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1 Introduction

Let R be a commutative ring with identity and R[x] := R[zy,...,x,] the
polynomial ring in x1,...,x, over R, where n is a positive integer. We
regard an n-tuple ¢ = (f1,..., f,) of elements of R[x] as the endomorphism
of Rlx] over R defined by z; — f; for each i € {1,...,n}. We say that ¢ is
quasi-elementary if there exist a« € R\ {0}, i € {1,...,n}, and p € R[z;)
such that

Y= (xla vy Li—1, A5 +p7 Tit1,--- 7In)7

where x;y = {&1,...,%i—1,%iy1,..., 25} If a = 1, then ¢ is an automor-
phism of R[x] over R. We call such an automorphism an elementary auto-
morphism. We denote by Eg(R|x]) the subgroup of the automorphism group
Autg R[z| of R[x| over R generated by all the elementary automorphisms.
We denote by Tgr(R[x]) the subgroup of Autg R[x] generated by Eg(R[x])
and GL(n, R). Here, we identify A with the automorphism (x1,...,z,)A for
each A € GL(n, R). We call an element of Tr(R[x]) a tame automorphism.

It is an important problem to decide whether Autg R[x] = Tr(R[x]). By
Jung [5] and van der Kulk [6], it holds that Autg R[x, 23] = Tr(R|[x1,22))
if R is a field. There exists an algorithm for deciding whether ¢ is tame for
each ¢ € Auty R[x] when n = 2 and R is a domain (cf. [4]), and when n =3
and R is a field of characteristic zero ([8]). By these algorithms, it follows
that Autg R[] is not equal to Tr(R[x]) if n = 2 and R is a domain which
is not a field, or if n = 3 and R is a field of characteristic of zero.



For go = (f1,..., fn) € Autg R[x] and m € Z>(, we define an automor-
phism @™ of R[xl, <e s Tpim) Over R by

gp[m} — (fl, .. ,fn,l’n-H, s >$n+m)a

where Z>( denotes the set of non-negative integers, and =1, ..., Tptn are
new variables. For ¢ € Autg R[x], we say that ¢ is stably tame if there exists
m € Zso such that o™ belongs to Tr(R[z1, ..., Tnim]). The following is a
well-known conjecture with very little progress.

Conjecture. Every automorphism of R[x] over R is stably tame.

Recently, Berson-van den Essen-Wright [1] showed that, if R is regular,
then there exists m > max{2 + dim R,3} such that ™ is tame for any
© € Autg R[z1, 22

Various kinds of automorphisms are obtained from locally nilpotent deriva-
tions as follows. A derivation D of R[x] over R is by definition an R-linear
map R[x] — R|x] which satisfies D(fg) = fD(g)+gD(f) for any f, g € R[x].
We say that D is locally nilpotent, if for any f € R[x], there exists | € Zx
such that D!(f) = 0. We denote by Derg R[] and LNDg R[x] the sets of
derivations of R[x] over R, and locally nilpotent derivations of R[x] over R,
respectively. Assume that R is a Q-domain. Then, for each D € LNDy R[],
we can define an automorphism exp D, which we call an exponential auto-
morphism, of R[x] over R by

(exp D)(f Z “Dl

for each f € R[x]. For m € Zsy, we denote by D™ the extension of D to
Rlx1,..., Ty defined by DM (z,,;) = 0 for each j € {1,...,m}. Then,
we have exp D"l = (exp D)™ since D[m} (Xntj) = 0 for each j € {1,...,m}.

We say that D € Derg R[x] is triangularif D(z;) belongs to R[xy, ..., z; 1]
for each i € {1,...,n}. It is easy to check that, if D is triangular, then D
is locally nilpotent an exp D belongs to Eg(R[x]). It is known that fD be-
longs to LNDg R[] if and only if D(f) = 0 and D belongs to LNDy R[]
for f € R[x] and D € Derg R[x] (cf. [3, Corollary 1.3.34]). Even if D is
triangular, fD may not be triangular, and hence exp fD may not be tame.
Smith [9] showed that (exp fD)! is tame for any triangular derivation D of
Rlz] and f € ker D.



