解析入門IIa（小林）第2回レポート問題

以下を全て解き、1月7日の講義開始時に提出すること．

1.
(1) $1 - \sqrt{3}i$ を極形式 $(re^{i\theta})$ の形で表せ．
(2) $z^2 = 1 - \sqrt{3}i$ の解をすべて求め，複素平面に図示せよ．

2. 複素数のべき乗は，$\alpha^z := e^{z \log \alpha}$ で定義され，一般には多価である．
(1) i^{-1} を計算せよ．
(2) $f(z) = i^z$ とする．$f'(-i)$ を計算せよ．

3. 複素関数 $f(z) = z + \frac{1}{z}$ の実部・虚部を求めよ．

4. 次の微分を計算せよ．
$$\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} (1 + z^2 - \bar{z} + 2 \log |z|)$$

以下では「単位円」とは0を中心とし半径1の円とする．

5. 単位円（反時計回り）のパラメータ表示は，たとえば $z = e^{it} \ (0 \leq t \leq 2\pi)$ で与えられる．
次の曲線をパラメータ表示せよ．
(1) 1 と $1 + i$ までを結ぶ線分
(2) 単位上半円で1から -1 まで
(3) 1 を中心とし半径1/2の円（反時計回り）

6. $f(z)$ と C が次のように与えられたとき，$\int_C f(z)dz$ を計算せよ．
(1) $f(z) = 3z + 1, \ C$ は1から $1 + i$ までの線分
(2) $f(z) = z^{-2} + z^3, \ C$ は単位上半円で1から -1 まで
(3) $f(z) = \cos z, \ C$ は0から i までの線分
(4) $f(z) = |z|, \ C$ は単位円（時計回り）
(5) $f(z) = z^3 - z - 2z^{-1}, \ C$ は単位円（反時計回り）
(6) $f(z) = \frac{1}{z + 2z}, \ C$ は単位円（反時計回り）
(7) $f(z) = \frac{1}{z} + \frac{1}{1 - z}, \ C$ は $2 + i, -1 + i, -1 - i, 2 - i$ を結ぶ長方形（反時計回り）
(8) $f(z) = \frac{\sin z}{z^2}, \ C$ は単位円（反時計回り）

7. $1/(1 - z) = 1 + z + z^2 + z^3 + \cdots \ (|z| < 1)$ が成り立つ．
$$f(z) = \frac{1}{(1 - z)(1 - 2z)}$$ とする．点 $z = 0$ のまわりのテイラー級数を求めよ．
解析入門 IIa 第 2 回レポート問題解答例

1.
(1) $1 - \sqrt{3}i$ を極形式（$re^{i\theta}$ の形）で表せ。

$r = |1 - \sqrt{3}i| = \sqrt{1^2 + (\sqrt{3})^2} = 2$, \text{tan} \theta = -\sqrt{3}/1 \text{ より} \quad \theta = -\pi/3$ とすればよいから，

$1 - \sqrt{3}i = 2e^{-\pi i/3}$ (n は任意の整数)

(1 - $\sqrt{3}i$ だけでもよい)

(2) $z^2 = 1 - \sqrt{3}i$ の解をすべて求め、複素平面に図示せよ。

$z = r' e^{i \theta'}$ とすると, $r'^2 = 2$, $2 \theta' = (\theta/3 + 2n\pi)$ より, $r' = \sqrt{2}$, $\theta' = -\pi/6 + n\pi$. これより

$z = \pm \sqrt{2} \left(\sqrt{3} - i\right) = \pm \frac{1}{2} \left(\sqrt{6} - \sqrt{2}i\right)$

（図は省略）

2. 複素数のべき乗は, $\alpha^\beta := e^{\beta \log \alpha}$ で定義され，一般には多価である．

(1) i^{-1} を計算せよ。

$i^{-1} = e^{(-i) \log i} \cdot \log i = 0 + \frac{\pi}{2} i + 2n \pi i = (2n + \frac{1}{2}) \pi i$ (n は任意の整数) であるから，

$i^{-1} = e^{(-i)(2n + 1) \pi i} = e^{(2n + 1) \pi}$

(2) $f(z) = i^2$ とする．$f'(-i)$ を計算せよ。

$f(z) = e^{z \log i}$ より $f'(z) = e^{z \log i} \log i = i^2 \log i$.

