∗X,

• Let {φt}0≤t≤1 be a Hamiltonian isotopy and L a Lagrangian submanifold.
Then φt(L) is also a Lagrangian submanifold.

We will use the following theorem to calculate Floer homology.

Theorem 3.1 If L is a Lagrangian submanifold, then we can choose a neigh-
borhood N(L) of L which is symplectomorphic to a neighborhood N(0L) of the
zero-section of T ∗L, where L is identified with the zero-section.

4 Floer homology for Lagrangian intersections

Let f : X → R be a smooth function. We will consider H := f ◦π : T ∗X → R,
where π : T ∗X → X is the projection. For the (t-independent) Hamiltonian
isotopy {φt}0≤t≤1 associated to H, φ1(0X) is the graph of df in T ∗X, hence we
can identify the intersection points of 0X and φ1(0X) with the critical points of
f . Moreover, if f is a Morse function, then they intersect transversally. From
the Morse inequalities we can conclude
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Theorem 4.1 Let X be a closed manifold and f : X → R a Morse function.
Then

]{0X ∩ φ1(0X)} ≥
dim X∑

i=0

rankHi(X).

We shall denote by 0′X the deformation of 0X under an isotopy. In comparison
with Theorem 4.1, if 0X and 0′X intersect transversally, then we have the
following estimate, which is the best possible.

]{0X ∩ 0′X} ≥ χ(X),

where χ(X) is the Euler number of X. Floer proved the following theorem
conjectured by Arnold, which is an extension of Theorem 4.1.

Theorem 4.2 Let M be a compact symplectic manifold and L a Lagrangian
submanifold. We assume

∫
D2 u∗ω = 0 for u : D2 → X such that u(∂D2) ⊂ L.

If L and φ1(L) intersect transversally, then

]{L ∩ φ1(L)} ≥
dim L∑

i=0

rankH∗(L,Z2).

We shall denote by L′ the deformation of L under an isotopy. If L and L′

intersect transversally, then we have the following estimate, which is the best
possible.

]{L ∩ L′} ≥ χ(L),

where χ(L) is the Euler number of L.

Let M be a closed symplectic manifold and L a Lagrangian submanifold.
For a Hamiltonian isotopy {φt}0≤t≤1 we define

Ω := {l : [0, 1] → M |l(0) ∈ L, l(1) ∈ φ1(L), l is homotopic to φt(x0)},

where x0 ∈ L is a fixed point, and we denote the universal covering space of
Ω by Ω̃.

Ω̃ := {u : [0, 1]×[0, 1] → M |u(τ, 0) ∈ L, u(τ, 1) ∈ φ1(L), u(0, t) = φt(x0)}/homotopy.

We introduce a function F : Ω̃ → R

F (u) :=
∫ 1

0
dτ

∫ 1

0
dt ω

(
∂u

∂t
,
∂u

∂τ

)
.
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Lemma 4.3 Assume
∫
D2 u∗ω = 0 for u : D2 → X such that u(∂D2) ⊂ L. If

u0(1, t) = u1(1, t), then F (u0) = F (u1).

From this lemma we can regard F as a function on Ω, which is our Morse
function on an infinite dimensional manifold. The tangent space TlΩ at l ∈ Ω
is

TlΩ = {ξ(t) ∈ l∗TM |ξ(0) ∈ Tl(0)L, ξ(1) ∈ Tl(1)φ1(L)}.
(Strictly speaking, we need Sobolev spaces to define infinite dimensional man-
ifolds.) Before calculating the gradient vector field of F , we note the following
fact.

Lemma 4.4 There exist Riemannian metrics g and almost complex structures
J such that

• g(u, v) = ω(u, Jv),

• g(u, v) = g(Ju, Jv).

We will use t-dependent gt and Jt satisfying the above conditions. We define
a metric on Ω by

(ξ1, ξ2) :=
∫ 1

0
gt(ξ1(t), ξ2(t))dt, ξ1, ξ2 ∈ TlΩ.

Then we can calculate

(dF )l(ξ) =
∫ 1

0
ω

(
dl

dt
, ξ

)
dt

=
∫ 1

0
ω

(
dl

dt
, Jt(−Jtξ)

)
dt

=

(
dl

dt
,−Jtξ

)

=

(
Jt

dl

dt
, ξ

)
.