The purpose of this paper is to study stable tameness of the exponential
automorphisms for more general locally nilpotent derivations. We denote by
E(R[x]) the multiplicative submonoid of the endomorphism ring Endr R[x] of
R[x| over R generated by quasi-elementary endomorphisms of R[x], i.e., the
set of the composites of quasi-elementary endomorphisms. For ¢ € £(R[x])
and i € {1,...,n}, we define

Agi = Dp(ar)

Here, for f = (f1,..., fu_1) € Rlz]"', we define a derivation Dy of R[x]
over R by

Df(g) = |J(f1,...,fn,1,g)‘

for each g € R[x|, where Jiy, . ;. 4 denotes the Jacobian matrix of the
endomorphism (fi,..., fn_1,9), and |A| denotes the determinant of A for
a square matrix A. Then, A, ; is locally nilpotent (see the argument after
Lemma 2.1). We can construct various locally nilpotent derivations as A, ;.
For example, define ¢ € E(R[x1,x2]) by

@ = (txy + 23, 23) 0 (21, 5 + 27 /4),

for t € R\ {0}. Then, A, is a locally nilpotent derivation of R[z1, 2] over
R such that oA, 097!, and ¢ is not a unit of R is not triangular for every
¢ € Autg R[xy, x5] if R is a UFD by Daigle ([2]).

Set & = {z1,..., %y, Tys1}. Here is the main result of this paper.

Theorem 1.1. Let R be a Q-domain, and n a positive integer. For any
p € &E(R[x]),i€{l,...,n}, and f € ker AL it holds that exp ng}i belongs

R

to Er(R[Z]). In particular, we have (exp fA, ;)1 belongs to Ex(R[Z]) for
each f € ker A ;.

We remark that £(R[x]) contains the automorphism of R[x] defined by
a permutation of z1,...,x,. Hence, for any p € E(R[zx]) and i € {1,...,n},
there exists ¢’ € £(R[x]) such that A,; = Ay ;.

Let K be the quotient field of R. We denote by D the extension of D
to K|x] for each D € LNDg R[z]. The theorem above implies the following
corollary.

Corollary 1.2. Let n be a positive integer, and D € LNDg R[] be such
that 7 o D o 771 is triangular for some 7 € Tx(K|x]). Then, there exists

a € R\ {0} such that (expaD)M belongs to Exr(R[E)).
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Thanks to Rentschler [7], we get the following corollary from Corol-
lary 1.2.

Corollary 1.3. For any D € LNDg R[z1, x9], there exists a € R\ {0} such
that (exp aD) belongs to Eg(R[w1, 19, 13]).

We prove Theorem 1.1 in Section 2. Note that every element of £(R[x])
extends to a tame automorphism of K[x] over K. In Section 3, we study A, ;
from this point of view, and deduce Corollaries 1.2 and 1.3 from Theorem 1.1.

2 Proof of the main result

Note that |Jpey| = |@(Jy)||Js| for ¢, € Endg R[x]. Here, for a matrix

(@ij)i; with a;; € Rla], we define o((ai;)i;) = (p(ai;))i;-

Lemma 2.1. For f = (f1,..., fa1) € Rlx|"" and ¢ € Autg R[x|, we have
po|Jo|Dyop™ = Dy,

where o(f) denotes (o(f1),---,0(fn1))-

Proof. Because R is a domain, |J,| is a unit of R. Take any ¢g € R[x] and
set ¥ = (f1,..., fu_1,9). Then, we have

(Do) ©0)(9) = Digr),otn-1(#(9)) = io(72), - 0n1)0000 | = [Jgou|
= [o(Jp)[lJe] = (|l Je| = [Solo(|Ju]) = @(| )0 (D(9))
= (1| Dg(9)) = (@ o || Dy)(g)-
Therefore, we get @ o [J,|Dg o ™! = Dyy). O
Note that ¢ extends to a tame automorphism ¢ of K[z] over K for each
¢ € E(R[z]). Then, we have Ay ; = ¢ o |Jp| Dy, 0@~ ' by Lemma 2.1. Since
| Ja| = |J,| is a constant, and Dy, = (=1)""'9,,, we know that A ; is locally
nilpotent. Here, 0,, denotes the partial derivation in z;. Therefore, A, ; is
also locally nilpotent.
It is known that D + F is locally nilpotent, and
exp(D+ E) = (exp D) o (exp E)
for D, E € LNDg R[x] with Do E = E o D. Hence, we have that

exp(f + g)D = (exp fD) o (exp gD)
for D € LNDg R[x| and f, g € ker D.



Proposition 2.2. Let D € LNDg R[] be such that exp ax’, ., DM belongs to
Er(R[&]) for any a € Q and r € Zso. Then, exp fDW belongs to Eg(R[Z])
for any f € ker DI,

Proof. Take any f € ker DI, Since ker DM = (ker D)[z,,;1], we can write

f = Z fi$;+17
i=0
where r € Z>( and fy, ..., f, € ker D. Then, we have

exp fD = (exp foD) o --- o (exp fray 1 D).

