DERIVED CATEGORIES IN REPRESENTATION THEORY

JUN-ICHI MIYACHI

We survey recent methods of derived categories in the representation theory of algebras.

1. TRIANGULATED CATEGORIES AND BROWN REPRESENTABILITY

Definition 1.1. A triangulated category C is an additive category together with (1) an autofunctor $T : C \xrightarrow{\sim} C$ (i.e. there is T^{-1} such that $T \circ T^{-1} = T^{-1} \circ T = \mathbf{1}_{\mathcal{C}}$) called the translation, and (2) a collection \mathcal{T} of sextuples (X, Y, Z, u, v, w):

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$$

called (distinguished) triangles. These data are subject to the following four axioms:

(TR1) (1) Every sextuple (X, Y, Z, u, v, w) which is isomorphic to a triangle is a triangle.

$$\begin{array}{cccc} X & \stackrel{u}{\longrightarrow} Y & \stackrel{v}{\longrightarrow} Z & \stackrel{w}{\longrightarrow} T(X) \\ & & \downarrow_{f} & & \downarrow_{g} & & \downarrow_{h} & & \downarrow_{T(f)} \\ & & X' & \stackrel{u'}{\longrightarrow} Y' & \stackrel{v'}{\longrightarrow} Z' & \stackrel{w'}{\longrightarrow} T(X') \end{array} triangle$$

(2) Every morphism $u: X \to Y$ is embedded in a triangle $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$

(3) For any $X \in \mathcal{C}$,

$$X \xrightarrow{1} X \to 0 \to T(X)$$

is a triangle

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$$

is a triangle if and only if

$$Y \xrightarrow{v} Z \xrightarrow{w} T(X) \xrightarrow{-T(u)} T(Y)$$

is a triangle.

(TR3) For any triangles (X, Y, Z, u, v, w), (X', Y', Z', u', v', w') and a commutative diagram

$$\begin{array}{cccc} X & \stackrel{u}{\longrightarrow} Y & \stackrel{v}{\longrightarrow} Z & \stackrel{w}{\longrightarrow} T(X) \\ & & & & \downarrow^{g} \\ Y' & \stackrel{u'}{\longrightarrow} Y' & \stackrel{v'}{\longrightarrow} Z' & \stackrel{w'}{\longrightarrow} T(X') \end{array}$$

there exists $h: Z \to Z'$ which makes a commutative diagram

$$\begin{array}{cccc} X & \stackrel{u}{\longrightarrow} Y & \stackrel{v}{\longrightarrow} Z & \stackrel{w}{\longrightarrow} T(X) \\ & & & & \downarrow^{g} & & \downarrow^{h} & & \downarrow^{T(f)} \\ X' & \stackrel{u'}{\longrightarrow} Y' & \stackrel{v'}{\longrightarrow} Z' & \stackrel{w'}{\longrightarrow} T(X') \end{array}$$

(TR4) (Octahedral axiom) For any two consecutive morphisms $u : X \to Y$ and $v : Y \to Z$, if we embed u, vu and v in triangles (X, Y, Z', u, i, i'), (X, Z, Y', vu, k, k') and (Y, Z, X', v, j, j'), respectively, then there exist morphisms $f : Z' \to Y', g : Y' \to X'$ such that the following diagram commute

and the third column is a triangle. Sometimes, we write X[i] for $T^i(X)$.

Definition 1.2 (∂ -functor). Let C, C' be triangulated categories. An additive functor $F : C \to C'$ is called ∂ -functor (sometimes exact functor) provided that there is a functorial isomorphism $\alpha : FT_{\mathcal{C}} \xrightarrow{\sim} T_{\mathcal{C}'}F$ such that

$$F(X) \xrightarrow{F(u)} F(Y) \xrightarrow{F(v)} F(Z) \xrightarrow{\alpha_X F(w)} T_{\mathcal{C}'}(F(X))$$

is a triangle in \mathcal{C}' whenever

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T_{\mathcal{C}}(X)$$

is a triangle in \mathcal{C} . Moreover, if a ∂ -functor F is an equivalence, then Fis called a triangulated equivalence. In this case, we denote by $\mathcal{C} \stackrel{\triangle}{\cong} \mathcal{C}'$. For $(F, \alpha), (G, \beta) : \mathcal{C} \to \mathcal{C}'$ ∂ -functors, a functorial morphism $\phi :$ $F \to G$ is called a ∂ -functorial morphism if

$$(T_{\mathcal{C}'}\phi) \circ \alpha = \beta \circ \phi T_{\mathcal{C}} \qquad FT_{\mathcal{C}} \xrightarrow{\alpha} T_{\mathcal{C}'}F$$
$$\downarrow^{\phi}T_{\mathcal{C}} \downarrow \qquad \qquad \downarrow^{T_{\mathcal{C}'}\phi}$$
$$GT_{\mathcal{C}} \xrightarrow{\beta} T_{\mathcal{C}'}G$$

