ハドロン分子状態と それを識別するための物理量

「複合性」

関原隆泰 (日本原子力研究開発機構)

[1] <u>T. S.</u>, *Phys. Rev.* <u>C95</u> (2017) 025206; in preparation.

[2] <u>T. S.</u>, *Prog. Theor. Exp. Phys.* <u>2015</u> 091D01 [Letters].

[3] <u>T. S.</u>, T. Hyodo and D. Jido, *Prog. Theor. Exp. Phys.* <u>2015</u> 063D04.

[4] <u>T. S.</u>, T. Arai, J. Yamagata-Sekihara and S. Yasui, *Phys. Rev.* <u>C93</u> (2016) 035204.

Contents

++ 原子核とは?++

Bohr & Mottelson, Nuclear Structure, Vol. 1.

■陽子と中性子(あわせて核子)のみ で構成された,核子多体系.

 核力により束縛. --- 重力でも, 電磁気力でも, 弱い相互作用でもない.

 <u>核力の絶妙な性質</u>により、多種
 多様な原子核 (Z < 120) が存在. □ 束縛エネルギーの飽和性. □<u>密度の飽和性</u>. □ α クラスターをはじめとする 特異な構造の発現.

核図表 from 理研仁科センター.

++ 核力から強い相互作用へ ++

■核子は,3つの(構成子)クォークからできている.

 クォーク・グルーオン複合状態の交換が 核力の本質.
 ->ということは、一般のクォーク多体系
 = ハドロン (qqq: バリオン, qq: 中間子)の間にも、 核力に対応する相互作用が発現している.
 (p,n, Λ など.)

HAL QCD.

....

--- 強い相互作用! <-- 核力の一般化.

 h_B

++ 原子核からハドロン多体系へ ++
■ 強い相互作用は, <u>クォークのフレーバーや配位</u>によって 引力にも斥力にもなって, その強さも様々だ ... と<u>予想</u>. --- まだよく分かっていない.

++ 原子核からハドロン多体系へ ++
■ 強い相互作用は, <u>クォークのフレーバーや配位</u>によって 引力にも斥力にもなって, その強さも様々だ ... と予想. --- まだよく分かっていない.

