ハドロン物理 クォークからの挑戦 保坂 淳 大阪大学 核物理研究センター 首都大学東京物理学教室談話会 1. まえおき 2.ハドロンとは 基本的な法則をもつも 説明できない 3. エキゾチックハドロン 4. チャームバリオン — その解決に向けて 5 まとめ

1. まえおき

共鳴=たたけば響く フーリエ分解 周波数/エネルギー 時間

音を聞くことで

硬さ、大きさ、形状、組成、振動の仕方、さらにこれらから 銅、鉄、他の不純物の割合が予想できる

→ わかった

原子・分子レベルから説明することは難しい ^{首都大談話会 2016年12月7日}

たたく方法と道具

鐘の場合は周波数(エネルギー)を投入した

ハドロン(素粒子や原子核)では エネルギーの他、**運動量、角運動量、スピン、フレーバー** 様々な**量子数**を投入する

粒子加速器

高エネルギー加速器研究機構

Large Hadron Collider

The birth of the web

The World Wide Web, invented at CERN in 1989 by British scientist Tim Berners-Lee, has grown to revolutionize communications worldwide

2. ハドロンとは

- ・クォークからできる物質で、強い相互作用をする
 陽子や中性子(バリオン) = qqq、中間子(メソン) = qq
- ・クォークはハドロンの中に閉じ込められている
- ・カイラル対称性が自発的に破れクォークは質量を獲得する (見える物質質量の99%)
- ・これらの基礎理論は量子色力学として確立している

しかしながら、ハドロンは

- ・裸のクォークとグルーオンでは効率良く説明できない
- ・ハドロンを説明する効率良い方法は? (有効理論)
- ・究極の探求と現実の再構成 = 出来上がる仕組みの解明

Mass of an Atom

Nucleon: 99.95 %

electron: 0.05 %

EM binding< 0.00001 %

Nucleus

Nucleons: 99%

Nuclear binding < 1 %

From S.H. Lee

クォークの種類

クォークを支配する法則は量子色力学 (QCD)

$$L_{\rm QCD} = -\frac{1}{2} \operatorname{tr} G^{\mu\nu} G_{\mu\nu} + \sum_{f=u,...,b} \bar{q}_f (i \not\!\!D - m) q_f$$

6 種類のクォークとグルーオン

質量を獲得したクォークを<mark>構成クォーク</mark> それに基づいていたのがGell-MannとZweigのクォーク模型 QCDよりはるか以前に導入された「現象論」

さて 少し歴史と余談

少量のラジウムを入 れたガラス管をポケッ トに入れていたら数 日後に腹部の皮膚に 紅斑ができたよ

じゃあ僕も腕にラ ジウムを接触させ てみよう。

ドエール

1901年 ベクレル

From M. Bando

Three days lectures at U. Tokyo

同じことが

起きたよ!

http://gendai.ismedia.jp/articles/-/10728

光り輝く放射性物質は、人類に幸せをもたらす魔法の物質、夢の新薬のよ うに喧伝され、さまざまな商品がつくられることになる。

その狂騒ぶりを記す『被曝の世紀』(キャサリン・コーフィールド著、友 清氏訳)には、数々の実例が挙がっている。コロンビア大学の薬学部長は、 ラジウムを肥料にすれば『味の良い穀物を大量につくれる』と主張したと いう。薬剤師はウラン薬やラジウム薬を薬局の棚に並べ、また医師たちも ラジウム注射のような放射性物質を使った治療法を次々と開発、糖尿病、 胃潰瘍、結核、がんなど、あらゆる病に活用しようとした。

ほかにも、膨大なラジウム関連商品が欧米で販売されている。放射性歯 磨き、放射性クリーム、放射性ヘアトニック、ラジウム・ウォーター、ラ ジウム入りチョコバーなどなど。「ラジウムはまったく毒性を持たない。 天体が太陽光と調和するように、ラジウムは人体組織によく調和する」 これは当時の医学雑誌『ラジウム』(1916年)の一節だ。当然のことかもし れないが、放射性物質の危険性に対する意識は、まったくのゼロだったの である。

Atomic nuclei

Nagaoka model

••••

Thomson model

First president of Osaka University

Rutherford's (Marsden) experiments supported Nagaoka As if a cannon ball was rebound by a piece of paper...

$$\frac{R_{Atomic nuclei}}{\sim} \sim 10^{-15} m$$
$$\sim 10^{-5} \text{ of atom}$$

Discovery of neutrons

1932

James Chadwick

Establishes the structure of the nucleus

What binds nucleons

Hideki Yukawa, 1934 @ Osaka Univ

- Used an analogy with the EM force but
- The nuclear force reaches only inside a nucleus (\sim fm)

$$-\nabla^{2}\phi(\vec{x}) = \frac{Q}{\varepsilon}\delta^{3}(\vec{x}) \quad \Rightarrow \quad \left(-\nabla^{2} + m^{2}\right)\phi(\vec{x}) = g\delta^{3}(\vec{x})$$
he solution is
$$\phi(\vec{x}) = \frac{g}{4\pi} \frac{\exp(-mr)}{r} \quad \text{Meson}$$

$$\frac{e^{-x}}{x} \quad \text{Yukawa func.} \qquad m \sim 200 \text{ MeV} \quad \text{Pion}$$

$$f^{ab} t \approx \frac{1948}{184} \qquad 1848$$

Yukawa

湯川博士と大阪大学 大阪大学適塾記念会発行「適塾」No.15(1982)p19-p26 (昭和五 +六年十一月十七日適塾記念講演会の講演要旨)

さて八木先生は、湯川博士にもっと勉強するよう叱った後で、「本来なら朝 永君に来て貰 うことにしていたのに、君の兄さんから依頼されたので、やむな く君を採用したのだから、 朝永君に負けぬよう、しっかり勉強してくれなけれ ば困る」といった意味の注意をされた そうです。八木先生は、口の悪いこと と、八木アンテナで有名で、特に人の胸をグサリと 刺すような毒舌は、先生の 周囲の人々を縮みあがらせていたそうです。湯川先生に対する、 この止どめの 一言は八木先生ならではの毒舌といえましょう。この言葉は湯川先生を励ま す為のもので、善意の言葉とは思いますが、後に湯川先生がノーベル賞を受賞 されたとき、八木先生はどんな気持で、その朗報を聞かれたでしょうか。私に とって、八木、湯川両博 士の心中は、まことに興味深いものでありま す。