We denote by $\partial(\mathcal{C}, \mathcal{C}')$ the collection of all ∂ -functors from \mathcal{C} to \mathcal{C}' , and denote by $\partial \operatorname{Mor}(F, G)$ the collection of ∂ -functorial morphisms from F to G.

Proposition 1.3. Let $F : \mathcal{C} \to \mathcal{C}'$ be a ∂ -functor between triangulated categories. If $G : \mathcal{C}' \to \mathcal{C}$ is a right (or left) adjoint of F, then G is also a ∂ -functor.

Definition 1.4. A contravariant (resp., covariant) additive functor $H : \mathcal{C} \to \mathcal{A}$ from a triangulated category \mathcal{C} to an abelian category \mathcal{A} is called a homological functor (resp., cohomological functor), if for any triangle (X, Y, Z, u, v, w) in \mathcal{C} the sequence

$$H(T(X)) \to H(Z) \to H(Y) \to H(X)$$

(resp., $H(X) \to H(Y) \to H(Z) \to H(T(X))$)

is exact. Taking $H(T^i(X)) = H^i(X)$, we have the long exact sequence: $\dots \to H^{i+1}(X) \to H^i(Z) \to H^i(Y) \to H^i(X) \to \dots$

Proposition 1.5. The following hold.

- (1) If (X, Y, Z, u, v, w) is a triangle, then vu = 0, wv = 0 and T(u)w = 0.
- (2) For any $X \in C$, $\operatorname{Hom}_{\mathcal{C}}(-, X) : C \to \mathfrak{Ab}$ (resp., $\operatorname{Hom}_{\mathcal{C}}(X, -) : C \to \mathfrak{Ab}$) is a homological functor (resp., cohomological functor).
- (3) For any homomorphism of triangles

if two of f, g and h are isomorphisms, then the rest is also an isomorphism.

Definition 1.6 (Compact Object). Let C be a triangulated category. An object $C \in C$ is called a compact object in C if the canonical morphism

$$\coprod_{i \in I} \operatorname{Hom}_{\mathcal{C}}(C, X_i) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{C}}(C, \coprod_{i \in I} X_i)$$

is an isomorphism for any set $\{X_i\}_{i \in I}$ of objects (if $\coprod_{i \in I} X_i$ exists in C).

A triangulated category C is compactly generated if C contains arbitrary coproducts, and if there is a set S of compact objects such that

$$\operatorname{Hom}_{\mathcal{C}}(\mathcal{S}, X) = 0 \Rightarrow X = 0$$

For a compactly generated triangulated category C, a set S of compact objects is called a generating set if

- (1) $\operatorname{Hom}_{\mathcal{C}}(\mathcal{S}, X) = 0 \Rightarrow X = 0,$
- (2) $T(\mathcal{S}) = \mathcal{S}$.

Definition 1.7 (Homotopy Limit). Let C be a triangulated category which contains arbitrary coproducts (resp., products). For a sequence $\{X_i \rightarrow X_{i+1}\}_{i\in\mathbb{N}}$ (resp., $\{X_{i+1} \rightarrow X_i\}_{i\in\mathbb{N}}$) of morphisms in C, the homotopy colimit (resp., homotopy limit) of the sequence is the third (resp., second) term of the triangle

$$\begin{split} & \coprod_{i} X_{i} \xrightarrow{1- \text{ shift}} \coprod_{i} X_{i} \to \operatorname{hocolim} X_{i} \to T(\coprod_{i} X_{i}) \\ (\operatorname{resp.}, \ T^{-1}(\prod_{i} X_{i}) \to \operatorname{holim} X_{i} \to \prod_{i} X_{i} \xrightarrow{1- \text{ shift}} \prod_{i} X_{i}) \end{split}$$

where the above shift morphism is the coproduct (resp., product) of $X_i \xrightarrow{f_i} X_{i+1}$ (resp., $X_{i+1} \xrightarrow{f_i} X_i$) $(i \in \mathbb{N})$.

