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1 Introduction

Let R be a commutative ring with identity and R[x] := R[x1, . . . , xn] the
polynomial ring in x1, . . . , xn over R, where n is a positive integer. We
regard an n-tuple ϕ = (f1, . . . , fn) of elements of R[x] as the endomorphism
of R[x] over R defined by xi 7→ fi for each i ∈ {1, . . . , n}. We say that ϕ is
quasi-elementary if there exist a ∈ R \ {0}, i ∈ {1, . . . , n}, and p ∈ R[x(i)]
such that

ϕ = (x1, . . . , xi−1, axi + p, xi+1, . . . , xn),

where x(i) := {x1, . . . , xi−1, xi+1, . . . , xn}. If a = 1, then ϕ is an automor-
phism of R[x] over R. We call such an automorphism an elementary auto-
morphism. We denote by ER(R[x]) the subgroup of the automorphism group
AutRR[x] of R[x] over R generated by all the elementary automorphisms.
We denote by TR(R[x]) the subgroup of AutRR[x] generated by ER(R[x])
and GL(n,R). Here, we identify A with the automorphism (x1, . . . , xn)A for
each A ∈ GL(n,R). We call an element of TR(R[x]) a tame automorphism.

It is an important problem to decide whether AutRR[x] = TR(R[x]). By
Jung [5] and van der Kulk [6], it holds that AutRR[x1, x2] = TR(R[x1, x2])
if R is a field. There exists an algorithm for deciding whether ϕ is tame for
each ϕ ∈ AutRR[x] when n = 2 and R is a domain (cf. [4]), and when n = 3
and R is a field of characteristic zero ([8]). By these algorithms, it follows
that AutRR[x] is not equal to TR(R[x]) if n = 2 and R is a domain which
is not a field, or if n = 3 and R is a field of characteristic of zero.
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For ϕ = (f1, . . . , fn) ∈ AutRR[x] and m ∈ Z≥0, we define an automor-
phism ϕ[m] of R[x1, . . . , xn+m] over R by

ϕ[m] = (f1, . . . , fn, xn+1, . . . , xn+m),

where Z≥0 denotes the set of non-negative integers, and xn+1, . . . , xn+m are
new variables. For ϕ ∈ AutRR[x], we say that ϕ is stably tame if there exists
m ∈ Z≥0 such that ϕ[m] belongs to TR(R[x1, . . . , xn+m]). The following is a
well-known conjecture with very little progress.

Conjecture. Every automorphism of R[x] over R is stably tame.

Recently, Berson-van den Essen-Wright [1] showed that, if R is regular,
then there exists m ≥ max{2 + dimR, 3} such that ϕ[m] is tame for any
ϕ ∈ AutRR[x1, x2].

Various kinds of automorphisms are obtained from locally nilpotent deriva-
tions as follows. A derivation D of R[x] over R is by definition an R-linear
map R[x] → R[x] which satisfiesD(fg) = fD(g)+gD(f) for any f, g ∈ R[x].
We say that D is locally nilpotent, if for any f ∈ R[x], there exists l ∈ Z≥0

such that Dl(f) = 0. We denote by DerRR[x] and LNDRR[x] the sets of
derivations of R[x] over R, and locally nilpotent derivations of R[x] over R,
respectively. Assume that R is a Q-domain. Then, for each D ∈ LNDRR[x],
we can define an automorphism expD, which we call an exponential auto-
morphism, of R[x] over R by

(expD)(f) =
∑
l≥0

1

l!
Dl(f)

for each f ∈ R[x]. For m ∈ Z≥0, we denote by D[m] the extension of D to
R[x1, . . . , xn+m] defined by D[m](xn+j) = 0 for each j ∈ {1, . . . ,m}. Then,
we have expD[m] = (expD)[m] since D[m](xn+j) = 0 for each j ∈ {1, . . . ,m}.