その後

坂田、Gell-Mann, Zweig, 南部、小林-益川らのアイデアと 加速器実験を実行した多くの実験研究者の努力によって

陽子や中性子、湯川の中間子の仲間は数百種類知られている それらはqq, qqqで説明されててきた

Particle Data Group

$\frac{1}{2} \frac{1}{2} \frac{1}$		LIGHT UN	EL AVIORED		_	-	UNSWED STRANCE		7	P	P_{11}	••••	∆(1232)	P_{33}	**	电学	7			P ₁₁	••••	Λ_c^+	
$\frac{e_{1}(x)}{x^{2}} = \frac{e_{1}(x)}{x^{2}} + \frac{e_{1}$		(S = C =	= B = 0)	Ι.		- -	$[C = S = \pm 1]$	I '	P(P)	11	P_{11}		A(1600)	P_{33}		車 秋/ 「	-	aac		P ₁₁		A _c (2595)*	
$ \begin{array}{c} \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{$		$f^{i}(J^{PC})$		P(PC	十回-	t ac	i(J ²)	 n (15) 	$a^{+}(a^{-}+)$	N(1440)	P_{11}		∆(1620)	S ₃₀			-	-1-1-	1530) /	13		A _c (2625)*	
$ \begin{array}{c} -r \\ r $	• z ⁴	1-(3-1	 n.(3620) 	1-12	1 1. 5 5	, 1,	A 0(0)	 J/e(15) 	0-(1)	N(1520)	D_{13}		$\Delta(1700)$	D_{33}		2 (1 303)	r13		=(1620)		•	Ac(2765)+	•
$ \begin{array}{c} \cdot \\ \cdot \\ (160) \\ (170) $	• •	1-(0-+)	 d(1680) 	0-(1	• K ⁰	1/2(0~)	·0* oo #2	• x-d1P1	0+10++1	N(1535)	S_{11}		∆(1750)	P_{31}	•	$\Sigma(1480)$	Dr	•	=(16@)c(r		A,(2880)+	
$ \begin{array}{c} (100) & e^{1}e^{-2} & e^{-1} & e^{-1}e^{-1} & e^{-1}e^{-1} & e^{-1}e^{-1} & e^{-1}e^{-1} & e^{-1}e^{-1} & e^{-1}e^{-1}e^{-1} & e^{-1}e^{-1}e^{-1} & e^{-1}e^{-1}e^{-1}e^{-1} & e^{-1}e^{-1}e^{-1}e^{-1} & e^{-1}$	• 0	0+(0-+)	 m(1690) 	1+13	 K⁰₂ 	1/2(0**)	• D* D • D • O 0 0 1	• X (1P)	$0^{+}(1^{+})$	N(1650)	S ₁₁	****	∆(1900)	S10	••	Σ[150]	14	••	1 =(113) - V	313		1,(2940)*	
$ \begin{array}{c} c(r0) & r^{1}(1-7) \\ c$	 f₂(600) 	$0^{+}(0^{+}+)$	· (1700)	1+0	• K ⁰	1/2(0~)	 D₁₁(2460)[±] 0(1[±]) 	 h₁(1P) 	$r^{2}(1 + -)$	N(1675)	D_{15}	****	A(1905)	F 15		Σ(1580)	D_{13}		E(1950)			L GQQ	
$ \begin{array}{c} -(r) \\ -$	 p(770) 	$1^{+}(1^{-})$	A2(1700)	1-(2++)	ACT(800)	$1/2(0^+)$	 D₁₁(2536)[±] 0(1⁺) 	 Xci(1P) 	$0^{+}(2^{++})$	N(1680)	F15	****	4(1910)	ρ_{ii}		Σ(1620)	S11	••	E(2030)		***	E.(2520)	
	 u(782) 	0~(1)	 §(1710) 	$0^{+}(0^{+}+)$	 K*(892) 	1/2(1-)	 D₁₂(2573)[±] 0(?²) 	• n (25)	9+(0-+)	N(1700)	D13	***	A(1920)	P		Σ(1660)	P11		E(2120)			5.(2800)	
$ \begin{array}{c} (4 00) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 101) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100) & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100 & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100 & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100 & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100 & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(2^{+}) & (+ 100 & 1^{+}(2^{+}) \\ (4 100) & 0^{+}(1^{+}) & (+ 100 & 0^{+}(2^{+}) \\ (4 100) & 0^{+}(1^{+}) & (+ 100 & 0^{+}(2^{+}) \\ (4 100) & 0^{+}(1^{+}) & (+ 100 & 0^{+}(2^{+}) \\ (4 100) & 0^{+}(1^{+}) & (4 100 & 0^{+}(2^{+}) \\ (4 100) & 0^{+}(1^{+}) & (4 100 & 0^{+}(2^{+}) \\ (4 100) & 0^{+}(1^{+}) & (4 100 & 0^{+}(2^{+}) \\ (4 100) & 0^{+}(1^{+}) & (4 100 & 0^{+}(2^{+}) \\ (4 100 & 0^{+}(1^{+}) & (4 100 & 0^{+}(1^{+}) \\ (4 100 & 0^{+}(1^{+}) & (4 100 & 0^{+}(1^{+}) \\ (4 100 & 0^{+}(1^{+}) & (4 100 & 0^{+}(1^{+}) \\ (4 100 & 0^{+}(1^{+}) & (4 100 & 0^{+}(1^{+}) \\ (4 100 & 0^{+}(1^{+}) & (4 100 & 0^{+}(1^{+}) \\ (4 100 & 0^{+}(1^{+}) & (4 100 & 0^{+$	 n (95.8) 	0+(0	q(1760)	0+(0 - +	• K(SQ	$1/2(1^+)$	D ₁₁ (2700)* 0(1-)	• #(25)	G-(1)	N(1710)	p_{11}		A(1930)	D.,		E(1670)	D13		E(2250)		••	=+	
$ \begin{array}{c} - (100) & (1 + 0) & (1 + 0) & (1 + 0) & (1 + 0) & (1 + 1) $	 f₂(980) 	0+(0++)	• m(1800)	1-(0-+	 K₁(1400) 	$1/2(1^+)$	BOTTON	• \$(3773)	0-(1)	N(1720)	P.,		A(1940)	0.0		Σ(1690)			E[2370]		••		
$ \begin{array}{c} \mathbf{x}_{(112)} & \mathbf{p}_{(11^{-1})} & \mathbf{x}_{(113)} & \mathbf{x}_{(11^{-1})} $	 a₀[980] 	1-(9++)	£(1810)	0+(2++)	 K*(1410) 	1/2[1-)	(8 = 0.1)	 X(3872) 	0.(1)	M(1900)	P.,.		4(1060)	6.0		£(1750)	S.,		E(2500)			- c	
$ \begin{array}{c} (1123) & (11^{-2}) \\ (1123) & (11^{-2}) \\ (1120) & (12^{-1}) \\ (1200) & (12^{-1}) \\ ($	• 0(1000)	0 1 + -1	A[1835]	A-11	 K₀(1400) 	$1/2(0^{+})$	 B[±] 1/2(0⁻¹) 	Xcr(2P)	21027	M(1990)	5		4(2002)	- 10		5(1770)	P.,		=[eros)			=	
$ \begin{array}{c} \mathbf{x}_{(1,20)} & \mathbf{x}_{(1,2)} & \mathbf{x}_{(1,2)}$	• P ₁ (1175)	+++++-1	• \$1(1000)	a+ra = +1	 AC[[1430] 	$1/2(2^+)$	•B ² ha 1/2021	X(1949)	27 (22)	M(2020)			4(2000)	235		5(1776)	0		0-			= c	