Theorem 1.8 (Brown Representability Theorem [Ne], [Ke]). Let C be a compactly generated triangulated category which contains arbitrary coproducts. If a homological functor $H : C \to \mathfrak{Ab}$ sends coproducts to products, then it is representable, that is, there is an object $X \in C$ such that $H \cong \operatorname{Hom}_{\mathcal{C}}(-, X)$.

Sketch of Proof. Here we set $h_X = \text{Hom}_{\mathcal{C}}(-, X)$. Let \mathcal{S} be a generating set of \mathcal{C} . There exist a coproduct X_1 of objects of \mathcal{S} and a morphism $h_{X_1} \to H$ such that

$$\operatorname{Hom}_{\mathcal{C}}(C, X_1) \twoheadrightarrow H(C)$$

is surjective for any $C \in \mathcal{S}$. For a functor

$$K_1 = \operatorname{Ker}(h_{X_1} \to H)$$

there exists a coproduct Z_2 of objects in \mathcal{S} and a morphism $h_{Z_2} \to K_1$ such that

$$\operatorname{Hom}_{\mathcal{C}}(C, Z_2) \twoheadrightarrow K_1(C)$$

is surjective for any $C \in \mathcal{S}$. Then we have a triangle:

$$Z_2 \to X_1 \to X_2 \to Z_2[1]$$

Since H is a homological functor, we have a commutative diagram

$$\operatorname{Mor}(h_{X_2}, H) \longrightarrow \operatorname{Mor}(h_{X_1}, H) \longrightarrow \operatorname{Mor}(h_{Z_2}, H)$$

Then there is a morphism $h_{X_2} \to H$ satisfying a commutative diagram

and we have a morphism of exact sequence

for any $C \in \mathcal{S}$. By inductive step, we have a triangle

$$\coprod_{i} X_{i} \xrightarrow{1- \text{ shift}} \coprod_{i} X_{i} \to \operatorname{hocolim} X_{i} \to T \coprod_{i} X_{i}$$

and we have an exact sequence

$$\begin{array}{cccc} H(\operatorname{hocolim} X_i) & \longrightarrow & \prod_i H(X_i) & \longrightarrow & \prod_i H(X_i) \\ & & & \downarrow^{\wr} & & \downarrow^{\wr} & & \downarrow^{\wr} \\ \operatorname{Mor}(h_{\operatorname{hocolim} X_i}, H) & \longrightarrow & \prod_i \operatorname{Mor}(h_{X_i}, H) & \longrightarrow & \prod_i \operatorname{Mor}(h_{X_i}, H) \end{array}$$

Therefore there is a morphism $\operatorname{Hom}_{\mathcal{C}}(-, \operatorname{hocolim} X_i) \to H$ such that

$$\operatorname{Hom}_{\mathcal{C}}(C,\operatorname{\mathsf{hocolim}} X_i)\cong H(C)$$

for any $C \in S$. Considering the case $H = \text{Hom}_{\mathcal{C}}(-, M)$, it is easy to see that $\mathsf{hocolim}X_i \cong M$. Moreover, this result implies that

$$\operatorname{Hom}_{\mathcal{C}}(-,\operatorname{\mathsf{hocolim}} X_i)\cong H$$

Remark 1.9 (Yoneda's Lemma). For a category C, the following hold.

- (1) For $X \in \mathcal{C}$ and a contravariant functor $F : \mathcal{C} \to \mathfrak{Set}$, we have the bijection $FX \to \operatorname{Mor}(h_X, F)$.
- (2) For $X, Y \in \mathcal{C}$, we have the bijection $\operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Mor}(h_X, h_Y)$.

Corollary 1.10 (Adjoint Functor Theorem [Ne]). Let C be a compactly generated triangulated category which contains arbitrary coproducts. If a ∂ -functor $F : C \to D$ commutes with arbitrary coproducts, then there exists a ∂ -functor $G : D \to C$ which is a right adjoint of F.