We say thatD ∈ DerRR[x] is triangular ifD(xi) belongs toR[x1, . . . , xi−1]
for each i ∈ {1, . . . , n}. It is easy to check that, if D is triangular, then D
is locally nilpotent an expD belongs to ER(R[x]). It is known that fD be-
longs to LNDRR[x] if and only if D(f) = 0 and D belongs to LNDRR[x]
for f ∈ R[x] and D ∈ DerRR[x] (cf. [3, Corollary 1.3.34]). Even if D is
triangular, fD may not be triangular, and hence exp fD may not be tame.
Smith [9] showed that (exp fD)[1] is tame for any triangular derivation D of
R[x] and f ∈ kerD.
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The purpose of this paper is to study stable tameness of the exponential
automorphisms for more general locally nilpotent derivations. We denote by
E(R[x]) the multiplicative submonoid of the endomorphism ring EndRR[x] of
R[x] over R generated by quasi-elementary endomorphisms of R[x], i.e., the
set of the composites of quasi-elementary endomorphisms. For ϕ ∈ E(R[x])
and i ∈ {1, . . . , n}, we define

∆ϕ,i = D(ϕ(x1),...,ϕ(xi−1),ϕ(xi+1),...,ϕ(xn)).

Here, for f = (f1, . . . , fn−1) ∈ R[x]n−1, we define a derivation Df of R[x]
over R by

Df (g) = |J(f1,...,fn−1,g)|

for each g ∈ R[x], where J(f1,...,fn−1,g) denotes the Jacobian matrix of the
endomorphism (f1, . . . , fn−1, g), and |A| denotes the determinant of A for
a square matrix A. Then, ∆ϕ,i is locally nilpotent (see the argument after
Lemma 2.1). We can construct various locally nilpotent derivations as ∆ϕ,i.
For example, define ϕ ∈ E(R[x1, x2]) by

ϕ = (tx1 + x22, x2) ◦ (x1, x2 + x21/4),

for t ∈ R \ {0}. Then, ∆ϕ,1 is a locally nilpotent derivation of R[x1, x2] over
R such that ψ ◦∆ϕ,1 ◦ψ−1, and t is not a unit of R is not triangular for every
ψ ∈ AutRR[x1, x2] if R is a UFD by Daigle ([2]).

Set x̃ = {x1, . . . , xn, xn+1}. Here is the main result of this paper.

Theorem 1.1. Let R be a Q-domain, and n a positive integer. For any
ϕ ∈ E(R[x]), i ∈ {1, . . . , n}, and f ∈ ker∆

[1]
ϕ,i, it holds that exp f∆

[1]
ϕ,i belongs

to ER(R[x̃]). In particular, we have (exp f∆ϕ,i)
[1] belongs to ER(R[x̃]) for

each f ∈ ker∆ϕ,i.

We remark that E(R[x]) contains the automorphism of R[x] defined by
a permutation of x1, . . . , xn. Hence, for any ϕ ∈ E(R[x]) and i ∈ {1, . . . , n},
there exists ϕ′ ∈ E(R[x]) such that ∆ϕ,i = ∆ϕ′,1.

Let K be the quotient field of R. We denote by D̄ the extension of D
to K[x] for each D ∈ LNDRR[x]. The theorem above implies the following
corollary.

Corollary 1.2. Let n be a positive integer, and D ∈ LNDRR[x] be such
that τ ◦ D̄ ◦ τ−1 is triangular for some τ ∈ TK(K[x]). Then, there exists
a ∈ R \ {0} such that (exp aD)[1] belongs to ER(R[x̃]).
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Thanks to Rentschler [7], we get the following corollary from Corol-
lary 1.2.

Corollary 1.3. For any D ∈ LNDRR[x1, x2], there exists a ∈ R \ {0} such
that (exp aD)[1] belongs to ER(R[x1, x2, x3]).

We prove Theorem 1.1 in Section 2. Note that every element of E(R[x])
extends to a tame automorphism of K[x] over K. In Section 3, we study ∆ϕ,i

from this point of view, and deduce Corollaries 1.2 and 1.3 from Theorem 1.1.

2 Proof of the main result

Note that |Jϕ◦ψ| = |ϕ(Jψ)||Jϕ| for ϕ, ψ ∈ EndRR[x]. Here, for a matrix
(ai,j)i,j with ai,j ∈ R[x], we define ϕ((ai,j)i,j) = (ϕ(ai,j))i,j.