Hence, gradF = Jt
dl
dt

. (Strictly speaking Jt
dl
dt

is not an element of TlΩ because
of the boundary conditions.) Moreover, we can conclude that (dF )l = 0 if and
only if dl

dt
= 0, which implies that l is a constant map to L ∩ φ1(L). Then we

will consider the following sets, for p and q ∈ L ∩ φ1(L):

M(p, q) :=

{
u : R → Ω

∣∣∣∣∣
∂u

∂τ
= −gradF, lim

τ→−∞u(τ, [0, 1]) = p, lim
τ→∞u(τ, [0, 1]) = q

}
.
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Note that R acts on M(p, q) by (a ·u)(τ, t) := u(τ +a, t) for a ∈ R. We denote
the quotient by M̂(p, q). We can express ∂u

∂τ
= −gradF as

∂u

∂τ
+ J(u(τ, t))

∂u

∂t
= 0,

which is a non-linear elliptic partial differential equation.

Theorem 4.5 Assume that L and φ1(L) intersect transversally. We can as-
sign a number µ(p) to each p ∈ L ∩ φ1(L), and for generic t-dependent
almost complex structures the M̂(p, q) are smooth manifolds of dimension
µ(p)− µ(q)− 1.

The transversality of L ∩ φ1(L) corresponds to the non-degeneracy of critical
points of Morse functions. Moreover the following compactification theorem
holds.

Theorem 4.6 Assume
∫
D2 u∗ω = 0 for u : D2 → X such that u(∂D2) ⊂ L.

(1) If µ(p)− µ(q)− 1 = 0, then M̂(p, q) is compact.
(2) If µ(p)−µ(q)− 1 = 1, then we have a suitable compactification of M̂(p, q)
so that the boundary is

⋃

µ(r)=µ(p)−1

M̂(p, r)× M̂(r, q).

We will construct an analogue of Morse homology. Here we will use co-
efficients in Z2. (To construct the chain complex over Z we need suitable
orientations of M̂(p, q).) Let Ck be the Z2-vector space over the intersection
points of L and φ1(L) of µ(p) = k,

Ck :=
⊕

µ(p)=k

Z2p.

We define a linear map ∂ : Ck → Ck−1 in terms of the canonical bases by

∂p :=
∑

µ(q)=k−1

]M̂(p, q)q,

where ]M̂(p, q) counts the elements of M̂(p, q) modulo 2. Then we can calcu-
late

∂∂x = ∂
∑

µ(y)=µ(x)−1

]M̂(x, y)y

=
∑

µ(y)=µ(x)−1

∑

µ(z)=µ(y)−1

]M̂(x, y)]M̂(y, z)z.
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From Theorem 4.6 (2)

∑

µ(y)=µ(x)−1

]M̂(x, y)]M̂(y, z)

is zero modulo 2.

Theorem 4.7 ∂2 = 0.

We call the homology Floer homology for Lagrangian submanifolds L and
φ1(L). Although we used Jt to construct Floer homology, the following theo-
rem holds.

Theorem 4.8 There is an isomorphism of vector spaces between Floer ho-
mologies for generic Jt and J ′t. Moreover the Floer homologies for (L, φ1(L))
and (L, φ′1(L)) are isomorphic.

To calculate Floer homology we can choose convenient Hamiltonian isotopies
from Theorem 4.8. If Ht is small enough, then φ1(L) is in N(L), where N(L)
is the neighborhood as in Theorem 3.1. Moreover we choose Ht so that we can
identify φ1(L) with the graph of dh in N(0L), where h is a Morse function. We
shall use f to denote −h in the following lemma.

Lemma 4.9 We consider a metric on X which, on N(L), is induced by a
metric g on L, and also almost complex structures J on X which, on N(L),
maps the vertical tangent vectors to horizontal tangent vectors with respect to
the Levi-Civita connection of g. If x : R → L satisfies

dx

dτ
= −gradf,

then
∂x

∂τ
+ Jt(x(τ, t))

∂x

∂t
= 0,

where x(τ, t) := φt(x(τ)) and Jt := φt∗Jφ−1
t∗ .

We can identify L∩φ1(L) with the set of critical points of f and the boundary
operator of Floer homology with the one of the Morse homology over Z2.

Theorem 4.10 The Floer homology for L and φ1(L) is isomorphic to the
singular homology of L over Z2.
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Hence

]{L ∩ φ1(L)}
= the number of the generators of the Floer’s chain complex for L and φ1(L)

≥ the rank of the Floer homology for L and φ1(L)

= the rank of the Morse homology of L over Z2

= the rank of the singular homology of L over Z2.

This completes the proof of Theorem 4.1.
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