Hence, it suffices to show exp fiz? ., DU belongs to Eg(R[Z]) for each i €
{1,...,r}. For g, h € R[z], we can write g’h™ as a sum of polynomials of the
form a(g + bh)!"*™ with a,b € Q and I,m € Zso (cf. [1, Lemma 2.1]). Hence,
we may fizl ., as a sum of the polynomials of the form a(z,41 + bf;)" !
with a,b € Q. Thus, we are reduced to proving that exp a(z,, +bf;)"+* DI
belongs to Er(R[x]). Set € = (z1,...,%n, Tny1 + bf;). Then, we have ¢ o
DW o=t = DI, Indeed, since ¢ fixes any element of R[x] and D! (z,,,1) =
DU(f) =0, we get

(e 0 DM)(wi) = e(D(x:)) = D(wi) = D(wi) = (DM o ¢)(x7)

fori € {1,...,n}, and (coDM)(x, 1) = £(0) = 0 is equal to (DWoe)(x, 1) =
DW(z,.1+bf;) = 0. From this equality, it follows that

exp a(z, 1 + bfi) DY = expe(azt) DM = ¢ o (exp axt, DM) o e71,

This automorphism belongs to Eg(R[&]), since expax’! DU belongs to
Er(R[&]) by assumption. Therefore, (exp f D) belongs to Ex(R[E)). O

Now, let us prove Theorem 1.1. Without loss of generality, we may assume
that ¢ = 1 by the remark after Theorem 1.1. Take any ¢ € £(R[x]). Then,
we can write ¢ = €1 0---0¢,, where r € Z>( and ¢; is a quasi-elementary
endomorphism of R[x] for each ¢ € {1,...,r}. We prove the theorem by
induction on r. If r = 0, then ¢ = (z1,...,z,). Hence, we have AEI = Oy, -
In this case, exp fA, 1 is an elementary automorphism for any f € ker Ag}l =
Rlzs, ..., xpyq]. Assume that r» > 0. By Proposition 2.2, it suffices to prove



that exphA,; belongs to Eg(R[Z]), where h = azl,, with @ € Q and
l € Zsy. Putp =¢10---0¢,_1 € E(R[x]), and write &, = (21, ..., 2j_1,ax;+
DsTjt1,---, %), where a € R\ {0}, j € {1,...,n}, and p € R[z(;)].

The following is a key proposition.

Proposition 2.3. There exists g € ker AW such that

exp hASD , = (exp gAq%) o (exp ahAE}l).
Assuming this proposition, the proof of Theorem 1.1 is completed as fol-

lows. By induction assumption, exp gAq% and exp ahAE}l belong to Eg(R[Z]).

Thus, exp hAEL also belongs to Eg(R[Z]). Therefore, we obtain Theorem 1.1.

Next, we prove Proposition 2.3. We use the same notation for an auto-
morphism and its extension to K [x]. Similarly, we use the same notation for
a locally nilpotent derivation of R[x] and its extension to K[x]. Note that

Al = Ay, and DY) = D,

ol = 2y = Dz, where x(; denotes
(.Tl, ey Lj 15 Lja1y -0 -5 T,y l’n+1>

for each i € {1,...,n}. Set b = [Jy|. Since |J.| = a, we have |J u| = [J,| =
| Jypoe| = |Jy||Jc| = ab. By Lemma 2.1, it follows that

hALp[I],l = 90[1] © | Ullthu) (90[1])_1
= ylocloabhDs, o (M)~ o ()

Hence, we get

exp hAlL =V o (expell o abhDs,,, o (1)1 o (1)~

Then, Proposition 2.3 follows from the following lemma.