$ \begin{array}{c} 1(129) & 1^{+}_{1} + 1 \\ 4(129) & 1^{+$	• + (1250)	1-0++1	• = (1890)	1-12-+1	A(1460)	1/2[0])	· B*// AMAXTURE	• ((4040)	0-(1)	N(2000)	715	aac	24(2150)	530		2(1115)	025		0(2250)-			$\Xi_{c}(2645)$	
$ \begin{array}{c} (1230) 0^{+}(1^{+}) \\ (1230) 0^{+}(1^{+}) \\ (1230) 1^{+}(1^{+}) $	 6 (1270) 	0+(2++)	a(1900)	1+(1	AC(1500)	1/2(2)	 B^{-b}/B⁰/B⁰/b-baryon 	• (64160)	0-(1)	N(2080)	D13	-11	A(2200)	G ₃₇		2 (1840)	P13		0(2380)-		••	$\Xi_{c}(2790)$	
$ \begin{array}{c} \bullet (1239) & 1^{+}(2^{-}+1) \\ \bullet (1303) & 1^{+}(2^{+}+1) \\ \bullet (1303) & 1^{+}(2^{+}$	 6 (1285) 	0+(1++)	6(1910)	0+(2++)	K (1450)	1/2(3+1)	ADMIXTURE	 X(4360) 	77(1)	N(2090)	511		$\Delta(2300)$	H39		2 (1880)	21		0(2470)-			$\Xi_{c}(2815)$	
$ \begin{array}{c} *(1203) & 1^{-1}0^{-1} \\ *(1230) & 0^{+}(2^{++}) \\ *(5130) & 0$	 n(1295) 	0+(0-+)	 6(1950) 	0+(2++)	 A*(1600) 	1/2(1-)	Vat and Vat OKM Ma- trix Elements	X(4360)	??(1)	N(2100)	P_{11}		$\Delta(2350)$	D_{35}	•	2 (1915)	P15		101 at 101	`		$\Xi_{c}(2930)$	
$ \begin{array}{c} *_{0}(1303) & 1^{-}(2^{+}+1) \\ *_{1}(1303) & 1^{-}(2^{$	 = =(1300) 	$1^{-}(0^{-+})$	p ₃ (1990)	1+(3	 K-(1770) 	1/2(2-)	• 8* 1/2(1)	 gi(4415) 	0-(1)	N(2190)	$G_{1,r}$		∆ (2390)	F_{32}	•	2(1940)	D13		22:	5		$\Xi_{i}(2980)$	
• (a) (a) $p^{-}(q^{-}) = \int_{\mathbb{R}^{2}} \frac{f_{2}(200)}{f_{1}(q^{+})} = \int_{\mathbb{R}^{2}} \frac{f_{1}(200)}{f_{1}(q^{+})} = \int_{\mathbb{R}^{2}} \frac{f_{1}(100)}{f_{1}(q^{+})} = \int_{\mathbb{R}^{2}} \frac{f_{1}(100)}{f_{1}(q^{+})} $	 a₁(1320) 	1-(2++)	 f₂(2010) 	0+(2++)	 A* [1790] 	1/2(3-)	B [*] ₇ (\$732) 2(2 ⁷)	<u> </u>	T	N(2200)	D_{25}	••	∆ (2400)	G_{39}	••	Σ(2000)	S ₁₁					E. (3055)	**
$ \begin{array}{c} h_{(1300)} & f^{-}(1^{+}-7) \\ h_{(1400)} & f^{-}(1^{+}-7) $	 f₀(1370) 	0+(0++)	6(2020)	0+(0++)	 K₁(1820) 	$1/2(2^{-})$	 B₁(5721)⁰ 1/2(1⁺) 	1	10	N(2220)	H_{29}	****	∆(2420)	$H_{3,11}$	****	Σ(2030)	F_{1T}					E.(3080)	
$ \begin{array}{c} *_{1}(1300) & 1^{-}(1^{-}-7) \\ *_{1}(2300) & 0^{-}(4^{-}-7) \\ *_{1}(2300) & 1^{-}(4^{-}-7) \\ *_{1}(1300) & 1^{-}(1^{$	$b_1(1380)$	1-(1)	 A₁(2040) 	1-(4++)	A(1830)	$1/2[0^{-}]$	 B[*]₂(5747)³ 1/2(2⁺) 	%(15)	0(0)	N(2250)	$G_{1.9}$		A(2750)	Ph. 23	••	Σ(2070)	F_{25}	•				= (3123)	
$ \begin{array}{c} \mathbf{x}_{(1,03)} \mathbf{y}^{+}(\mathbf{y}^{+}) \\ \mathbf{x}_{(1,230)} \mathbf{x}^{+}(\mathbf{x}^{+}) \\ \mathbf{x}_{(1,230)} \mathbf{x}^{+}$	 n₁(1400) 	1-(1-+)	 § (2950) (20.00) 	0*[4 + +]	AC*(1950)	$1/2(0^+)$	BOTTOM STRANCE	• (15)	a+(a++)	N(2600)	1,11	***	A(2950)	K1.15	••	Σ(2080)	P_{13}	••				00	
$ \begin{array}{c} 1 (120) & 0^{-} (1-7) \\ 5 (120) & 0^{-} (2-7) \\ 5 (120) & 0^{-} (1-7) $	• ((1425)	0-10-1	#2(2500) 6/21000	a+ca++	K [*] ₁ (1900)	$1/2(2^+)$	$(8 = \pm 1, 5 = \mp 1)$	• X ₁₀ (1P)	$0^{+}(1^{+}+1)$	N(2700)	K111	••		-		Σ(2100)	G_{17}	•				a cormo	
$ \begin{array}{c} a_{1}(230) & b^{+}(2+) \\ a_{2}(130) & 1^{+}(2+) \\ a_{1}(1400) & 1^{+}(2+) \\ a_{1}(230) &$	• (1420)	0-(1)	6(2150)	a+r2++1	 K[*]₄(2045) 	$1/2(4^+)$	 R² 0(0⁻¹) 	• xu(1P)	0+(2++)				4	P_{int}		Σ(2250)		***				referral.	
$ \frac{1}{4(140)} \frac{1}{1^{-1}(1^{-1})} + \frac{1}{4(1^{-1})} \frac{1}{4(1^{-1})} + \frac{1}{4(1^{-$	6(1430)	0+12++1	a(2150)	1+11	K ₂ (2250)	1/2(2-)	•8 be 01-1	• 7(21)	0-(1)				/(1405)	Sec		Σ(2455)		**				=+	
$\begin{array}{c} \mu_{14500} & 1^{+}(1^{-}-1) \\ \epsilon(1450) & 0^{+}(2^{+}+1) \\ \epsilon(1250) & 0^$	 a)(1450) 	1-(0++)	d(2170)	0-(1	K ₀ (2320)	1/2[3*]	• B, (900) 1/2(1 ⁺)	7(10)	0-(2)				A(1520)	Da		Σ[2620]		••				- or	-
$\begin{array}{c} +\eta(1475) & 0^{+}(0^{-}+1) \\ +\delta(1500) & 0^{+}(0^{+}+1) \\ +\delta(1220) & 0^{+}(2^{+}+1) \\ +\delta(1220) & 0^{+}(2^{+}+1) \\ +\delta(1220) & 0^{+}(2^{+}+1) \\ +\delta(1220) & 0^{+}(2^{+}+1) \\ +\delta(1230) & 0^{+}(2^{+}+1) \\ +\delta(1240) & 1^{-}(1^{+}+1) \\ +\delta(1240) & 1^{-}(1^{+}+1) \\ +\delta(1240) & 1^{-}(1^{+}+1) \\ +\delta(1240) & 0^{+}(2^{+}+1) \\ +\delta(1240) & 0^{+}(2^{+}+$	 p(1450) 	1+(1)	6(2200)	0+(0++)	A_(2300)	3/2[5]]	 B[*]₁₀(5840)⁰ 1/2(2⁺) 	 <u>x</u>₂₀₀(2P) 	0+(0++)				4(1600)	P.,		£(3000)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 n(1475) 	$0^{+}(0^{-+})$	f _j (2220)	0+(2++	of 4 AU 2000	2011	B (5850) 2(7 ⁷)	 χ_{B1}(2P) 	$0^{+}(1^{+})$				4(1670)			£(3170)						16	