■我々の世界には、バリオンも中間子もそれぞ	れ≥150個存在する.		
> それらの組み合わせのなかには,	Particle Data Group. Baryon Sum	ہ mary Table	
とても強い引力が働くものがあるはず.	This short table gives the mame, the quantum numbers (where insum), and the status of harvors in the Review. Only the harvors with 1- or 4 star status are included in the Harvow Sommary Table. Due to insufficient data or ascentain interpretation, the other entries is the table are not established harvow. The names with masses are of harvors that focus strangly. The upin parity J^P (when known) is given with each particle. For the strongly decaying particle, the J^P values are considered to be part of the names.		
□ 原子核と同様に, <u>強い相互作用で</u>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/2 ⁺ **** 1/2 ⁻ **** 1/2 ⁻ **** 1/2 ⁺ * 1/2 ⁺ **** 1/2 ⁺ ****** 1/2 ⁺ ***** 1/2 ⁺ ****** 1/2 ⁺ ***** 1/2 ⁺ ****** 1/2 ⁺ ****** 1/2 ⁺ ****** 1/2 ⁺ ****** 1/2 ⁺ ****** 1/2 ⁺ ******* 1/2 ⁺ ******** 1/2 ⁺ ************************************	
<u>つくられる束縛状態</u> が存在する !?	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1/2^+$ $1/2^+$ $1/2^+$ $1/2^+$ $1/2^+$ $\chi_{21}(1)$ $\chi_{22}(1)$ $\chi_{22}(1)$ $\chi_{22}(1)$	
(広義の) ハドロン分子状態.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1/2^-$ $1/2^+$ ••• $\chi_2(1)$ $1/2^-$ ••• $\eta_2(25)$ $1/2^-$ •• (377) 0 0 0 0 0 0 0 0	
	(0) $3/2^+$ $d_1(2401)$ $0/2^ Z_1(2451)$ $5/2^+$ $Z_t(3051)$ (0) $5/2^ d_1(2401)$ $11/2^+$ $Z_1(2401)$ $3/2^+$ $Z_t(3051)$ (0) $1/2^+$ $d_2(252)$ $13/2^ Z_1(2401)$ $3/2^+$ $Z_t(3051)$ (0) $1/2^+$ $d_2(252)$ $13/2^ Z_1(2401)$ $3/2^ Z_t(313)$ (0) $1/2^ d_2(252)$ $15/2^+$ $Z_1(2000)$ $1/2^ Z_t(313)$ (0) $1/2^ d_2(252)$ $15/2^+$ $Z_1(200)$ $1/2^ Z_t(2170)$ (0) $5/2^+$ $Z_1(2400)$ $5/2^+$ $Z_t(2170)$ $Z_t(2170)$ (0) $9/2^ A_1(140)$ $1/2^ Z_1(240)$ $3/2^+$ $Z_t(2170)$ (0) $1/2^+$ $A_1(1401)$ $1/2^ Z_1(210)$ Z_2^+ $Z_t(2170)$ (0) $1/2^+$ $A_1(1401)$ $1/2^ Z_1(210)$ Z_2^+ $Z_t(210)$ (0) $1/2^+$ $A_1(1401)$ $1/2^ Z_1(210)$ Z_2^+	1/2 ⁺ ···· X(29) 1/2 ⁺ ···· X(29) 1/2 ⁺ ···· X(29) 1/2 ⁺ ···· X(29) 0(41) 0(41) 0(42) 0(42) 0(42) 0(42) 0(42)	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1/2^{-1}$ $X[424$ β $1/2^{-1}$ $X[424$ β $3/2^{-1}$ $X[426$ $1/2^{+1}$ $X[429$ $3/2^{+1}$ $X[429$ $1/2^{+1}$ $X[429$ $1/2^{+1}$ $X[429$ $1/2^{+1}$ $X[429$ $1/2^{+1}$ $X[429$ $1/2^{+1}$ $X[429$ X[429] X[429 X[429]	
□ 原子核は「孤独」ではない?	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 3/2" X[437 1/2" X[439 - X[439]*	
● (2017 年 11 月 ● (2017 ← 2	$9 \square $	0(0 ⁻¹) X(450 0(10 ⁻¹) X(450 0(1 ⁻¹) X(450 0(1 ⁻¹) X(450 (5066) [±] 7(7 ¹) (5133) ⁰ 0(1 ⁺¹)	

++ ハドロン分子状態の候補たち (の例) ++

■ <u>重陽子</u> (deuteron): <u>pn 分子状態</u>,存在は<u>確立</u>. --- ハドロン分子状態の "プロトタイプ".

= P_c(4450) 共鳴: <u>コンパクト</u>なペンタクォーク??? <u>分子状態???</u>

■ d*(2380) 共鳴: <u>ΔΔ 分子状態 ???</u>

J-PARC E15/E27 で得られた K^{bar}NN ???
 <u>"KNN" 状態</u>???

n

by Jido-san

■ ... どうやって識別する? --> <u>2 体系</u>に関しては, 複合性が有効.

JAEA

2. 複合性の物理的意味
++ 重陽子は本当に分子状態?++
$$1-Z = \int \frac{d^3p}{(2\pi)^3} \frac{|\langle B|\hat{V}|\mathbf{p}\rangle|^2}{[\mathcal{E}(p) + B_{\rm E}]^2} \approx g^2 \int \frac{d^3p}{(2\pi)^3} \frac{1}{[\mathcal{E}(p) + B_{\rm E}]^2}$$

□一方, pn-d 結合定数は散乱振幅の留数に一致:

$$T_{pn}(E) = rac{g^2}{E+B_{
m E}} + ({
m sub-dominant}) \propto \left(-rac{1}{a} - ip + rac{1}{2}r_{
m e}p^2
ight)^{-1}$$

□ <u>結合定数 g</u> を, <u>散乱長 a</u> や<u>有効レンジ r</u>e と関係付ければ:

$$a = rac{2(1-Z)}{2-Z}R + \mathcal{O}(m_\pi^{-1}), \quad r_e = -rac{Z}{1-Z}R + \mathcal{O}(m_\pi^{-1}), \quad R \equiv rac{1}{\sqrt{2\mu B}} = 4.318 ~{
m fm}$$

--- Weinberg の複合性条件 (compositeness condition).