Lemma 2.4. There exists q € R[Z ;| such that

el o expabhDs,, o ()™ o (exp athm(l)) = expbgDz - (%)

2 ©
Actually, by this lemma, we get

exp hAE}l =yl o exp bqDz,, o exp abhDs ,, o o (ypith1
=l o exp | Ty gDz ;) o exp alJyu|hDsg o o (pith~t



By Lemma 2.1,

W o exp [ JymlaDs,, © (W)~ = exp (g )AEJ’
Mo exp|J,mlahDs, . o (M) = exp ahA
1ZJ 1117]‘

Z(1)

Note that 1!!(q) is killed by A[” @/J[l] o|Jym|Dsz,, o (y!1)~1 since ¢ is an el-

ement of R[&;)]. Therefore, exp hA -1 equals to exp Yl (g )AEL oexp ahAq[pl,]l.
It remains only to prove Lemma 2.4. First, assume that j = 1. Then, we
have el!)(2(1)) = (1). Since a = |J.|, we know by Lemma 2.1,
eWoexp abhDg ,, o (eM = o (exp athz(l))
=expbhD iz, © exp(—abhDsz,)
=expbh Dy ,, o exp(—abhDz )

T(1)

=expbh(l — a)Dg,,,

Therefore, the assertion holds for ¢ = h(1 —a). Next, assume that j # 1. Let
¢ = expabhDg, . Since both sides of () fix xy for k € {2,...,n+ 1} \ {j},

T
we show that the images of z; and z; are the same. Note that ( = (x; +
abh, s, ..., v,11) and ()L fixes (7Y(xy) = 21 — abh. Therefore,
(Moo ()™ o) (@) = (Moo (a) = el(a) = a1,
Then, since (eM)™ = (21,...,2; 1, (x; — p)/a, Tjy1, ..., Tni1), We get

(Mo ¢o (™)™ o) (xy)
= (o ([”) N(z;) = (Mo ) ((x; —p)/a)
= 6[”((%‘ —((p))/a) = (az; +p—((p))/a
=z, + (p —((p))/a.

Note that f := (p—((p))/(ab) belongs to K[x;)], because p and ((p) belong
to R[x(j)]. We show that f belongs to R[x]. Set E=hD Then, we have

Z(1)*
por=0) _p= (wabb)o) L <p -y (o) El(p)>
-5 (- E ) - )



Hence, f € R[&]. In particular, bg € R[Z;)], where ¢ = (—1)’*! f. Therefore,
we have

5[1] © C © (5[1])_1 © C_l = (xla sy i1, T + (_1)j+le7 Ljtlse-- 7xn7$n+1>

= exp bgD

Z(3j)

This proves Lemma 2.4. Thereby, we have completed the proof of Theo-
rem 1.1.

3 Application

Let K be the quotient field of R. An automorphism § € GL(n, K) is diagonal
if 0 = (ay21,. .., apx,) forsome ay, ..., a, € K\{0}. We denote by D (K[x])
the set of diagonal automorphisms. For each a € R\ {0}, we denote by R,
the localization of R by {a' | | € Z>¢}. Then, we may regard Autp, R,[] as
a subgroup of Autyx Klx].

Let a; be an element of R\ {0}, and ¢; an elementary automorphism of
R, x| over R,, for i € {1,...,r}, where r € Z>(. Set

S = {alf "'(Zi,r | ll,...,lr € Zzo}.
Then, the following lemma holds for e =1 0---0¢,.

Lemma 3.1. There exists ¢ € E(R[x]), and c1,...,c, € S such that € =
©od, where § = (¢ wy,..., ¢ w,).

Proof. We prove the lemma by induction on r. When r = 0, the assertion
is clear. Assume that » > 1. Then, we have ey 0---0¢, 1 = @ o for some
¢ € E(R[x]) and & = (c;'xy,...,c; w,) with ¢; € S for each i € {1,...,n}
by induction assumption. We write

e = (x1,...,xj_1, 2 +p/ay, Tjq1, ..., Tp)

where j € {1,...,n}, p € R[z)], and m € Z>o. Then, we have (0 o¢)(x;) =
c¢; 'z; for each i € {1,...,n}\ {4}, and

8 oep(x;) = (¢;) '+ 6(p)/af.



Choose my,...,m, € Zsq such that ¢;dd(p) belongs to R[x|, where d :=
ay" -+ -a™, and put

E'/r = ('rlv s axj—lad'rj + de5(p),l'j+1, ce. ,{L’n),

/ -1
0= 50(131,...71'3'_1761 l’j,Ij+1,...,$n>.

Then, & has the form of (d;'zy,...,d; x,) for some dy,...,d, € S. More-
over, we have ¢’ o 0'(z;) = ¢; '; for each i € {1,...,n}\ {j}, and

(0 8) () = ep(cj'd ay) = ¢y + 8 (p).
Thus, we get d oe, =€) 0 ¢’. It follows that
e=¢cj0--0e,=(pod)oe, =poe 0d.