Lemma 2.1. For f = (f1, . . . , fn−1) ∈ R[x]n−1 and ϕ ∈ AutRR[x], we have

ϕ ◦ |Jϕ|Df ◦ ϕ−1 = Dϕ(f),

where ϕ(f) denotes (ϕ(f1), . . . , ϕ(fn−1)).

Proof. Because R is a domain, |Jϕ| is a unit of R. Take any g ∈ R[x] and
set ψ = (f1, . . . , fn−1, g). Then, we have

(Dϕ(f) ◦ ϕ)(g) = D(ϕ(f1),...,ϕ(fn−1))(ϕ(g)) = |J(ϕ(f1),...,ϕ(fn−1),ϕ(g))| = |Jϕ◦ψ|
= |ϕ(Jψ)||Jϕ| = ϕ(|Jψ|)|Jϕ| = |Jϕ|ϕ(|Jψ|) = ϕ(|Jϕ|)ϕ(Df (g))

= ϕ(|Jϕ|Df (g)) = (ϕ ◦ |Jϕ|Df )(g).

Therefore, we get ϕ ◦ |Jϕ|Df ◦ ϕ−1 = Dϕ(f).

Note that ϕ extends to a tame automorphism ϕ̄ of K[x] over K for each
ϕ ∈ E(R[x]). Then, we have ∆̄ϕ,i = ϕ̄ ◦ |Jϕ̄|D̄x(i)

◦ ϕ̄−1 by Lemma 2.1. Since

|Jϕ̄| = |Jϕ| is a constant, and Dx(i)
= (−1)i+1∂xi , we know that ∆̄ϕ,i is locally

nilpotent. Here, ∂xi denotes the partial derivation in xi. Therefore, ∆ϕ,i is
also locally nilpotent.

It is known that D + E is locally nilpotent, and

exp(D + E) = (expD) ◦ (expE)

for D,E ∈ LNDRR[x] with D ◦ E = E ◦D. Hence, we have that

exp(f + g)D = (exp fD) ◦ (exp gD)

for D ∈ LNDRR[x] and f, g ∈ kerD.
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Proposition 2.2. Let D ∈ LNDRR[x] be such that exp axrn+1D
[1] belongs to

ER(R[x̃]) for any a ∈ Q and r ∈ Z≥0. Then, exp fD[1] belongs to ER(R[x̃])
for any f ∈ kerD[1].

Proof. Take any f ∈ kerD[1]. Since kerD[1] = (kerD)[xn+1], we can write

f =
r∑
i=0

fix
i
n+1,

where r ∈ Z≥0 and f0, . . . , fr ∈ kerD. Then, we have

exp fD = (exp f0D) ◦ · · · ◦ (exp frxrn+1D).

Hence, it suffices to show exp fix
i
n+1D

[1] belongs to ER(R[x̃]) for each i ∈
{1, . . . , r}. For g, h ∈ R[x], we can write glhm as a sum of polynomials of the
form a(g+ bh)l+m with a, b ∈ Q and l,m ∈ Z≥0 (cf. [1, Lemma 2.1]). Hence,
we may fix

i
n+1 as a sum of the polynomials of the form a(xn+1 + bfi)

i+1

with a, b ∈ Q. Thus, we are reduced to proving that exp a(xn+1 + bfi)
i+1D[1]

belongs to ER(R[x̃]). Set ε = (x1, . . . , xn, xn+1 + bfi). Then, we have ε ◦
D[1] ◦ ε−1 = D[1]. Indeed, since ε fixes any element of R[x] and D[1](xn+1) =
D[1](f) = 0, we get

(ε ◦D[1])(xi) = ε(D(xi)) = D(xi) = D[1](xi) = (D[1] ◦ ε)(xi)

for i ∈ {1, . . . , n}, and (ε◦D[1])(xn+1) = ε(0) = 0 is equal to (D[1]◦ε)(xn+1) =
D[1](xn+1 + bfi) = 0. From this equality, it follows that

exp a(xn+1 + bfi)
i+1D[1] = exp ε(axi+1

n+1)D
[1] = ε ◦ (exp axi+1

n+1D
[1]) ◦ ε−1.