□ pn 散乱 (³S₁)の散乱長と有効レンジの<u>実験値</u>:

 $a = 5.419 \pm 0.007 \text{ fm}, \quad r_e = 1.7513 \pm 0.008 \text{ fm} \quad --> Z \approx 0$ と無矛盾!

Machleidt, Phys. Rev. C63 (2001) 024001.

++ 重陽子の波動関数 ++

■ そんな訳で, 重陽子に対しては, 安心して pn 系の量子力学が使える.

 教訓: 一般のハドロン分子状態候補も同じように調べられる.
 ハドロン分子状態を識別するために, <u>量子力学が使える</u>.
 2 体束縛系の波動関数, そのノルム (= compositeness, 複合性), 散乱振幅, ...

■注意点:模型依存性に気を付けなければならない.

++ 量子力学における模型依存性 ++

■ 量子力学には, <u>模型に依存せず</u>実験で直接測定できる観測可能量 (observable) と,直接測定できずどうしても模型依存となる量 (non-observable) が存在する. □陽子や重陽子の質量. 200 ³S₁ Phase Shift (deg) 150 □ クォークの質量 (QCD の範囲). 100 □ NN 散乱の断面積. 50 ■ NN 散乱の位相のずれ. 100 200 300 Lab. Energy (MeV) 0.6 □ 核力 V(r). **S-**波 u(r), w(r) (fm^{-1/2}) --- 進んだ注:あれ?水素原子のクーロン相互作用は,量子力学の 0.4 教科書に明記されているけど,観測可能量なの? 0.2 **D-波** □ 重陽子の D-波の割合 P_D. □波動関数. □場のくりこみ定数. r (fm) ...

Machleidt, Phys. Rev. C63 (2001) 024001.

++ 模型依存性: 重陽子の場合 ++

■ もう一度, 重陽子に対する Weinberg の複合性条件を見てみる:

$$a = rac{2(1-Z)}{2-Z}R + \mathcal{O}(m_\pi^{-1}), \quad r_e = -rac{Z}{1-Z}R + \mathcal{O}(m_\pi^{-1}), \quad R \equiv rac{1}{\sqrt{2\mu B}} = 4.318 ~{
m fm}$$

□ *O*(*m*⁻¹) の項が模型依存性.

□ ただし, <u>弱束縛領域</u> ($B_{\rm E} \iff E_{\rm typical}$) では, $O(m_{\pi}^{-1})$ の寄与は小さい.

--> Z を求める際の<mark>模型依存性は, O(m^{π-1}) で抑えられている</mark>. --- 模型非依存.

■ もう少し別の観点から考察する: <mark>座標空間の場合.</mark> □ 波動関数 ψ(r) のノルム X = 1 – Z.

<u>弱束縛領域</u>では,波動関数ψ(r)が大きく外に拡がる.
 --> R_{int} << r の領域からの寄与が支配的.

□ <u>V(r)の詳細</u>に依存する, r < R_{int}の領域からの寄与が 模型依存性に相当.

JAEA

■相互作用が与えられたとして,以下の量子力学系を考える.

□ 全ハミルトニアン: $\hat{H} = \hat{H}_0 + \hat{V}(E)$

---<u>自由部分H</u>₀と<u>相互作用V</u>.

---- 相互作用 V は適切な模型で決定, 系のエネルギー E に依存してもよい.