$ \begin{array}{c} f_{1}(150) & 0^{+}(1^{+}+) \\ *f_{2}'(1525) & 0^{+}(2^{+}+) \\ f_{3}(1565) & 0^{+}(2^{+}+) \\ f_{3}(1565) & 0^{+}(2^{+}+) \\ f_{3}(1565) & 0^{+}(2^{+}+) \\ *f_{3}(1566) & 0^{+}(2^{+}+) \\ *f_{3}(1566) & 0^{+}(1^{-}+) \\ *f_{3}(1566) & 0^{+}(1^{-}+) \\ *f_{3}(1566) & 0^{+}(1^{-}+) \\ *f_{3}(1566) & 0^{+}(2^{+}+) \\ *f_{3}(1566) & 0^{+}(2^{-}+) \\ *f_{3}(1566) & 0^{+}(2^{-}+) \\ *f_{3}(1566) & 0^{+}(2^{-}+) \\ *f_{3}(1566) & 0^{+}(2^{+}+) \\ *f_{3}(1266) & 0^{+}(2^{+}+$	 f₂(1500) 	$0^{+}(0^{+}+)$	(2225)	0+(0-+)	~(1400)	(-(()	POTTON CUMPLED	 X₁₁₁(2P) 	$0^{+}(2^{+})$				A(1600)	- POL		2(000)						Σb	
$\begin{array}{c} P_{2}^{*}(1535) & 0^{+}(2^{++}) \\ \delta_{1}(2500) & 0^{+}(2^{++}) \\ A_{1}(570) & 1^{+}(1^{-}) \\ B_{1}^{*}(1595) & 0^{-}(1^{-}) \\ B_{1}^{*}(1595) & 0^{+}(1^{-}) \\ $	6(1510)	$0^{+}(1^{++})$	Py(2250)	1+(3	CHARM	/ED	(8 = C = \$1)	 T(35) 	0-(1)				A(1000)	P03								2.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 P₂(1525) 	0+(2++)	 6(2300) 	0*(2 * *)	[C = 1	11)	• R* NN=1	• 7 [45]	0-(1)				/(1800)	301								haa	
$ \begin{array}{c} \mu_{(570)} & 1^{+}(1^{-}-1) \\ h_{1}(156) & 0^{+}(2^{+}+) \\ h_{2}(156) & 1^{+}(5^{-}-1) \\ h_{2}(156) & 1^{+}(5^{-}-1) \\ h_{3}(1260) & 1^{-}(5^{+}+) \\ h_{3}(1260) & 1^{-}(5^{+}+) \\ h_{3}(1260) & 0^{+}(2^{+}+) \\ h_{3}(1260) & 0^{+}(2^{+}+) \\ h_{3}(1260) & 0^{+}(5^{+}+) \\ $	fc(1565)	0+(2++)	£(2300)	01[4]	 D^a 	$1/2(0^{-})$	• <i>b</i> _c (<i>b</i>)	 T(10000) T(11000) 	0-(1)				/(1810)	P01								DYPU 22	
$ \begin{array}{c} r_{1}(560) & 0^{-1}(1^{-1}) \\ a_{1}(250) & 1^{+}(5^{1}) \\ a_{1}(240) & 1^{-}(5^{+}+) \\ b_{1}(540) & 0^{+}(2^{+}+) \\ c_{1}(540) & 0^{+}(2^{+}+) \\ c_{2}(510) & 0^{+}(6^{+}+) \\ \hline \\ 0^{+}(2^{+}+) \\ a_{1}(240) & 0^{+}(6^{+}+) \\ \hline \\ 0^{+}(2^{+}+) \\ a_{2}(240)^{-} & 1/2(1^{+}) \\ a_{2}(240)^{-} & 1/2(1^{+}) \\ c_{2}(50) & 0^{-}(1^{-}-) \\ \hline \\ \hline \\ \hline \\ 0^{+}(2^{+}+) \\ a_{2}(240)^{-} & 1/2(1^{+}) \\ \hline \\ 0^{+}(2^{+}+) \\ c_{2}(240)^{-} & 1/2(1^{+}) \\ \hline \\ \hline \\ 0^{+}(2^{+}+) \\ c_{2}(240)^{-} & 1/2(1^{+}) \\ \hline \\ \hline \\ a_{2}(240)^{-} & 1/2(1^{+}) \\ \hline \\ \hline \\ a_{2}(240)^{+} & 1/2(2^{+}) \\ \hline \\ $	p(1570)	1-(1)	6(2350)	atra + +1	• D ^p	$1/2[0^{-})$		• "(1100)	- (L)				/4[1820]	P05									
$ \begin{array}{c} r_{1}(260) & 1 & (1 + 1) \\ a_{1}(260) & 1 & (1 + 1) \\ a_{1}(260) & 1 & (1 + 1) \\ a_{1}(260) & 1 & (1 + 1) \\ b_{1}(2510) & 0 & (1 + 1) \\ b_{1}(2510) & 0 & (1 + 1) \\ b_{1}(250) & 0 & (1 + 1) \\ \hline \\ 0THER LIGHT \\ a_{1}(260) & 0 & (1 + 1) \\ \hline \\ 0THER LIGHT \\ a_{1}(260) & 0 & (1 + 1) \\ \hline \\ 0THER LIGHT \\ a_{1}(260) & 0 & (1 + 1) \\ \hline \\ 0THER LIGHT \\ a_{1}(260) & 0 & (1 + 1) \\ \hline \\ 0THER LIGHT \\ a_{1}(260) & 0 & (1 + 1) \\ \hline \\ a_{1}($	B1(1595)	1-0-+1	• (2360)	1+18	• D*(2007)*	1/2(1-)		NON-qT C	ANDIDATES				/(1830)	D_{05}									
$\begin{array}{c} f_{1}(164) & 0^{+}(2^{+}) \\ (f_{1}(54) & 0^{+}(2^{-}) \\ (f_{1}(54) & 0^{+}(2^{-}) \\ (f_{1}(54) & 0^{-}(1^{-}) \\ (f_{1}(54) & 0^{-}(1^{-}) \\ (f_{1}(56) & 0^{-}(1^{-$	a (1640)	1-0++1	a (2450)	1-16++	D*(2000)*	1/2[1]		NON-qT	CANDI-				A(1890)	P_{20}									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6(1640)	0+12++1	6.(251.0)	0+16++1	CC	1/2019-1		DATES					A(2000)		•								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 m (1645) 	0+(2-+)	-41		010000	1/2019-1			I				A(2020)	F07	•								
• $\omega_3(2570) = 0^{-1}(3^{-1})$ Further States $D_1^{-1}(2450)^{0} = 1/2(1^{+})$ $D_2^{-1}(2450)^{0} = 1/2(1^{+})$ $D_2^{-1}(2450)^{0} = 1/2(2^{+})$ $D_2^{-1}(2450)^{0} = 1/2(2^{+})$	 u(1650) 	0-(1)	OTHE	LIGHT	0.(2420)*	1/2011			I				A(2100)	G_{M}									
$-D_1^2(2463)^0 = 1/2(2^+)$ $-D_2^2(2463)^4 = 1/2(2^+)$ $A(2326) = D_{23}$ $A(2326) = D_{23}$	• un (1670)	0-(3)	Further St	ates	D (2430) ⁰	1/2(1+)							A(2110)	F05	•••								
• 022460 ⁺ 1/202 ⁺) A(2050) H ₂ ***					 D124601⁰ 	1/2(2+1							A(2325)	D_{03}									
					 D(12460)[±] 	$1/2(2^+)$			I				A(2350)	No									
$D^{2}(2643)^{\pm} = 1/2(2^{2})$ (4.2585) **					D*(2643)*	$1/2(?^{?})$							A(2585)		••								