Proof. For any $Y \in \mathcal{D}$, the functor

$$\operatorname{Hom}_{\mathcal{D}}(F(-),Y): \mathcal{C} \to \mathfrak{Ab}$$

is a homological functor. By Brown representability theorem there is an object $GY \in \mathcal{C}$ such that

$$\operatorname{Hom}_{\mathcal{D}}(F(-),Y) \cong \operatorname{Hom}_{\mathcal{C}}(-,GY)$$

Definition 1.11 (Quotient Category). Let S be a multiplicative system in a triangulated category C which satisfies the following conditions:

- (FR0) For a morphism s in C, if there exist f, g such that $sf, gs \in S$, then $s \in S$.
- (FR1) (1) $1_X \in \mathsf{S}$ for every $X \in \mathcal{C}$. (2) For $s, t \in \mathsf{S}$, if st is defined, then $st \in \mathsf{S}$.

(FR2) (1) Every diagram in C

with $s \in S$, can be completed to a commutative square

$$\begin{array}{cccc} X & \xrightarrow{s} & Y \\ f \downarrow & & \downarrow^g \\ X' & \xrightarrow{t} & Y' \end{array}$$

with $s, t \in S$.

(2) Every diagram in C

$$\begin{array}{c} & Y \\ & \downarrow g \\ X' \xrightarrow{t} & Y' \end{array}$$

with $t \in S$, can be completed to a commutative square

with $s, t \in S$.

- (FR3) For $f, g \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ the following are equivalent.
 - (1) There exists $s \in S$ such that sf = sg.
 - (2) There exists $t \in S$ such that ft = gt.
- (FR4) For a morphism u in C, $u \in S$ if and only if $Tu \in S$.
- (FR5) For triangles (X, Y, Z, u, v, w), (X', Y', Z', u', v', w') and morphisms $f : X \to X', g : Y \to Y'$ in S with gu = u'f, there exists $h : Z \to Z'$ in S such that (f, g, h) is a homomorphism of triangles.

We define the quotient category $S^{-1}C$ of C, as follows:

- (1) $\operatorname{Ob}(\mathsf{S}^{-1}\mathcal{C}) = \operatorname{Ob}(\mathcal{C}).$
- (2) For $X, Y \in Ob(\mathcal{C})$, let $V(X, Y) = \{(s, Y', f) | s : Y \to Y' \in S, f : X \to Y\}$. In V(X, Y), we define $(s, Y', f) \sim (s', Y'', f')$ if there is (s'', Y''', f') such that all triangles are commutative in the following diagram:

Then we define a morphism from X to Y by an equivalence class $s^{-1}f$ of (s, Y', f).

(3) For $s^{-1}f: X \to Y, t^{-1}g: Y \to Z$, by (FR2) there are $s': Z' \to Z'' \in \mathsf{S}$ and $g': Y' \to Z''$ such that $s' \circ g = g' \circ s$. Then we define $(t^{-1}g) \circ (s^{-1}f) = (s' \circ t)^{-1}g \circ f$.

Moreover, we define the quotient functor $Q: \mathcal{C} \to S^{-1}\mathcal{C}$ by

(1) Q(X) = X for $X \in \mathcal{C}$.

(2) $Q(f) = 1_Y^{-1} f$ for a morphism $f : X \to Y$ in \mathcal{C} .

Remark 1.12. Can we define (2) in the above?

Definition 1.13 (Épaisse Subcategory). Let C be a triangulated category. An additive full subcategory \mathcal{U} of C is called a full triangulated subcategory if $X \to Y$ is a morphism in \mathcal{U} , then there is a triangle $X \to Y \to Z \to TX$ with $Z \in \mathcal{U}$.

A full triangulated subcategory \mathcal{U} is called an épaisse subcategory if it is closed under direct summands. In this case, let $S(\mathcal{U})$ be the collection of morphisms s such that $X \xrightarrow{s} Y \to Z \to X[1]$ is a triangle with $Z \in \mathcal{U}$. Then $S(\mathcal{U})$ is a multiplicative system satisfying (FR0) - (FR5). We write $C/\mathcal{U} = S(\mathcal{U})^{-1}C$.

In the case that C contains arbitrary coproducts, a full triangulated subcategory \mathcal{U} is called a localizing subcategory if it is closed under coproducts.

Proposition 1.14 ([BN]). Let C be a triangulated category which contains arbitrary coproducts. Then any localizing subcategory is an épaisse subcategory.

Proposition 1.15. Let C be a triangulated category. For a multiplicative system S satisfying the conditions (FR0) - (FR5), let U(S) be the full triangulated subcategory consisting of objects Z which is in a triangle $X \xrightarrow{s} Y \to Z \to X[1]$ with $s \in S$. Then the following hold.