$f'(-i) = i^{-1} \log i = i \left(2n + \frac{1}{2}\right) \pi e^{(2n + 1) \pi}$

(n は $\log i$ の値から決まったものだから共通の整数）

3. 複素関数 $f(z) = z + \frac{1}{z}$ の実部・虚部を求めよ。

様々な表し方があるが，共役を用いると

\[
\text{Re}(z + \frac{1}{z}) = \frac{1}{2} \left(z + \frac{1}{z} + \left(z + \frac{1}{z}\right)^{-1}\right) = \frac{1}{2} \left(z + \frac{z^2 + 1}{z}\right) = \frac{z + \bar{z}}{2}(1 + \frac{1}{z}) ,
\]

\[
\text{Im}(z + \frac{1}{z}) = \frac{1}{2i} \left(z + \frac{1}{z} - \left(z + \frac{1}{z}\right)^{-1}\right) = \frac{1}{2i} \left(z - \frac{z^2 - 1}{z}\right) = \frac{z - \bar{z}}{2}(1 - \frac{1}{z}) ,
\]

\[
z = x + iy (x, y \text{ は実数}) \text{ と表すと}
\]

\[
z + \frac{1}{z} = x + iy + \frac{x - iy}{x^2 + y^2} \quad \text{より, 実部} \quad x \left(1 + \frac{1}{x^2 + y^2}\right) , \quad \text{虚部} \quad y \left(1 - \frac{1}{x^2 + y^2}\right) .
\]

あるいは，極形で $z = re^{i\theta}$ と表すと

\[
z + \frac{1}{z} = r(\cos \theta + i \sin \theta) + \frac{1}{r}(\cos \theta - i \sin \theta) \quad \text{より実部} \quad (r + \frac{1}{r}) \cos \theta , \quad \text{虚部} \quad (r - \frac{1}{r}) \sin \theta .
\]

4. 次の微分を計算せよ。

\[
\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} (1 + z^2 - \bar{z} + 2 \log |z|)
\]

$2 \log |z| = \log zz = \log z + \log z$ に注意すると 0（調和関数の例）

以下では「単位円」とは 0 を中心とし半径 1 の円とする。

5. 単位円（反時計回り）のパラメータ表示は，たとえば $z = e^{it} (0 \leq t \leq 2\pi)$ で与えられる。

次の曲線をパラメータ表示せよ。

(1) 1 と $1 + i$ までを結ぶ線分

\[
z = 1 + it (0 \leq t \leq 1).
\]

一般に，z_0 と z_1 を結ぶ線分は $z = (1 - t)z_0 + tz_1 (0 \leq t \leq 1)$ でパラメータ表示できる。
(2) 単位上限で 1 から −1 まで
\[z = e^{it} \quad (0 \leq t \leq \pi) \]

(3) 1 を中心とし半径 1/2 の円（反時計回り）
\[z = 1 + \frac{1}{2}e^{it} \quad (0 \leq t \leq 2\pi) \]

6. $f(z)$ と C が次のように与えられたとき，$\int_C f(z)dz$ を計算せよ.