よくわかっていそうだが、、、

基本的な量子数はqq,qqで説明できるが、 質量、寿命、大きさ、遷移確率などは説明できない

こうしたなか、2002年頃から異色のハドロンが見つかってきた X(3872), Y(4260), Z(4430), Θ⁺(1520), ...

> これらは、既知のハドロン以上に説明困難 → **エキゾチックハドロン**

3. エキゾチックハドロン

X(3872), テトラクォーク(?)の発見:

Bell 実験の論文のなかでも最も引用数が多い Inspires:1261

S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001 (2003)

M(π⁺π'l⁺l') - M(l⁺l') (GeV)

これまでに観測されたX,Y,Z

X(3872)の性質

- 1. X(3872) exists
- 2. The mass is close to the threshold
- 3. The decay with is small = long life time
- 4. No isospin partner
- 5. Isospin is broken
- 6. Spin and parity 1^{++}
- 7. The large decay rate into DD^*
- 8. A large production rate in the prompt reactions

Dominated by DD* molecule but with a small fraction of ccbar

単独でこれほど大きなハドロンが本当にあるのか? 身長10mの巨人がいたらどう思う?

 $Z_{c}(4430), Z_{b}(10610), Z_{b}(10650), \dots$

LHCbとBESが追い上げている Z_c(3900), P_c(4450), ...

現在までに多くのデータが報告されている しかし、QCDによる満足のいく説明には至っていない

R.L. Jaffe (2005):

The absence of exotics is one of the most obvious features of QCD F. Wilczek (2005):

The story of pentaquark shows how poorly we understand QCD

そこで

温故知新の教えに戻って

- QCDについて知らないことが多いように見える
- ・ハドロン現象を説明する「うまい」方法は?
 (QCDの直接計算は膨大すぎる、かつ原理的な困難がありそう)
- より簡単な系の性質を詳しく調べる
- チャームバリオン「qqQ」は、qやqqを調べるのに通常のバリオンより便利。ただし作るのが難しい。
- 多くのエキゾチックハドロンは重いクォーク、cやbを含んで