- (1) S(U) and U(S) induce a 1 1 correspondence between the collection of multiplicative systems S satisfying the conditions (FR0) (FR5) and the collection of épaisse subcategories U.
- (2) For an épaisse subcategory \mathcal{U} , \mathcal{C}/\mathcal{U} is a triangulated category whose triangles are defined to be isomorphic to triangles of \mathcal{C} .
- (3) Assume C contains arbitrary coproducts. For a localizing subcategory U, C/U also contains arbitrary coproducts.

Definition 1.16 (stable *t*-structure). For full subcategories \mathcal{U} and \mathcal{V} of a triangulated category \mathcal{C} , $(\mathcal{U}, \mathcal{V})$ is called a stable *t*-structure in \mathcal{C} provided that

- (1) \mathcal{U} and \mathcal{V} are stable for translations.
- (2) $\operatorname{Hom}_{\mathcal{C}}(\mathcal{U}, \mathcal{V}) = 0.$
- (3) For every $X \in C$, there exists a triangle

$$U \to X \to V \to T(U)$$

with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.

Proposition 1.17 ([BBD], c.f. [Mi]). Let C be a triangulated category, $(\mathcal{U}, \mathcal{V})$ a stable t-structure in C, and $i_* : \mathcal{U} \to C, j_* : \mathcal{V} \to C$ the canonical embeddings. Then the following hold.

- (1) \mathcal{U} and \mathcal{V} is épaisse subcategories of \mathcal{C} .
- (2) i_* (resp., j_*) has a right adjoint $i^!$ (resp., a left adjoint j^*).
- (3) The adjunction arrows induce a triangle

$$i_*i^!X \xrightarrow{\alpha_X} X \xrightarrow{\beta_X} j_*j^*X \to i_*i^!X[1]$$

for any $X \in \mathcal{C}$.

 (4) C/U (resp., C/V) exists, and it is triangulated equivalent to V (resp., U).

2. Derived Categories

Throughout this section, \mathcal{A} is an abelian category and \mathcal{B} is an additive subcategory of \mathcal{A} which is closed under isomorphisms.

Definition 2.1 (Complex). A (cochain) complex is a collection $X^{\bullet} = (X^n, d_X^n : X^n \to X^{n+1})_{n \in \mathbb{Z}}$ of objects and morphisms of \mathcal{B} such that $d_X^{n+1}d_X^n = 0$. A complex $X^{\bullet} = (X^n, d_X^n : X^n \to X^{n+1})_{n \in \mathbb{Z}}$ is called bounded below (resp., bounded above, bounded) if $X^n = 0$ for $n \ll 0$ (resp., $n \gg 0$, $n \ll 0$ and $n \gg 0$).

A complex $X^{\bullet} = (X^n, d_X^n)$ is called a stalk complex if there exists an integer n_0 such that $X^i = O$ if $i \neq n_0$. We identify objects of \mathcal{B} with a stalk complexes of degree 0.

A morphism $f: X^{\cdot} \to Y^{\cdot}$ of complexes is a collection of morphisms $f^{n}: X^{n} \to Y^{n}$ which makes a commutative diagram

We denote by $C(\mathcal{B})$ (resp., $C^+(\mathcal{B})$, $C^-(\mathcal{B})$, $C^b(\mathcal{B})$) the category of complexes (resp., bounded below complexes, bounded above complexes, bounded complexes) of \mathcal{B} . An autofunctor $T : C(\mathcal{B}) \to C(\mathcal{B})$ is called

translation if $(T(X \cdot))^n = X^{n+1}$ and $(Td_X)^n = -d_X^{n+1}$ for any complex $X \cdot = (X^n, d_X^n).$

In $C(\mathcal{A})$, a morphism $u : X^{\cdot} \to Y^{\cdot}$ is called a quasi-isomorphism if $H^{n}(u)$ is an isomorphism for any n.

In this section, "*" means "nothing", "+", "-" or "b".

Definition 2.2. For $u \in \text{Hom}_{\mathsf{C}(\mathcal{B})}(X^{\bullet}, Y^{\bullet})$, the mapping cone of u is a complex $M^{\bullet}(u)$ with

$$M^{n}(u) = X^{n+1} \oplus Y^{n},$$

$$d^{n}_{\mathcal{M}(u)} = \begin{bmatrix} -d^{n+1}_{X} & 0\\ u^{n+1} & d^{n}_{X} \end{bmatrix} : X^{n+1} \oplus Y^{n} \to X^{n+2} \oplus Y^{n+1}.$$

Definition 2.3 (Homotopy Relation). Two morphisms $f, g \in \text{Hom}_{\mathsf{C}(\mathcal{B})}(X^{\bullet}, Y^{\bullet})$ are said to be homotopic (denote by $f \simeq g$) if there is a collection of morphisms $h = (h^n), h^n : X^n \to Y^{n+1}$ such that

$$f^n - g^n = d_Y^{n-1}h^n + h^{n+1}d_X^n$$

for all $n \in \mathbb{Z}$.