□ 自由ハミルトニアンは自由 2 体系状態を固有状態に持つ:

 $\hat{H}_0|\mathbf{q}
angle = \mathcal{E}(q)|\mathbf{q}
angle$ $\mathcal{E}(q) = \sqrt{m_1^2 + q^2} + \sqrt{m_2^2 + q^2}$ または $\mathcal{E}(q) = m_1 + m_2 + rac{q^2}{2\mu}$ ---- 2 体系の相対運動量 q.

□ 全ハミルトニアンは束縛状態 (共鳴状態も可)を固有状態に持つ:

$$\hat{H}|\Psi\rangle = (\hat{H}_0 + \hat{V})|\Psi\rangle = E_{\rm pole}|\Psi\rangle \qquad \qquad \langle \tilde{\Psi}|\hat{H} = \langle \tilde{\Psi}|(\hat{H}_0 + \hat{V}) = E_{\rm pole}\langle \tilde{\Psi}|_{\hat{V}} = \hat{\Psi}|_{\hat{V}} + \hat{V}|_{\hat{V}} = E_{\rm pole}\langle \tilde{\Psi}|_{\hat{V}} + E_{\rm pole}\langle \tilde{\Psi}|_{\hat{V}} + \hat{V}|_{\hat{V}} + E_{\rm pole}\langle \tilde{\Psi}|_{\hat{V}}$$

--- 固有値 Epole は, 実数 (崩壊しない束縛状態)

または 複素数 (共鳴状態).

J AEA

(JAEA

セミナー @ 首都大学東京 (2017年11月9日)

共鳴状態ならば,

Gamow ベクトル.

 h_B

++ ノルムとして複合性を定義 ++

■ 定義: 複合性を, 束縛状態波動関数のうちの2体状態波動関数の

ノルムとして定義する.

□ 2 体状態波動関数 (運動量空間):

$$\langle {f q} | \Psi
angle = ilde{\psi}({f q})$$

□ 2 体状態波動関数のノルム:

□注意:まだ,波動関数を規格化していない.

--> 複合性の正しい解釈のためには, <u>波動関数を規格化しなければならない</u>.

++ 波動関数, Lippmann-Schwinger 方程式より ++

 正しく規格化された波動関数</u>を得るためには, Schrödinger 方程式より
 Lippmann-Schwinger 方程式を解く方が良い!

□ Schrödinger 方程式 (運動量空間):

$$\mathcal{E}(q) ilde{\psi}(\mathbf{q}) + \int rac{d^3q'}{(2\pi)^3} V(\mathbf{q},\,\mathbf{q}') ilde{\psi}(\mathbf{q}') = E_{
m pole} ilde{\psi}(\mathbf{q})$$

--- <u>斉次方程式</u>であり,<u>手で規格化</u>する必要がある.

□ Lippmann-Schwinger 方程式 (運動量空間):

$$T(E; \, \mathbf{q}', \, \mathbf{q}) = V(\mathbf{q}', \, \mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} \frac{V(\mathbf{q}', \, \mathbf{k})T(E; \, \mathbf{k}, \, \mathbf{q})}{E - \mathcal{E}(k)}$$

--- <u>非斉次方程式</u>であり, 散乱振幅 T の<u>規格化を考えなくてもよい</u>!

Lippmann-Schwinger 方程式のどこに波動関数があるの?