いるので、その直接的な解明にもつながるのでは。

4. チャームバリオン

作る必要がある

チャームやボトムを含むqqqバリオンはわずか もっとあるはず

Particle Data Group

									P	P_{11}	••••	$\Delta(1232)$	P_{33}	••		l		P_{11}		Λ_c^+	****
	LIGHT UN	FLAVORED				LARMED, STRANGE		CT ALL AD		P.		A(1600)	Pin	**	吉 粉:		aac	- P.		4.(2595)*	
	(S = C =	- Ø = 0)	1100	11月二		[C = S = 11]		P(F)	N(1440)	P.,		A(1620)	5	**	王小亚	J	ЧЧЧ	1530) P ₁₁		A. (2625)*	
	$P(P^*)$		P(F)	1.167 ~	J YY	4.1	 #(15) 	0.10	N(1520)	D.,		A(1700)	0		2113001	F 10		1620)		A (2765)+	
• **	1-(0-)	 m₂(3670) 	1-(5.			2 ^a 0(0)	 J/ψ(15) 	0-(1	M(1535)	5.		A(176.0)	D.11		5(1480)			E[1699]		A (2005)	
• = "	$1^{-}(0^{-})$	 φ(1680) 	0-(1)	• K"	1/2(0)	•0;" CS 0(?')	 X_{C0}[1P] 	0+(0++	M[1650]	5		4(1000)	e		TINS	מנ		SSQ		nc(2000)	
• •	0+(0-+)	 p₃(1690) 	17(3)	• Kg	1/2[0])	• D _{s0} (250) 0(0 ⁺)	 X_{[1}[1P] k_{[1}[1P] 	3141 + -1	N(1676)	-711		4(1900)	530		T(1580)	0		E(1950)		COO	
• 5(600)	s+(s = -)	• (1700)	1-12++1	• 42	1/2[0]]	 D₁₁(2460)* 0(1⁺) 	• 4,(12)	a+ca++	N(1675)	5		20(1905)	P35		5(14300)	6/13 C.		E(1997)			
• (787)	0-0	a;[1700]	a+10++1	A((800)	1/2(0*)	• D ₁₁ (2536)* 0(1 ⁺)		2+10-+	W[1080]	<u>(15</u>		$\Delta(1910)$	P_{31}		2(1620)	511		2(2030)		$\Sigma_{c}(2520)$	
 x1(95.8) 	000	w(1760)	a+m = +1	D2	1/201+1	• D ₁₂ (25/3)= 0(1)	• ((25)	G-a	W[1/00]	D13		$\Delta(1920)$	P_{33}	•••	Z(1000)	P11		2[2120]		$\Sigma_{c}(2800)$	
 6(980) 	0+(0++)	 = (1800) 	1-10-+1	K (1400)	1/2(1+)	pH(tun) - A(t)	 - (3775) 	0-(1)	N(1710)	P_{11}		$\Delta(1930)$	D_{35}	•••	2(16/0)	D_{13}		±(2250)		<i>Ξ</i> ⁺ _c	
 A₁(980) 	1-(9++)	6(1810)	0+(2++)	 A[*](1410) 	1/2(1-1	BOTTOM	 X(3872) 	0 ² (2 ²⁺)	N(1720)	P_{13}		⊿(1940)	D_{33}	•	Σ(1690)			=(2370)		Ξ_c^0	***
 d(1039) 	0-(1)	X(1835)	$7^{7}(7 - 4)^{7}$	 AC(1400) 	$1/2(0^+)$	(8 = ±1)	$\chi_{ci}(2P)$	0+(2++)	N(1900)	P_{13}	••	⊿(1950)	F32	****	Σ(1750)	S ₁₁		Ξ(2500)	•	=*+	
 b₁(1170) 	$0^{-}(1^{+})$	 φ₁(1850) 	0-(3)	 A(1) 4301 	1/2(2+)	 B[±] 1/2(0) 	X(3940)	77(722)	N(1990)	F17	••	$\Delta(2000)$	F35	••	Σ(1770)	P_{11}				=0	
 b₁(1235) 	$1^{+}(1^{+})$	(1870)	$0^+(2^{-+})$	A(1460)	1/2(0")	•B° DO 1/2(0")	X(3945)	77(722)	N(2000)	F15	and	$\Delta(2150)$	S ₁₀	•	Σ(1775)	D_{25}		Ω-		= (2645)	
 a₁(1260) 	$1^{-}(1^{++})$	 m₂(1880) 	1-(5-+)	K ₂ (1580)	$1/2(2^{-})$	 B*/B ADMOTURE 	 gi(4040) 	$0^{-}(1^{-})$	N(2080)	D_{13}	٩M	4(2200)	G_{M}	•	$\Sigma(1840)$	P_{13}	•	Ω(2250)		= (2290)	
 f₂(1270) 	0+(2++)	p(1900)	1+(1)	A(1630)	$1/2(?^{2})$	• B*/B*/B*/b-baryon	 g(4160) 	0-(1)	N(2010)	S11		A(2300)	Has	••	$\Sigma(1880)$	P_{11}	**	£2(2380)-	**	$=_{c}(2190)$	
 § [1295] § [1295] 	0*(1 * *)	A(1910)	0*(2 + +)	K ₁ (1650)	$1/2(1^+)$	Vas and Vas CKM Ma-	 X[4260] X[4260] 	r(1)	N(2100)	P.,		4(2350)	Da		Σ(1915)	Fis		£2(2470)-	**	$=_{1}(2815)$ = (2020)	
 • (1295) 	0. (0)	 人(1950) 	0-(2)	 A" (1680) 	$1/2(1^{-})$	trix Elements	X [4300]	1-(1)	N(2190)	Gur		A(2390)	£		Σ(1940)	D11	***	222		$=_{c}(2930)$	
• (1300)	1-12++1	pj[1990]	a+ra++1	 K₂(1770) 	$1/2(2^{-})$	•8• 1/2(1)	• Metzl	0 (L)	M(2200)	D.,		4(2400)	~	••	£[2000]	S.,		000		$=_{i}(2980)$	
• 6(1320)	a+(a++)	6(2020)	a+m++1	 K[*]₁(1780) 	$1/2(3^{-})$	B (5732) 2(71)	1	55	N(2230)	H.		4(2400)	039		5(2030)	E.,				$\Xi_{i}(3055)$	
h-(1380)	1-(1+-1	 A (2040) 	1-14++1	 K₂(1820) 	1/2[2"]	• D1(5/21)* 1/2(1*)	m(15)	$0^{+}(0^{-}+)$	M(2250)	6		44(2420)	10,11		5(2070)	E				$\Xi_{c}(3080)$	
 m (1400) 	1-0-+1	 6(2950) 	0+[4++]	A(1830)	1/2[0"]	• Billound. 11 415.1	 7(15) 	0-(1)	N(2230)	019		$\Delta(2750)$	P3,23		5(2000)	P.15				$\Xi_c(3123)$	•
 n(1405) 	0+(0-+)	(2100)	1-[2-+]	A(1993)	1/2(2+1	BOTTOM, STRANGE	 Xao(1P) 	0+(0++)	N[2000]	41,11		$\Delta(2950)$	$\kappa_{3,25}$	••	5 (2000)	213				Ω_{c}^{0}	
 f₁(1420) 	$0^{+}(1^{+})$	£(2100)	0+(0++)	 K¹(19945) 	1/2(4+1	$(\delta = \pm 1, 5 = \mp 1)$	• $\chi_{11}(1P)$	0+(1++)	N(2700)	$\kappa_{1,13}$					2(2100)	017				$\Omega_{c}(2770)^{0}$	
 u(1420) 	$0^{-}(1^{-})$	f_(2150)	$0^{+}(2^{++})$	- AL(2003)	1/20200	 B²₁ 0(0) 	 X₁₁(1P) 	0+(2++)				Λ	ρ_{01}		2 (2250)						
6(1430)	$0^{+}(2^{++})$	p(2150)	1+(1)	K.(2320)	1/2(3+1	•8: DS 0(1)	• T(2)	0-(1)				A(1405)	S ₀₀		Σ(2455)					<u>=</u> +	
 a₀(1450) 	$1^{-}(0^{++})$	\$(2170)	0-(1)	A*(2380)	1/2(57)	• $B_{s1}(50.0) = 1/2(1^+)$	TINK	0-(2)				A(1520)	D_{00}		Σ(2620)					œ	
 p(1450) 	1+(1)	f ₂ (2200)	0+(0++)	K_(2500)	1/2[4"]	• B [•] ₁₂ (5840) ^o 1/2(2 ⁺)	 X₂₀(<i>D</i>²) X₂₀(<i>D</i>²) 	0+(0++)				A(1600)	P_{11}		Σ(3000)		•			A2	
• 9(1475)	0+(0-+)	1,(2220)	01277	A(3200)	12(111)	B [*] _M (5850) 7(7')	• X11(3P)	0+12++1				A(1670)	S ₀₀		Σ(3170)		•			5.	
• 5(1500)	0.00.01	9(2225)	0-10	C110.00	100	BOTTOM, CHARMED	7(35)	0-01-01				A(1690)	D_{12}	****						5.	
- C(1525)	0+12+12	pj(2250)	a+ra++1	CHARM	RED IN	$(B = C = \pm 1)$	• T(45)	0-(1)				A(1800)	Sec.							-0	
6(1964)	0+(2++)	6(2300)	0+14++1	o th	1.12(.6.2)	 8[±]/₂ 0(0) 	• 7(10860)	0-(1)				A(1810)	Pm	• • •						paa	
e(1570)	1+(1)	6(2330)	0+10++1	• D=	1/2(0)		• 7(11029)	0-(1)				A(1820)	Free							120 H H	
h(1595)	0-(1+-)	 6(2340) 	0+12++1	• D*C20020 ²	1/2(1-)							A(1830)	0-								
 m (1600) 	1-(1-+)	A(2350)	1+(5)	 D*(200.0)[±] 	1/2(1-1		NON-44 C	ANDIDATES				A(1000)	0.00								
a;[1640]	1-(1++)	a ₁ (2450)	1-(6++)	01240003	1/2(0+1		NON-qT	CANDI-				A(2000)	P 28								
6(1640)	$0^+(2^{++})$	6(2510)	0+(6++)	CO	1/2(0+1		DATES					7(2000)									
 m (1645) 	$0^+(5_{-+})$	OTHER	LICHT	 D₁(2420)¹⁰ 	$1/2(1^+)$							A(2020)	P07								
 u(1650) 	0-(1)	Eatley St	i katurri i	D1(2420)*	1/2[??]							/1(2100)	G_{2d}								
 ω₃(1670) 	0-(3)	Further St.	ation .	$D_1(2430)^0$	$1/2(1^+)$							A(2110)	F05	•••							
				 D[*]₁(2460)⁰ 	$1/2(2^+)$							A(2325)	D_{03}	•							
				 D₂(2460)[±] 	$1/2(2^+)$							A[2350]	H_{22}	***							
				D*(2640) *	$1/2(?^7)$							A(2585)		••							