This automorphism belongs to ER(R[x̃]), since exp axi+1
n+1D

[1] belongs to
ER(R[x̃]) by assumption. Therefore, (exp fD)[1] belongs to ER(R[x̃]).

Now, let us prove Theorem 1.1. Without loss of generality, we may assume
that i = 1 by the remark after Theorem 1.1. Take any ϕ ∈ E(R[x]). Then,
we can write ϕ = ε1 ◦ · · · ◦ εr, where r ∈ Z≥0 and εi is a quasi-elementary
endomorphism of R[x] for each i ∈ {1, . . . , r}. We prove the theorem by

induction on r. If r = 0, then ϕ = (x1, . . . , xn). Hence, we have ∆
[1]
ϕ,1 = ∂x1 .

In this case, exp f∆ϕ,1 is an elementary automorphism for any f ∈ ker∆
[1]
ϕ,1 =

R[x2, . . . , xn+1]. Assume that r > 0. By Proposition 2.2, it suffices to prove
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that exph∆ϕ,1 belongs to ER(R[x̃]), where h = αxln+1 with α ∈ Q and
l ∈ Z≥0. Put ψ = ε1◦· · ·◦εr−1 ∈ E(R[x]), and write εr = (x1, . . . , xj−1, axj+
p, xj+1, . . . , xn), where a ∈ R \ {0}, j ∈ {1, . . . , n}, and p ∈ R[x(j)].

The following is a key proposition.

Proposition 2.3. There exists g ∈ ker∆
[1]
ψ,j such that

exph∆
[1]
ϕ,1 = (exp g∆

[1]
ψ,j) ◦ (exp ah∆

[1]
ψ,1).

Assuming this proposition, the proof of Theorem 1.1 is completed as fol-
lows. By induction assumption, exp g∆

[1]
ψ,j and exp ah∆

[1]
ψ,1 belong to ER(R[x̃]).

Thus, exph∆
[1]
ϕ,1 also belongs to ER(R[x̃]). Therefore, we obtain Theorem 1.1.

Next, we prove Proposition 2.3. We use the same notation for an auto-
morphism and its extension to K[x]. Similarly, we use the same notation for
a locally nilpotent derivation of R[x] and its extension to K[x]. Note that

∆
[1]
ϕ,1 = ∆ϕ[1],1, and D

[1]
x(1)

= Dx̃(1)
, where x̃(i) denotes

(x1, . . . , xi−1, xi+1, . . . , xn, xn+1)

for each i ∈ {1, . . . , n}. Set b = |Jψ|. Since |Jε| = a, we have |Jϕ[1] | = |Jϕ| =
|Jψ◦ε| = |Jψ||Jε| = ab. By Lemma 2.1, it follows that

h∆ϕ[1],1 = ϕ[1] ◦ |Jϕ[1] |hDx̃(1)
◦ (ϕ[1])−1

= ψ[1] ◦ ε[1] ◦ abhDx̃(1)
◦ (ε[1])−1 ◦ (ψ[1])−1.

Hence, we get

exph∆
[1]
ϕ,1 = ψ[1] ◦ (exp ε[1] ◦ abhDx̃(1)

◦ (ε[1])−1) ◦ (ψ[1])−1.

Then, Proposition 2.3 follows from the following lemma.

Lemma 2.4. There exists q ∈ R[x̃(j)] such that

ε[1] ◦ exp abhDx̃(1)
◦ (ε[1])−1 ◦ (exp abhDx̃(1)

)−1 = exp bqDx̃(j)
. (∗)

Actually, by this lemma, we get

exph∆
[1]
ϕ,1 =ψ

[1] ◦ exp bqDx̃(j)
◦ exp abhDx̃(1)

◦ (ψ[1])−1

=ψ[1] ◦ exp |Jψ[1] |qDx̃(j)
◦ exp a|Jψ[1] |hDx̃(1)

◦ (ψ[1])−1.
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By Lemma 2.1,

ψ[1] ◦ exp |Jψ[1] |qDx̃(j)
◦ (ψ[1])−1 = expψ[1](q)∆

[1]
ψ,j,

ψ[1] ◦ exp |Jψ[1]|ahDx̃(1)
◦ (ψ[1])−1 = exp ah∆

[1]
ψ,1.