++ 波動関数, Lippmann-Schwinger 方程式より ++ ■ 束縛状態の極の位置で, Lippmann-Schwinger 方程式を解く. $T(E; \mathbf{q}', \mathbf{q}) = \langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle$ $\hat{T}(E) = \hat{V} + \hat{V} \frac{1}{E - \hat{H}_0} \hat{T} = \hat{V} + \hat{V} \frac{1}{E - \hat{H}} \hat{V}$ --- 極の位置 Epole では, 全ハミルトニアン H の固有状態による展開のうち, 束縛状態による寄与で散乱振幅が支配される: $\langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle \approx \langle \mathbf{q}' | \hat{V} | \Psi \rangle \frac{1}{E - E_{\text{pole}}} \langle \tilde{\Psi} | \hat{V} | \mathbf{q} \rangle$ $|\Psi\rangle, |\mathbf{q}_{\mathrm{full}}\rangle, ... | \langle \tilde{\Psi}|, \langle \mathbf{q}_{\mathrm{full}}|, ...$ $1 = |\Psi\rangle \langle \tilde{\Psi}| + \cdots$ --- 散乱振幅の極の留数に,2体状態波動関数の 情報が含まれている! ${\cal E}(q)=\sqrt{m_1^2+q^2+\sqrt{m_2^2+q^2}}$ $\langle \mathbf{q} | \hat{V} | \Psi
angle = \langle \mathbf{q} | (\hat{H} - \hat{H}_0) | \Psi
angle = [E_{\text{pole}} - \mathcal{E}(q)] \tilde{\psi}(\mathbf{q})$ $\langle \tilde{\Psi} | \hat{V} | \mathbf{q}
angle = [E_{\text{pole}} - \mathcal{E}(q)] \tilde{\psi}(\mathbf{q})$ または $\mathcal{E}(q) = m_1 + m_2 + rac{q^2}{2m}$

2. 複合性の物理的意味

$$\begin{array}{c}
 (\varsigma, \xi, \xi, \xi) = 1 \\
 (\varsigma, \xi) = 0 \\
 (\varsigma, \xi) =$$

++ 波動関数, Lippmann-Schwinger 方程式より ++ ■ 束縛状態の極の位置で, Lippmann-Schwinger 方程式を解く. $T(E; \mathbf{q}', \mathbf{q}) = \langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle$ $\hat{T}(E) = \hat{V} + \hat{V} \frac{1}{E - \hat{H}_0} \hat{T} = \hat{V} + \hat{V} \frac{1}{E - \hat{H}} \hat{V}$ --- 波動関数は, 散乱振幅の極の 留数から計算できる: <-- Off-shell 散乱振幅! $T(E; \mathbf{q}', \mathbf{q}) = \langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle \approx \frac{\gamma(q')\gamma(q)}{E - E_{\text{pole}}}$ $\gamma(q) \equiv \langle \mathbf{q} | \hat{V} | \Psi
angle = [E_{ ext{pole}} - \mathcal{E}(q)] ilde{\psi}(q)$ --> <u>散乱振幅には規格化定数を掛けられないので</u> (Lippmann-Schwinger 方程式 は非斉次), 散乱振幅の極の留数から得られる 2 体状態波動関数も <u>すでに規格化</u>されている! <-- 帰結!

□ もし純粋な分子状態なら:
$$\int \frac{d^3q}{(2\pi)^3} \left[\frac{\gamma(q)}{E_{\text{pole}} - \mathcal{E}(q)} \right]^2 = 1$$

セミナー @ 首都大学東京 (2017 年 11 月 9 日)

Hernandez and Mondragon, *Phys. Rev.* <u>C29</u> (1984) 722.

++ 例: 安定な束縛状態 ++

■ 以下, 複合性 X を散乱振幅から得られた 2 体状態波動関数の/ルムで計算:

$$X \equiv \int \frac{d^3 q}{(2\pi)^3} \langle \tilde{\Psi} | \mathbf{q} \rangle \langle \mathbf{q} | \Psi \rangle = \int_0^\infty dq \, \mathcal{P}(q) \left[\begin{array}{c} \mathcal{P}(q) = \frac{4\pi q^2}{(2\pi)^3} \left[\frac{\gamma(q)}{E_{\text{pole}} - \mathcal{E}(q)} \right]^2 \right]^2 dq \, \mathcal{P}(q) = \frac{4\pi q^2}{(2\pi)^3} \left[\frac{\gamma(q)}{E_{\text{pole}} - \mathcal{E}(q)} \right]^2 dq \, \mathcal{P}(q) = \frac{4\pi q^2}{(2\pi)^3} \left[\frac{\gamma(q)}{E_{\text{pole}} - \mathcal{E}(q)} \right]^2 dq \, \mathcal{P}(q) = \frac{4\pi q^2}{(2\pi)^3} \left[\frac{\gamma(q)}{E_{\text{pole}} - \mathcal{E}(q)} \right]^2 dq \, \mathcal{P}(q)$$

□ <u>エネルギーに依存しない相互作用</u>では, 複合性 X = 1.