作って壊す

@KEK, J-PARC

しかし

- ・クォークは<mark>閉じ込め</mark>られているので直接見えない
- ・ハドロンの生成・崩壊を通して間接的に見えてくる

作って壊す@J-PARC

Heavy quarks distinguish the internal modes λ and ρ

Isotope-shift: Copley-Isgur-Karl, PRD20, 768 (1979)

Single heavy baryons

このような簡単なことも確かにはわかっていない

もう一つの問題

- ・観測されるハドロンはクォーク模型でよく説明される。 しかし
- ・クォーク模型が予言する状態の全ては見つかっていない

「消えた共鳴問題」 Missing resonance

もう一つの問題

- 観測される状態より多くの状態が予言されている →「消えた共鳴問題」Missing resonance
- さらに
- 観測される(普通の)状態でさえ、必ずしもよく説明されない

そこで

実験と理論の詳しい比較が必要

J-PARCで作る

クォークによる構造を考慮して

1体反応の簡単な計算

$$\langle N(S-wave)|$$
 $(\Lambda_c(\ell-wave))$
 $\langle B_c(\ell-wave)|\vec{e}_{\perp}\cdot\vec{\sigma}e^{i\vec{q}_{eff}\cdot\vec{x}}|N(S-wave)\rangle_{radial} \sim \left(\frac{q_{eff}}{A}\right)^{\ell} \times \exp\left(-\frac{q_{eff}^2}{4A^2}\right)$

- Higher *l* states are produced abundantly
- Angular momentum matching
- Analogous situation with hyper nuclear production

生成率のエネルギー (周波数)