Note that ψ[1](q) is killed by ∆
[1]
ψ,j = ψ[1] ◦|Jψ[1]|Dx̃(j)

◦(ψ[1])−1 since q is an el-

ement of R[x̃(j)]. Therefore, exph∆
[1]
ϕ,1 equals to expψ[1](g)∆

[1]
ψ,j ◦exp ah∆

[1]
ψ,1.

It remains only to prove Lemma 2.4. First, assume that j = 1. Then, we
have ε[1](x̃(1)) = x̃(1). Since a = |Jε|, we know by Lemma 2.1,

ε[1]◦ exp abhDx̃(i)
◦ (ε[1])−1 ◦ (exp abhDx̃(1)

)−1

=exp bhDε[1](x̃(1))
◦ exp(−abhDx̃(1)

)

= exp bhDx̃(1)
◦ exp(−abhDx̃(1)

)

= exp bh(1− a)Dx̃(1)
.

Therefore, the assertion holds for q = h(1−a). Next, assume that j 6= 1. Let
ζ = exp abhDx̃(1)

. Since both sides of (∗) fix xk for k ∈ {2, . . . , n+ 1} \ {j},
we show that the images of x1 and xj are the same. Note that ζ = (x1 +
abh, x2, . . . , xn+1) and (ε[1])−1 fixes ζ−1(x1) = x1 − abh. Therefore,

(ε[1] ◦ ζ ◦ (ε[1])−1 ◦ ζ−1)(x1) = (ε[1] ◦ ζ ◦ ζ−1)(x1) = ε[1](x1) = x1.

Then, since (ε[1])−1 = (x1, . . . , xj−1, (xj − p)/a, xj+1, . . . , xn+1), we get

(ε[1] ◦ ζ ◦ (ε[1])−1 ◦ ζ−1)(xj)

= (ε[1] ◦ ζ ◦ (ε[1])−1)(xj) = (ε[1] ◦ ζ)((xj − p)/a)

= ε[1]((xj − ζ(p))/a) = (axj + p− ζ(p))/a

= xj + (p− ζ(p))/a.

Note that f := (p− ζ(p))/(ab) belongs to K[x̃(j)], because p and ζ(p) belong
to R[x(j)]. We show that f belongs to R[x̃]. Set E = hDx(1)

. Then, we have

f =
p− ζ(p)

ab
=
p− (exp abE)(p)

ab
=

1

ab

(
p−

∑
i≥0

(ab)l

l!
El(p)

)

=
1

ab

(
p− p−

∑
i≥1

(ab)l

l!
El(p)

)
= −

∑
i≥1

(ab)l−1

l!
El(p).
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Hence, f ∈ R[x̃]. In particular, bg ∈ R[x̃(j)], where q = (−1)j+1f . Therefore,
we have

ε[1] ◦ ζ ◦ (ε[1])−1 ◦ ζ−1 = (x1, . . . , xj−1, xj + (−1)j+1bq, xj+1, . . . , xn, xn+1)

= exp bqDx̃(j)
.

This proves Lemma 2.4. Thereby, we have completed the proof of Theo-
rem 1.1.

3 Application

Let K be the quotient field of R. An automorphism δ ∈ GL(n,K) is diagonal
if δ = (a1x1, . . . , anxn) for some a1, . . . , an ∈ K\{0}. We denote by DK(K[x])
the set of diagonal automorphisms. For each a ∈ R \ {0}, we denote by Ra

the localization of R by {al | l ∈ Z≥0}. Then, we may regard AutRa Ra[x] as
a subgroup of AutK K[x].

Let ai be an element of R \ {0}, and εi an elementary automorphism of
Rai [x] over Rai for i ∈ {1, . . . , r}, where r ∈ Z≥0. Set

S = {al11 · · · alrr | l1, . . . , lr ∈ Z≥0}.