(1) $f(z) = 3z + 1, \quad C$ は 1 から 1 + i までの線分
\[\int_C (3z + 1)dz = \int_0^1 (3(1 + it) + 1)idt = \int_0^1 (4i - 3t)dt = 4i - \frac{3}{2} \]

(2) $f(z) = z^{-2} + z^3, \quad C$ は単位半円で 1 から −1 まで
\[\int_C (z^{-2} + z^3)dz = \int_0^1 (e^{-2it} + e^{4it})e^{it}dt = \int_0^\pi (e^{-it} + e^{4it})dt = [e^{-it} + \frac{1}{4}e^{4it}]_0^\pi = 2 \]

(3) $f(z) = \cos z, \quad C$ は 0 から i までの線分
\[\int_C \cos zdz = \int_0^1 \cos(it) \cdot idt = \int_0^1 \frac{e^{-it} + e^{it}}{2}idt \]
\[= \frac{1}{2} \left[e^{-it} + e^{it} \right]_0^\pi = \frac{1}{2} (e - e^{-1}) = \frac{e^2 - 1}{2e} \]

(4) $f(z) = |z|, \quad C$ は単位円（時計回り）

C 上では原点を含む正則関数 f と同様の復素関数に対するコーシーの積分定理より 0.

(5) $f(z) = z^3 - z - 2z^{-1}, \quad C$ は単位円（反時計回り）

$f(z) = (z^4 - z^2 - 2)/z \cdot g(z) = z^4 - z^2 - 2$ とおくと
\[\int_C f(z)dz = \int_C \frac{g(z)}{z}dz \]

この値はコーシーの積分公式より $2\pi i g(0) = -4\pi i$

(6) $f(z) = \frac{1}{z^2 + 2z}, \quad C$ は単位円（時計回り）

\[z = -\frac{1}{2} \quad \text{以外で} \quad f(z) \quad \text{は正則であるから，コーシーの積分定理より，積分路を} \quad z = -\frac{1}{2} \quad \text{を中心とし半径} \quad \frac{1}{2} \quad \text{の円に取り替えても積分値は変わらない．分母が} \quad z \quad \text{定数} \quad \text{の形になるよう変形すると，} \]
\[f(z) = \frac{1}{2} \frac{1}{z + \frac{1}{2}} \]

であり，コーシーの積分公式（あるいは置換積分）より \(\frac{1}{2} 2\pi i = \pi i \)

(7) $f(z) = \frac{1}{z} + 1 - z, \quad C$ は $2 + i, -1 + i, -1 - i, 2 - i$ を結ぶ長方形（反時計回り）

$f(z)$ は $z = 0, 1$ 以外では正則だから，積分路を $0, 1$ をそれぞれ中心とする半径 $1/2$ の円（反時計回り） C_0, C_1 の和に取り替えても，コーシーの積分定理により積分の値は変わらない．よって，
\[\int_C f(z)dz = \int_{C_0 + C_1} dz + \int_{C_0 + C_1} \frac{dz}{z - 1} = \int_{C_0} \frac{dz}{z} + 0 - \int_{C_1} \frac{dz}{z - 1} = 2\pi i - 2\pi i = 0 \]

(8) $f(z) = \frac{\sin z}{z^4}, \quad C$ は単位円（反時計回り）

導関数の積分表示を用いる．$\sin z$ の 3 回微分は $-\cos z$ であるから，$2\pi i (\cos 0)/3! = -\pi i/3$.

7. $1/(1 - z) = 1 + z + z^2 + z^3 + \cdots (|z| < 1)$ が成り立つ．
$f(z) = \frac{1}{(1 - z)(1 - 2z)}$ とする．点 $z = 0$ のまわりのテイラー級数を求める．

$f(z) = \frac{A}{1 - z} + \frac{B}{1 - 2z}$

を満たす定数 A, B を求めるとき，$A = -1, B = 2$．よって，
\[f(z) = -\sum_{k=0}^{\infty} z^k + 2 \sum_{k=0}^{\infty} (2z)^k = \sum_{k=0}^{\infty} (2^k - 1)z^k \]