++ 例: 安定な束縛状態 ++

++ 例: 安定な束縛状態 ++

++ ここまでのまとめ ++

= 複合性は,束縛状態の全波動関数のうちの,2 体状態部分 ψ のノルムで 定義される. $X = \int \frac{d^3q}{(2\pi)^3} \left[\tilde{\psi}(q) \right]^2$ --- 一般に,模型依存量.

= 正しく規格化された 2 体状態波動関数を得るには, Schrödinger 方程式よりも Lippmann-Schwinger 方程式を解くべし. $T(E: q', q) \approx \frac{\gamma(q')\gamma(q)}{\gamma(q)}$

$$T(E; \mathbf{q}', \mathbf{q}) = V(\mathbf{q}', \mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} \frac{V(\mathbf{q}', \mathbf{k})T(E; \mathbf{k}, \mathbf{q})}{E - \mathcal{E}(k)}$$

□ 留数を計算した時点で,すでに規格化.

$$T(E; \mathbf{q}', \mathbf{q}) \approx \frac{\gamma(q')\gamma(q)}{E - E_{\text{pole}}}$$

 $ilde{\psi}(q) = rac{\gamma(q)}{E_{ ext{pole}} - \mathcal{E}(q)}$

□相互作用がエネルギー依存性を持つと,<mark>複合性が1からずれる</mark>.

模型に入っていない missing-channel からの寄与と解釈.

- <u>結合チャンネル</u>でも, <u>共鳴状態</u>でも, 同様の振舞い (詳細割愛).
 - □ 自動的に規格化. □ エネルギー依存相互作用で,複合性が1からずれる.
 - □ただし,共鳴状態に対しては,複合性が複素数となるので"確率解釈"に注意.

3. 応用例: ハドロン共鳴状態の複合性

1. ハドロン分子状態候補を生成する適切な有効模型で, 相互作用 V と <u>ハドロン - ハドロン散乱振幅</u> T を計算.

2.ハドロン - ハドロン散乱振幅にある<u>共鳴極の留数</u>から,波動関数を引き出し, 複合性を計算.

++ 対象 ++

■ 今回は, カイラルユニタリー模型を用いて<u>中間子 - バリオン散乱</u>を考える.

--> 散乱の断面積や位相のずれなどの実験値を再現するように決定.

 いくつかのハドロン共鳴状態が,中間子 - バリオンの自由度からダイナミカル に生成される (dynamically generated resonances):
 <u>A(1405).</u> □ <u>E(1690).</u> □ <u>N(1535) & N(1650)</u>. □ … セミナー @ 首都大学東京 (2017 年 11 月 9 日)

++ Λ(1405) 共鳴状態の複合性 ++

■ カイラルユニタリー模型における A(1405) 共鳴状態の複合性.

Amplitude taken from: Ikeda, Hyodo and Weise, *Phys. Lett.* <u>B706</u>, (2011) 63; Nucl. Phys. A881 (2012) 98.

++ Ξ(1690) 共鳴状態の複合性 ++

■ カイラルユニタリー模型における Ξ(1690) 共鳴状態の複合性.

Haron

++ N(1535), N(1650) 共鳴状態の複合性 ++

■ カイラルユニタリー模型における N(1535), N(1650) 共鳴状態の複合性.

どちらの N* 共鳴も, missing-channel の寄与 Z が支配的.
 -> N(1535), N(1650) 共鳴状態は πN, ηN, KA, KΣ 以外の成分で構成されている.
 --- 裸の N* は, explicit には入れていないが, LEC にエンコードされている.

4. まとめ

御清聴 有難う ございました.