Then, the following lemma holds for ε = ε1 ◦ · · · ◦ εr.

Lemma 3.1. There exists ϕ ∈ E(R[x]), and c1, . . . , cn ∈ S such that ε =
ϕ ◦ δ, where δ = (c−1

1 x1, . . . , c
−1
n xn).

Proof. We prove the lemma by induction on r. When r = 0, the assertion
is clear. Assume that r ≥ 1. Then, we have ε1 ◦ · · · ◦ εr−1 = ϕ ◦ δ for some
ϕ ∈ E(R[x]) and δ = (c−1

1 x1, . . . , c
−1
n xn) with ci ∈ S for each i ∈ {1, . . . , n}

by induction assumption. We write

εr = (x1, . . . , xj−1, xj + p/amr , xj+1, . . . , xn)

where j ∈ {1, . . . , n}, p ∈ R[x(j)], and m ∈ Z≥0. Then, we have (δ ◦ ε)(xi) =
c−1
i xi for each i ∈ {1, . . . , n} \ {j}, and

δ ◦ εr(xj) = (cj)
−1xj + δ(p)/amj .
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Choose m1, . . . ,mr ∈ Z≥0 such that cjdδ(p) belongs to R[x], where d :=
am1
1 · · · amr

r , and put

ε′r = (x1, . . . , xj−1, dxj + cjdδ(p), xj+1, . . . , xn),

δ′ = δ ◦ (x1, . . . , xj−1, d
−1xj, xj+1, . . . , xn).

Then, δ′ has the form of (d−1
1 x1, . . . , d

−1
n xn) for some d1, . . . , dn ∈ S. More-

over, we have ε′r ◦ δ′(xi) = c−1
i xi for each i ∈ {1, . . . , n} \ {j}, and

(ε′r ◦ δ′)(xj) = ε′r(c
−1
j d−1xj) = c−1

j xj + δ(p).

Thus, we get δ ◦ εr = ε′r ◦ δ′. It follows that

ε = ε1 ◦ · · · ◦ εr = (ϕ ◦ δ) ◦ εr = ϕ ◦ ε′r ◦ δ′.

Because ϕ ◦ ε′r belongs to E(R[x]) and δ′ is a diagonal automorphism as
required, we know that the lemma is true.

Note that every element of GL(n,K) is obtained as a product of ele-
mentary matrices and diagonal matrices, and an automorphism defined by
an elementary matrix is elementary. Hence, any tame automorphism is ob-
tained by the composition of some elementary automorphisms and diagonal
automorphisms.

Proposition 3.2. For any τ ∈ TK(K[x]), there exist ε ∈ E(R[x]) and
δ ∈ DK(K[x]) such that τ = ε ◦ δ.

Proof. We may write τ = δ1 ◦ ε1 ◦ · · · ◦ δr ◦ εr, where r ∈ Z≥0, δi ∈ DK(K[x]),
and εi is an elementary automorphism of K[x] over K for each i ∈ {1, . . . , r}.
Note that δ ◦ ε ◦ δ−1 is an elementary automorphism for any elementary
automorphism ε and diagonal automorphism δ. Since

τ =δ1 ◦ ε1 ◦ δ−1
1 ◦ (δ1 ◦ δ2) ◦ ε2 ◦ (δ−1

2 ◦ δ−1
1 )

◦ · · · ◦ (δ1 ◦ · · · ◦ δr) ◦ εr ◦ (δ−1
r ◦ · · · ◦ δ−1

1 ) ◦ δ1 ◦ · · · ◦ δr,

we may assume that τ = ε1 ◦ · · · ◦ εr ◦ δ for some elementary automorphism
ε1, . . . , εr, and a diagonal automorphism δ. For each i ∈ {1, . . . , r}, we can
find ai ∈ R \ {0} such that εi belongs to AutRai

Rai [x]. Then, we have
ε1 ◦ · · · ◦ εr = ϕ ◦ δ′ for some ϕ ∈ E(R[x]) and δ′ ∈ DK(K[x]) by Lemma 3.1.
Therefore, we get τ = ϕ ◦ δ′ ◦ δ in which δ′ ◦ δ is diagonal.
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Let ϕ ∈ AutRR[x] be such that ϕ(xi) = xi + gi for each i ∈ {1, . . . , n},
where gi ∈ R[x1, . . . , xi−1]. Then, we have

ϕ = (exp gn∂xn) ◦ · · · ◦ (exp g1∂x1).