ただし，べき級数は $|z| < 1, |2z| < 1$ で収束するから，この範囲で項の順序を取り替えても構わない．よって z の範囲は $|z| < \frac{1}{2}$ （実際，根判定法から収束半径は $1/2$ であることが確かめられる．）
まず1.がすべて正解したことを確認してもらってから、残りを解くこと。1.が不正解の場合は、席に戻って再挑戦「第2回レポート問題解答例」、自筆ノートのみ持ち込み可。相談不可。

以下では、周回積分はすべて反時計回りとする。

1.
(1) C を1を中心にし、半径1の円とする。C のパラメータ表示（反時計回り）をひとつ与えよ。
(2) \(\int_{|z|=\frac{1}{2}} \frac{z + 1}{z - 1} dz = \int_{C} \frac{z + 1}{z - 1} dz \) である。これを示すには例えば何という定理を用いればよいか？
(3) (2) の積分の値を求めよ。

2.
\(z^3 = -2\sqrt{2} \) の解をすべて求め、複素平面に図示せよ。

3.
\(f(z) = \frac{e^z}{z^2(1-\bar{z})} \)
とする。
(1)
\(\frac{1}{z^2(1-z)} = \frac{A}{z^2} + \frac{B}{z} + \frac{C}{z-1} \) を満たす定数 A, B, C を求めよ。
(2) 次の積分を計算せよ。
\(\int_{|z|=2} f(z)dz \)
解析入門 IIa（小林）確認試験 解答例

1.
（1）C を 1 を中心とし、半径 1 の円とする。C のパラメータ表示（反時計回り）をひとつ与えよ。
解。

\[z = 1 + e^{it} \quad (0 \leq t \leq 2\pi) \]

（2）\(\int_{|z|=3} \frac{z+1}{z-1} \, dz = \int_{C} \frac{z+1}{z-1} \, dz \) である。これを示すには例えば何という定理を用いればよいか？

解。

コーシーの積分定理

（3）（2）の積分の値を求めよ。

解。

（解1）g(z) = z + 1 とおいてコーシーの積分公式を用いれば、\(2\pi i g(1) = 4\pi i \)
（解2）

\[\int_{C} \frac{z+1}{z-1} \, dz = \int_{C} \left(1 + \frac{2}{z-1} \right) \, dz \]

コーシーの積分定理より \(\int_{C} \, dz = 0 \) である。\(\zeta = z - 1 \) とおくと

\[\int_{|\zeta|=1} \frac{2d\zeta}{\zeta} = 4\pi i \]

（解3）\(z = 1 + e^{it} \) を用いると,

\[\int_{C} \frac{z+1}{z-1} \, dz = \int_{0}^{2\pi} \frac{2 + e^{it}}{e^{it}} ie^{it} \, dt = \int_{0}^{2\pi} (2i + i \cos t - \sin t) \, dt = [2it + i \sin t + \cos t]_{0}^{2\pi} = 4\pi i \]

2. \(z^3 = -2\sqrt{2} \) の解をすべて求め、複素平面に図示せよ。

解。

\(z = re^{i\theta} \) と置くと、\(r^3 e^{3i\theta} = 2^{3/2} e^{3\pi} \). よって、\(r = \sqrt{2}, \theta = \pi + 2n\pi \)（\(n \) は整数）。
- \(-\pi < \theta \leq \pi \) では、\(\theta = -\pi/3, \pi/3, \pi \)。

\[z = -\sqrt{2}, \frac{\sqrt{2} \pm \sqrt{6}i}{2} \]

図示は省略（実軸の負の部分に 1 つ、残り 2 点と原点を中心とする正三角形を形作る）

3.

\[f(z) = \frac{e^z}{z^2 (1 - z)} \]

とする。

（1）

\[\frac{1}{z^2 (1 - z)} = \frac{A}{z^2} + \frac{B}{z} + \frac{C}{z - 1} \]

を満たす定数 \(A, B, C \) を求めよ。

解。

\(z \neq 0, 1 \) のとき、分母を払うと \(1 = A(1 - z) + Bz(1 - z) - Cz^2 \). この式は無限個の \(z \) で成立する高々2次方程式であるから、恒等式である。よって \(z = 0, 1 \) でも成り立つ。

\(z = 0 \) を代入すると \(1 = A \cdot z = 1 \) を代入すると \(1 = -C \cdot z^2 \) の係数を比較して \(B = 1 \) よって \(A = B = 1 \), \(C = -1 \).