Definition 2.4 (Homotopy Category). The homotopy category $\mathsf{K}^*(\mathcal{B})$ of \mathcal{B} is defined by

- (1) $\operatorname{Ob}(\mathsf{K}^*(\mathcal{B})) = \operatorname{Ob}(\mathsf{C}^*(\mathcal{B})),$
- (2) $\operatorname{Hom}_{\mathsf{K}^*(\mathcal{B})}(X^{\cdot}, Y^{\cdot}) = \operatorname{Hom}_{\mathsf{C}^*(\mathcal{B})}(X^{\cdot}, Y^{\cdot}) / \underset{h}{\simeq} for X^{\cdot}, Y^{\cdot} \in \operatorname{Ob}(\mathsf{K}^*(\mathcal{B})).$

Proposition 2.5. A category $K^*(\mathcal{B})$ is a triangulated category whose triangles are defined to be isomorphic to

$$X^{\cdot} \xrightarrow{u} Y^{\cdot} \to M^{\cdot}(u) \to T(X^{\cdot})$$

for any $u: X^{\cdot} \to Y^{\cdot}$ in $\mathsf{K}^*(\mathcal{B})$.

Definition 2.6 (Derived Category). The derived category $D^*(\mathcal{A})$ of an abelian category \mathcal{A} is $\mathsf{K}^*(\mathcal{A})/\mathsf{K}^{*,\phi}(\mathcal{A})$, where $\mathsf{K}^{*,\phi}(\mathcal{A})$ is the full subcategory of $\mathsf{K}^*(\mathcal{A})$ consisting of null complexes, that is, complexes whose all homologies are 0.

Proposition 2.7. The following hold.

- (1) $\mathsf{D}^*(\mathcal{A})$ is a triangulated category, and the canonical functor Q: $\mathsf{K}^*(\mathcal{A}) \to \mathsf{D}^*(\mathcal{A})$ is a ∂ -functor.
- (2) The *i*-th cohomology of complexes is a cohomological functor in the sense of Definition 1.4.

Definition 2.8. A complex X^{\cdot} of $K(\mathcal{B})$ is called K-injective (resp., K-projective) if

$$\operatorname{Hom}_{\mathsf{K}(\mathcal{B})}(N^{\cdot}, X^{\cdot}) = 0$$

 $(resp., \operatorname{Hom}_{\mathsf{K}(\mathcal{B})}(X^{\cdot}, N^{\cdot}) = 0)$

for any null complex N^{\cdot} .

Example 2.9. Let A be a ring, Mod A the category of right A-modules, and lnj A (resp., Proj A) the category of injective (resp., projective) right A-modules. Then any complex $I^{\cdot} \in K^+(lnj A)$ (resp., $P^{\cdot} \in K^-(Proj A)$) is a K-injective (resp., K-projective) complex in K(Mod A).

Example 2.10. Let k be a field, $A = k[x]/(x^2)$, and

 $X^{\cdot}:\cdots \xrightarrow{x} A \xrightarrow{x} A \xrightarrow{x} \cdots$.

Then X^{\cdot} is a null complex of finitely generated projective-injective Amodules. But it is neither K-projective nor K-injective, because $0 \neq 1 \in$ Hom_{K(Mod A)} (X^{\cdot}, X^{\cdot}) .

Theorem 2.11 ([Sp], [Ne], [LAM], [Fr]). Let $\mathsf{K}^{inj}(\mathsf{Mod}\,A)$ (resp., $\mathsf{K}^{proj}(\mathsf{Mod}\,A)$) be the category of K -injective (resp., K -projective) complexes, then the following hold.