Lemma 3.3. For a triangular derivation D of R[x] and b ∈ R, we have

exp bD = (exp bgnDx(n)
) ◦ · · · ◦ (exp bg1Dx(1)

),

for some gi ∈ R[x1, . . . , xi−1] for i ∈ {1, . . . , n}.

Proof. Since D is triangular by assumption, Dl(xi) belongs to R[x1, . . . , xi−1]
for any l ∈ Z≥0 and i ∈ {1, . . . , n}. Hence, we may write

(exp bD)(xi) =
∑
l≥0

bl

l!
Dl(xi) = xi + b

∑
l≥1

bl−1

l!
Dl(xi) = xi + bgi,

where gi ∈ R[x1, . . . , xi−1]. Then, we have

exp bD = (exp bgn∂xn) ◦ · · · ◦ (exp bg1∂x1).

Since ∂xi = (−1)i+1Dx(i)
, we know that exp bD is expressed as in the lemma.

Let us prove Corollary 1.2. Let D ∈ LNDRR[x] be such that D =
τ ◦ E ◦ τ−1 for some τ ∈ TK(K[x]) and a triangular derivation E of K[x].
By Lemma 3.2, we have τ = ϕ ◦ δ for some ϕ ∈ E(R[x]) and δ ∈ DK(K[x]).
Then, δ◦E◦δ−1 is triangular. Choose a ∈ R\{0} such that a(δ◦E◦δ−1) = bE ′

for some triangular derivation E ′ of R[x], where b = |Jϕ|. By Lemma 3.3,
we can express

exp bE ′ = (exp bgnDx(n)
) ◦ · · · ◦ (exp bg1Dx(1)

),

where gi ∈ R[x1, . . . , xi−1] for each i ∈ {1, . . . , n}. Hence, we have

exp aD = τ ◦ (exp aE) ◦ τ−1 = ϕ ◦ (exp a(δ ◦ E ◦ δ′)) ◦ ϕ−1 = ϕ ◦ (exp bE ′) ◦ ϕ−1

= ϕ ◦ (exp bgnDx(n)
) ◦ ϕ−1 ◦ · · · ◦ ϕ ◦ (exp bg1Dx(1)

) ◦ ϕ−1

= ϕ ◦ (exp |Jϕ|gnDx(n)
) ◦ ϕ−1 ◦ · · · ◦ ϕ ◦ (exp |Jϕ|g1Dx(1)

) ◦ ϕ−1

= expϕ(gn)∆ϕ,n ◦ · · · ◦ expϕ(g1)∆ϕ,1.
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By Theorem 1.1, (expϕ(gi)∆ϕ,i)
[1] belongs to ER(R[x̃]) for each i ∈ {1, . . . , n}.

Therefore, (exp aD)[1] belongs to ER(R[x̃]). This completes the proof of
Corollary 1.2.

By Rentschler [7], for anyD ∈ LNDRR[x1, x2], there exist τ ∈ TK(K[x1, x2])
and f ∈ K[x1] such that D = ϕ ◦ f∂x2 ◦ ϕ−1. Hence, (exp aD)[1] belongs to
ER(R[x1, x2, x3]) for some a ∈ R \ {0} by Corollary 1.2. Therefore, we get
Corollary 1.3.

We are interested in the following question.

Question. Let D ∈ LNDRR[x]. If there exists a ∈ R \ {0} such that
(exp aD)[1] belongs to ER(R[x̃]), then does (expD)[1] belong to ER(R[x̃])?

If this statement is true, then (expD)[1] belongs to ER(R[x1, x2, x3]) for
any D ∈ LNDRR[x1, x2] by Corollary 1.3.
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