（2）次の積分を計算せよ。

\[\int_{|z|=2} f(z) \, dz \]

解。

\((e^z)' = e^z \) に注意すると、コーシーの積分公式・導関数の積分表示から,

\[\int_{|z|=2} f(z) \, dz = \int_{|z|=2} \left(\frac{e^z}{z^2} + \frac{e^z}{z} - \frac{e^z}{z - 1} \right) \, dz = 2\pi i (e^0 + e^0 - e) = 2\pi i (2 - e) \]
解析入門IIa（小林）・留数による積分計算

以下、積分は反時計回りとする．
留数：\(f(z) \) の \(z = a \) におけるローラン展開の \(-1\) 次の係数を \(z = a \) における留数といい \(\text{Res}(f(z), a) \) で表す．
\[
f(z) = \cdots + \frac{c_{-1}}{z-a} + c_0 + c_1(z-a) + c_2(z-a)^2 + \cdots
\]
のとき，\(\text{Res}(f(z), a) = c_{-1} \) となる．

単純極の留数：\(z = a \) で単純極の場合（\(g(z), h(z) \) は正則で \(g(a) \neq 0 \) とする）
\[
\text{Res}(f(z), a) = \lim_{z \to a}(z-a)f(z), \quad \text{Res}\left(\frac{g(z)}{h(z)}, a\right) = \frac{g(a)}{h'(a)}
\]

高位の極の留数：\(z = a \) で \(m \) 位の極の場合，
\[
\text{Res}(f(z), a) = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)
\]

部分分母展開：有理関数は部分分母の和に分けられる．未定係数法などで係数は求まる．
\[
\prod_{k=1}^n (z-a_k)^{m_k} = \sum_{1 \leq k \leq n, 1 \leq i \leq m_k} \frac{b_{ki}}{(z-a_k)^i} \quad (b_{ki} \text{ は定数})
\]

留数定理：\(f(z) \) は，有限個の単純閉曲線 \(C \) が囲む閉領域上，内部の孤立特異点 \(a_1, \ldots, a_n \) を除き正則ならば，次が成り立つ．
\[
\int_C f(z)dz = 2\pi i \sum_{k=1}^n \text{Res}(f(z), a_k)
\]

三角関数の有理関数の積分：\(z = e^{\theta} \) と置換すると，単位円内の留数から計算できる．
\[
\int_0^{2\pi} R(\cos \theta, \sin \theta) d\theta = \int_{|z|=1} R\left(\frac{1}{2} \left(z + \frac{1}{z} \right), \frac{1}{2} \left(z - \frac{1}{z} \right)\right) \frac{dz}{iz}
\]

有理関数の広義積分：\(f(x) \) は，(i) 上半平面で有限個の極 \(a_1, \ldots, a_n \) を除いて正則，(ii) 実軸上に特異点を持たず，(iii) \(\lim_{|z| \to \infty} zf(z) = 0 \)（例：分母が分子より 2 次以上大）とする．上半平面の半円上で積分する．
\[
\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{k=1}^n \text{Res}(f(z), a_k)
\]

フーリエ積分：\(f(x) \) は上の (i)(ii) および (iii) が成り立つ関数 \(e^{\theta R} \) が存在（例：分母が分子より 1 次以上大）を満たす，(iv) \(\lambda > 0 \) とすると，上と同じ積分路で積分する．
\[
\int_{-\infty}^{\infty} f(x)e^{\lambda x}dx = 2\pi i \sum_{k=1}^n \text{Res}(f(z)e^{\lambda z}, a_k)
\]