Because ¢ o £/ belongs to £(R[x]) and ¢ is a diagonal automorphism as
required, we know that the lemma is true. O

Note that every element of GL(n,K) is obtained as a product of ele-
mentary matrices and diagonal matrices, and an automorphism defined by
an elementary matrix is elementary. Hence, any tame automorphism is ob-
tained by the composition of some elementary automorphisms and diagonal
automorphisms.

Proposition 3.2. For any 7 € Tg(K[x]), there exist ¢ € E(R[x]) and
0 € D (K[x]) such that T =€ 0 0.

Proof. We may write 7 = 00610 -0, 0¢,, where r € Zx, ¢; € Dg(K|[x]),
and g; is an elementary automorphism of K[x]| over K for each i € {1,...,r}.
Note that § o € 0§71 is an elementary automorphism for any elementary
automorphism e and diagonal automorphism ¢§. Since

T=610ec,06; 0(608)0e50 (65 0y t)

o...o(61o...oéT)ogro((s;lo...o(s;l)oélo...oér’

we may assume that 7 =¢;0---0¢g, 09 for some elementary automorphism
€1,...,&, and a diagonal automorphism ¢. For each i € {1,...,r}, we can
find a; € R\ {0} such that ¢; belongs to Autg, R [x]. Then, we have
g10--0g, = pod for some p € E(R[x]) and ¢’ € Dg(K[x]) by Lemma 3.1.
Therefore, we get 7 = ¢ 0 ¢’ 0 ¢ in which ¢’ o § is diagonal. O
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Let ¢ € Autg R[x] be such that ¢(x;) = x; + g; for each i € {1,...,n},
where g; € R[xy,...,2z;-1]. Then, we have

p = (exp gn0z, ) © - - - © (exp 910y, )-
Lemma 3.3. For a triangular derivation D of Rlx| and b € R, we have
exp bD = (exp bgn Dy, ) © - -+ 0 (expbg1 Dy, ),
for some g; € Rlxy,...,x;—1] forie {l,...,n}.

Proof. Since D is triangular by assumption, D'(x;) belongs to R[zy,. .., 2;_1]
for any | € Z>o and 7 € {1,...,n}. Hence, we may write

(exp bD)(x;) Z I Dl (r;) = x; + bz —Dl (x;) = x; + byg;,

1>0 >1
where g; € R[x1,...,2;_1]. Then, we have
expbD = (exp bg,0,,) 0 -+ o (expbg10y, ).

Since 0,, = (— )’+1Dm( ,» we know that exp bD is expressed as in the lemma.
]

Let us prove Corollary 1.2. Let D € LNDg R[z] be such that D =
7o FEor™! for some 7 € Tg(K|[z]) and a triangular derivation E of K][z].
By Lemma 3.2, we have 7 = ¢ o § for some ¢ € E(R[x]) and 6 € Dy (K|[x]).
Then, joFod ! is triangular. Choose a € R\{0} such that a(doFod~!) = bE’
for some triangular derivation E’ of R[], where b = |J,|. By Lemma 3.3,
we can express

expbE' = (exp bgnDa,,,) © -+ 0 (expbg1 Da, ),

where g; € R[xy,...,2z;_1] for each i € {1,...,n}. Hence, we have

expaD = 7o (expaE)or ' =po(expa(§oEod)) oy =po(expbE’)o

= o (expbgnDg, )o@ ' o---0po(expbgi Dy, )o@
= @ o (exp | Jo|gnDa,) 0~ 0= 0o (exp|Jplg1 Day,y) 0 @

= exp (gn)Apn 0 0exp (g1)Ayp

-1
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By Theorem 1.1, (exp ¢(g:)A,;)M belongs to Eg(R[Z]) for eachi € {1,...,n}.
Therefore, (expaD)M belongs to Ex(R[Z]). This completes the proof of
Corollary 1.2.

By Rentschler [7], for any D € LNDg R[xy, 2], there exist 7 € T (Kxy, x2])
and f € K[z] such that D = @ o f0,, o ¢~ *. Hence, (expaD)™ belongs to
Er(R[z1, x2, x3]) for some a € R\ {0} by Corollary 1.2. Therefore, we get
Corollary 1.3.

We are interested in the following question.

Question. Let D € LNDg R[x|. If there exists a € R\ {0} such that
(exp aD)M belongs to Er(R[Z]), then does (exp D) belong to Er(R[Z])?

If this statement is true, then (exp D) belongs to Ex(R[x1, 9, x3)) for
any D € LNDg R[x1, z5] by Corollary 1.3.
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