ハイパー原子核生成反応と酷似

Seminar at Genova, Italy, October 5 (Wed), 2016

Decays

 ${\Lambda_c}^* \to N + D$

 $\Lambda_c^* \longrightarrow \Sigma_c + \pi$

$$\Lambda_{c}(2625) 3/2^{-}$$

 $\Lambda_{c}(2595) 1/2^{-}$

$$\frac{\Sigma_{\rm c}(2520) \ 1/2^{+}}{\Sigma_{\rm c}(2455) \ 1/2^{+}}$$

$$\Lambda_{\rm c}(2286) \ 1/2^+$$

励起状態の崩壊=共鳴の減衰

(1), (2)の遷移は λ モード励起で説明可 (3)の遷移から Λ_c (2880)の 量子数を予言できる $J^P = 7/2^{-1}$

閉じ込められたクォークの 運動を予想し、実験と比較

百都大談詰会 2016年12月7日

 $(2) L = 1 \longrightarrow L = 0$

 $\Lambda_{\rm c}(2595) \ 1/2^{-}$

	decay channel	full	$[\Sigma_c \pi]^+$	$\Sigma_c^{++}\pi^-$	$\Sigma_c^0 \pi^+$	$\Sigma_c^+ \pi^0$
Experiments	$({\rm MeV}) \ [5] \ 2$	2.6 ± 0.6	- [0.624 (24%)	0.624 (24%)	-
Momentum	$q ~({\rm MeV/c})$	-	-	t	†	29
$(n_{\lambda},\ell_{\lambda}), (n_{\rho},\ell)$	$J_{ ho}) = J_{\Lambda}(j)^P$	_		_		
(0,1), (0,0)	λ 1/2(1) ⁻		1.5 - 2.9	0.13 - 0.25	0.15 - 0.28	1.2 - 2.4
(0,0), (0,1)	ρ 1/2(0) ⁻		0	0	isospin vi	olated
	$1/2(1)^{-}$		6.5 - 11.9	0.57 - 1.04	0.63 - 1.15	5.3 - 9.7

- Total decay width is explained by the λ *mode*, $\Gamma(\lambda) < \Gamma(\rho)$
- Isospin violation should be confirmed

 $(3) L = 2 \longrightarrow L = 0$

$\Lambda_{\rm c}(2880)$	5/2+
-------------------------	------

$$R = \frac{\Gamma(\Sigma_c^*(3/2^+)\pi)}{\Gamma(\Sigma_c(1/2^+)\pi)}$$

ay channel ful	$\sum_{c}^{(*)} \pi_{\text{total}}$	$[\Sigma_c \pi]^+$	$[\Sigma_c^*\pi]^+$	R
$\Gamma_{\rm exp}~({\rm MeV})~5.8\pm1.$	1 [24]			0.225 [40]
q (MeV/c)		375	315	
$J_{\Lambda}(j)^P$				
$5/2(2)^{+} \lambda \lambda$	11.2 - 26.1	1.2 - 2.8	9.9-23.3	8.1 - 8.4
5/2(2) ⁺ /	27.8 - 52.2	1.4 - 2.6	26.4 - 49.5	18.7 - 18.9
$5/2(2)_{2}^{+}$	51.7 - 109.6	1.8 - 3.5	49.9 - 106.1	27.5 - 30.1
$5/2(2)^+_1$	0.63 - 1.68	0	0.63 - 1.68	(∞)
$5/2(3)_2^+$	2.9 - 5.8	2.1 - 4.0	0.85 - 1.73	0.41 - 0.43
	cay channel ful C_{exp} (MeV) $5.8 \pm 1.$ q (MeV/c) $J_{\Lambda}(j)^{P}$ $5/2(2)^{+} \lambda \lambda$ $5/2(2)^{+} \rho \rho$ $5/2(2)^{+}_{2}$ $5/2(2)^{+}_{1} \lambda \rho$ $5/2(3)^{+}_{2}$	cay channel full $[\Sigma_c^{(*)}\pi]_{total}$ Γ_{exp} (MeV) 5.8 ± 1.1 [24] q (MeV/c) $J_{\Lambda}(j)^P$ $J_{\Lambda}(j)^P$ $11.2-26.1$ $5/2(2)^+ \lambda \lambda$ $11.2-26.1$ $5/2(2)^+ \rho \rho$ $27.8-52.2$ $5/2(2)^+_1$ $51.7-109.6$ $5/2(2)^+_1$ $\lambda \rho$ $0.63-1.68$ $5/2(3)^+_2$ $2.9-5.8$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Both Γ and R ratio are sensitive to configurations
- Only $\lambda \rho j = 3$ (*brown muck*) seems consistent. *Missing* $\lambda \lambda$??
- This implies that $\Lambda_c(2940)$ could be $7/2^+$

まとめと関連する話題

- ・エキゾチックハドロンは存在する
- 何がどのような仕組みで出来るかは未知が多い
- ・そこでチャームバリオンの研究が進められている

他の研究=環境を変えて真空とハドロンの性質を変える

- ・有限温度で相転移を起こす、RHICにおけるQGPの生成 http://www.riken.jp/pr/press/2010/20100216/
- ・有限密度中でカイラル対称性を回復させる
 http://www.riken.jp/~/media/riken/pr/press/2006/20061207_1/20061207_1.pdf
- ・京スーパーコンピュータを使った理論研究

様々な手法を用いてハドロンの成り立ちの研究が行われている

ハドロンは

- ・構成クォークが支配している。
- ・その性質は環境(エネルギーや密度)によって変わる。 質量や相互作用など

例えば:

水素原子や金原子(それらの励起状態)の電子の性質は 変わらないと考えられるが、ハドロンの中の構成クォーク の性質は変わる可能性がある。

従って:

それらを作って、性質を丹念に調べる必要がある。

Excitation energies of l = 1

Quark Model Calculations

Yoshida, Hiyama, Hosaka, Oka, Phys.Rev. D92 (2015) no.11, 114029

$$\begin{split} H &= \frac{p_1^2}{2m_q} + \frac{p_2^2}{2m_q} + \frac{p_3^2}{2M_Q} - \frac{P^2}{2M_{tot}} \\ &+ V_{conf}(HO) + V_{spin-spin}(Color - magnetic) + \dots \end{split}$$

$$\Lambda^*_{c}, \Sigma_{c}, \dots$$

$$\Lambda_{c}(J^-; \lambda) = \begin{bmatrix} \psi_1(\vec{\lambda})\psi_0(\vec{p}), d^0 \end{bmatrix}^1, \chi_{c} \end{bmatrix}^{J=\frac{1}{2}, \frac{3}{2}} D^0 c$$
Wave function: **Brown muck** × Charm quark
$$j + 1/2 = J = j + -1/2$$

prompt reactions in comparison with the deuteron

FIG. 6 (color online). Antideuteron events produced in pp according to 10^9 HERWIG events. We confront with ALICE deuteron production data (red circles) [23], and with CMS X(3872) data (green squares) [26]. The blue solid line is the MC prediction in the $|\eta| < 0.9$ region, as in ALICE data, which we use for the normalization. The green line (a bit higher in the right panel) corresponds to the |y| < 1.2 region, as in CMS data, and is normalized accordingly.

Simulations for the production of weakly bound state, Deuteron