\(f(x) \) が実数値関数のとき，実部の区間を取ることで次が成り立つ．
\[
\int_{-\infty}^{\infty} f(x) \cos \lambda x dx, \quad \int_{-\infty}^{\infty} f(x) \sin \lambda x dx
\]

単純極の迂回：\(f(z) \) が積分路上 \(z = a \) で単純極を持つとき，小さい円弧（中心角 \(\alpha \)）で迂回すると，\(\alpha \text{ Res}(f, a) \) の寄与がある（迂回路の向きに注意）．

例：\(e^{ix} / x \) の積分の虚部として計算する．積分路は 0 を迂回し，偶関数であることにより
\[
\int_0^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2} \quad (\text{正弦積分})
\]

ガウス積分：次を用いることもある．この式自体は重積分などでも示せる．
\[
\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}, \quad \int_{-\infty}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}
\]

\(f(x)/x^\alpha \) の積分：有理関数 \(f(z) \) は (i) 有限個の極 \(a_1, \ldots, a_n \) を除いて正則，(ii) 負の実軸上に特異点を持たず，(iii) \(\lim_{|z| \to \infty} |zf(z)| < \infty \) とする．0 < \(\alpha < 1 \) に対し，\(C \) が型の積分路により，
\[
(1 - e^{-2\alpha \pi i}) \int_0^{\infty} \frac{f(x)}{x^\alpha} dx = 2\pi i \sum_{k=1}^n \text{Res}\left(\frac{f(z)}{x^\alpha}, a_k\right)
\]

積分区間の変更：偶関数・周期関数などに対称性がある場合，積分区間を適宜変えて計算する場合がある．
1. \(f(z) = \frac{1}{z^3(z+1)} \) の極と、そこでの位数および留数を求めよ。

2. 次の広義積分の値を留数定理を用いて求めよ。
 \[
 \int_{-\infty}^{\infty} \frac{x \sin x}{1 + x^2} \, dx
 \]

3. 有理関数 \(f(z) = \frac{1}{z^4 + z^2 + 1} \) に対し次の問いに答えよ。
 (1) \(f(z) \) の孤立特異点を求め、複素平面に図示せよ（ヒント：\((z^2 - 1)(z^4 + z^2 + 1)\)を計算せよ）
 (2) 次の広義積分の値を留数定理を用いて求めよ。
 \[
 \int_{0}^{\infty} \frac{dx}{x^4 + x^2 + 1}
 \]

4. \(D \) を複素平面内の領域、\(z = x + iy \)（\(x, y \) は実数）とし、\(D \) 上の実数値連続関数 \(u(x, y) \)、\(v(x, y) \) を考える。
 \(f(z) = u(x, y) + iv(x, y) \) が \(D \) 上で正則となる条件について、知るところを述べよ。
解答例（略解）

1. 極は分母が 0 を解いて \(z = 0, -1 \) である。分子が 1 のので極の位数は分母における解の重複度に等しいからそれぞれ 3, 1。\(z = 0 \) におけるローラン展開は

\[
f(z) = \frac{1}{z^2}(1 - z + z^2 - h.o.t.) = \frac{1}{z^2} - \frac{1}{z^2} + 1 - h.o.t.
\]

これにより留数は \(z = -1 \) における留数は

\[
\lim_{z \to -1} \frac{1}{z^3(z + 1)} = -1.
\]

2. \(f(z) = \frac{ze^{iz}}{1 + z^2} \) とおく。分子は整型関数（複素平面全体で正則な関数）である。分母は \(z = \pm i \) のみに零点を持つ正則関数である。よって, \(f(z) \) は有理型関数で, 上半平面で極 \(z = i \) を除いて正則であり, 実軸上に特異点を持たない。\(z/(1 + z^2) \) は分母の次数が分子の次数より 1 大きいので, ルーリー積分の留数定理による計算方法が使える。

\[
\int_{-\infty}^{\infty} \frac{x \sin x}{1 + x^2} \, dx = \Im \int_{-\infty}^{\infty} \frac{xe^{iz}}{1 + x^2} \, dx = \Im(2\pi i \text{Res}(f, i)) = \Im(2\pi i \frac{ie^{-1}}{2i}) = \frac{\pi}{e}
\]

3. （1）\(f(z) \) は正則関数の比であるから, 特異点は分母の零点に他ならない。

\((z^2 - 1)(z^2 + 1) = z^6 - 1 \) より, \(z^6 = 1 \) である。従って, \(\alpha = e^{\frac{2\pi i}{6}} = (1 + i\sqrt{3})/2 \) とおいて \(z = \alpha^k \) と表せる。

このうち \(\pm 1 \) を除いて, \(k = 1, 2, 4, 5 \)。極は \((\pm 1 \pm i\sqrt{3})/2 \) の 4 つである（図示は省略）

（あるいは, \(z^2 + z + 1 = (z^2 + 1)^2 - z^2 = (z^2 + 1)(z^2 - 1) \) より）

（2）被積分関数は偶関数であるから,

\[
\int_{-\infty}^{\infty} \frac{dx}{x^4 + x^2 + 1} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{x^4 + x^2 + 1}
\]

となる。\(f(z) \) は, 分母の次数が分子の次数より 2 以上大きい有理関数であり, \(f(z) \) の上半平面上の極は \(\alpha, \alpha^2 \) であり, 実軸上に極は存在しない。上半平面上の半円上の積分路を用いた留数計算を用いる。

\[
\alpha = \frac{2\pi i}{2} \sum_{k=1}^{2} \text{Res} \left(\frac{1}{z^4 + z^2 + 1}, \alpha^k \right)
\]

極は単純極であるから \(g/h' \) の公式を用いる。また, \(\alpha^3 = -1 \), および \(\alpha \neq \pm 1 \) より導かれる \(\alpha^2 - \alpha + 1 = 0 \) に注意して整理する。

\[
\pi i \left(\frac{1}{4\alpha^4 + 2\alpha} + \frac{1}{4\alpha^6 + 2\alpha^2} \right) = \frac{\pi i}{2} \left(\frac{1}{-2\alpha + \alpha} + \frac{1}{2 + \alpha^2} \right) = \frac{\pi i}{2} \frac{\alpha^2 + \alpha}{-2\alpha^2 + 2\alpha - 5} = \pi i \frac{2\alpha - 1}{-6} = \frac{\sqrt{3} \pi}{6}
\]

4. \(f(z) \) が \(D \) の各点で複素微分可能（正則）

\[
\iff \quad u(x, y), v(x, y) \text{ が } D \text{ の各点で全微分可能で, コーシー・リーマンの関係式を満たす}
\]

\[
\iff \quad u(x, y), v(x, y) \text{ が } D \text{ の各点で全微分可能で, } \frac{\partial f}{\partial \bar{z}} = 0
\]

\[
\iff \quad u(x, y), v(x, y) \text{ が } D \text{ の各点で調和関数で, コーシー・リーマンの関係式を満たす}
\]

\[
\iff \quad f(z) \text{ が } D \text{ の各点でべき級数に展開され, 正の収束半径をもつ (解析的)}
\]

\[
\iff \quad \text{単純閉曲線 } C \text{ が囲む領域が } D \text{ に含まれるとき } \int_C f(z) \, dz = 0 \quad (\text{ コーシーの積分定理, モレラの定理})
\]

\[
\iff \quad D \text{ の各点 } z \text{ に対し, 単純閉曲線 } C \text{ が囲む領域が } D \text{ に含まれ, } z \text{ を含むように } C \text{ を取るとき,}
\]

\[
f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} \, d\zeta \quad (\text{ コーシーの積分公式, コーシーの積分公式の逆 + 一致の定理})
\]