- (1) (K^{proj}(Mod A), K^{\$\phi\$}(Mod A)) is a stable t-structure in K(Mod A), and hence D(Mod A) exists and is triangulated equivalent to K^{proj}(Mod A).
- (2) (K^φ(Mod A), K^{inj}(Mod A)) is a stable t-structure in K(Mod A), and hence D(Mod A) is triangulated equivalent to K^{inj}(Mod A).
- (3) For a Grothendieck category \mathcal{A} , $(\mathsf{K}^{\phi}(\mathcal{A}), \mathsf{K}^{inj}(\mathcal{A}))$ is a stable tstructure in $\mathsf{K}(\mathcal{A})$, and hence $\mathsf{D}(\mathcal{A})$ exists and is triangulated equivalent to $\mathsf{K}^{inj}(\mathcal{A})$.

Proof. (1) For a complex $X^{\bullet} = (X^{i}, d^{i})$, we define the following truncation:

$$\sigma_{\leq n} X^{\bullet} : \dots \to X^{n-2} \to X^{n-1} \to \operatorname{Ker} d^n \to 0 \to \dots$$

For any n, there is a complex $P_n^{\cdot} \in \mathsf{K}^-(\operatorname{\mathsf{Proj}} A)$ which has a quasiisomorphism $P_n^{\cdot} \to \sigma_{\leq n} X^{\cdot}$. Then we have the following quasi-isomorphisms (qis)

$$X^{\cdot} \cong \varinjlim \ \sigma_{\leq n} X^{\cdot} \xleftarrow{\operatorname{qis}} \operatorname{hocolim} \ \sigma_{\leq n} X^{\cdot} \xleftarrow{\operatorname{qis}} \operatorname{hocolim} \ P_{n}^{\cdot}$$

It is easy to see that hocolim P_n is K-projective.

(2) Similarly.

(3) Because there is a ring A such that \mathcal{A} is a localization of $\mathsf{Mod} A$ (Gabriel-Popescu Theorem). See [LAM] or [Fr].

Remark 2.12 (Grothendieck Category). An abelian category C is called a Grothendieck category if

- (1) C has coproducts of objects indexed by arbitrary sets,
- (2) the filtered colimit of exact sequences is exact,
- (3) C has a generator U.

In this case, we have Gabriel-Popescu Theorem: Let $R = \operatorname{End}_{\mathcal{C}}(U)$, then there are functors $F : \operatorname{Mod} R \to \mathcal{C}, G := \operatorname{Hom}_{\mathcal{C}}(U, -) : \mathcal{C} \to \operatorname{Mod} R$ such that

- (1) F is an exact functor,
- (2) G is a right adjoint of F,
- (3) $FG \xrightarrow{\sim} \mathbf{1}_{\mathcal{C}}$.

Remark 2.13. If P is K-projective complex (e.g. bounded above complex of projective A-modules), then we have

 $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}\,A)}(P^{\cdot}, X^{\cdot}) \cong \operatorname{Hom}_{\mathsf{D}(\mathsf{Mod}\,A)}(P^{\cdot}, X^{\cdot})$

for any complex X^{\cdot} . Similarly, for a K-injective complex I^{\cdot} (e.g. bounded below complex of injective A-modules), then we have

 $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}\,A)}(X^{\cdot},I^{\cdot}) \cong \operatorname{Hom}_{\mathsf{D}(\mathsf{Mod}\,A)}(X^{\cdot},I^{\cdot})$

for any complex X^{\cdot} .

Proposition 2.14. If $0 \to X^{\bullet} \xrightarrow{u} Y^{\bullet} \xrightarrow{v} Z^{\bullet} \to 0$ is a exact sequence in $C(\mathcal{A})$, then it can be embedded in a triangle in $D(\mathcal{A})$

$$QX^{\bullet} \xrightarrow{Qu} QY^{\bullet} \xrightarrow{Qv} QZ^{\bullet} \xrightarrow{w} TQ(X^{\bullet}).$$

Definition 2.15 (Right Derived Functor). For a ∂ -functor $F : \mathsf{K}^*(\mathcal{A}) \to \mathsf{K}(\mathcal{A}')$, the right derived functor of F is a ∂ -functor

$$\mathbf{R}^*F: \mathsf{D}^*(\mathcal{A}) \to \mathsf{D}(\mathcal{A}')$$

together with a functorial morphism of ∂ -functors

$$\xi \in \partial \operatorname{Mor}(Q_{\mathcal{A}'} \circ F, \mathbf{R}^* F \circ Q_{\mathcal{A}}^*)$$

with the following property:

For $G \in \partial(\mathsf{D}^*(\mathcal{A}), \mathsf{D}(\mathcal{A}'))$ and $\zeta \in \partial \operatorname{Mor}(Q_{\mathcal{A}'} \circ F, G \circ Q^*_{\mathcal{A}})$, there exists a unique morphism $\eta \in \partial \operatorname{Mor}(\mathbf{R}^*F, G)$ such that

$$\zeta = (\eta Q_{\mathcal{A}}^*)\xi.$$

In other words, we can simply write the above using functor categories. For triangulated categories C, C', the ∂ -functor category $\partial(C, C')$ is the category (?) consisting of ∂ -functors from C to C' as objects and ∂ -functorial morphisms as morphisms. Then we have

$$\partial \operatorname{Mor}(Q_{\mathcal{A}'} \circ F, -Q^*_{\mathcal{A}}) \cong \partial \operatorname{Mor}(\mathbf{R}^*F, -)$$
¹²

as functors from $\partial(\mathsf{D}^*(\mathcal{A}),\mathsf{D}(\mathcal{A}'))$ to Set.

Proposition 2.16. Let $\mathcal{A}, \mathcal{A}'$ be abelian categories, $F : \mathsf{K}(\mathcal{A}) \to \mathsf{K}(\mathcal{A}')$ a ∂ -functor. If \mathcal{A} is a Grothendieck category, then we have the right derived functor $\mathbf{R}F : \mathsf{D}(\mathcal{A}) \to \mathsf{D}(\mathcal{A}')$ such that $F(X^{\cdot}) \cong \mathbf{R}F(X^{\cdot})$ for any K -injective complex X^{\cdot} .

Definition 2.17 (Hom^{*}_A, $\dot{\otimes}_A$). Let X^{\cdot}, Y^{\cdot} be complexes in C(Mod A), Z^{\cdot} a complex in C(Mod A^{op}). We define the complex Hom^{*}_A(X^{\cdot}, Y^{\cdot}) in C(\mathfrak{Ab}) by

$$\operatorname{Hom}_{A}^{n}(X^{\cdot}, Y^{\cdot}) = \prod_{j-i=n} \operatorname{Hom}_{A}(X^{i}, Y^{j})$$
$$d_{\operatorname{Hom}^{\bullet}(X,Y)}^{n}(f) = d_{X} \circ f - (-1)^{n} f \circ d_{Y} \quad for \ f \in \operatorname{Hom}_{A}^{n}(X^{\cdot}, Y^{\cdot})$$

And we define the complex $X^{\cdot} \otimes_A Z^{\cdot}$ in $\mathsf{C}(\mathfrak{Ab})$ by

$$X^{\cdot} \overset{n}{\otimes}_{A} Z^{\cdot} = \prod_{i+j=n} X^{i} \otimes_{A} Z^{j}$$
$$d^{n}_{X \otimes Y} = d_{X} \otimes 1 + (-1)^{n} 1 \otimes d_{Z}$$

Proposition 2.18. Let A are a ring. Then we have a right derived functor

 $\mathbf{R}\operatorname{Hom}_{A}^{\bullet}: \mathsf{D}(\mathsf{Mod}\,A)^{op} \times \mathsf{D}(\mathsf{Mod}\,A) \to \mathsf{D}(\mathfrak{Ab})$

and a left derived functor

$$\dot{\otimes}^{\boldsymbol{L}}_{A} : \mathsf{D}(\mathsf{Mod}\,A) \times \mathsf{D}(\mathsf{Mod}\,A^{op}) \to \mathsf{D}(\mathfrak{Ab})$$

Definition 2.19 (Perfect Complex). Let A be a ring. A complex $X^{\cdot} \in D(Mod A)$ is called a perfect complex if X^{\cdot} is quasi-isomorphic to a bounded complex of finitely generated projective A-modules.

Let X be a scheme, D(X) the derived category of sheaves of \mathcal{O}_X modules. We denote by $D_{qc}(X)$ the full subcategory of D(X) consisting of complexes whose cohomologies are quasi-coherent sheaves. A complex $X^{\cdot} \in D_{qc}(X)$ is called a perfect complex if X^{\cdot} is locally quasiisomorphic to a bounded complex of vector bundles.

We denote by $D_{pf}(\mathcal{A})$ the full triangulated subcategory of $D(\mathcal{A})$ consisting of perfect complexes.

Proposition 2.20 ([Rd1], [Ne]). For a ring A, the following hold.

- (1) A complex $X^{\cdot} \in \mathsf{D}(\mathsf{Mod}\,A)$ is perfect if and only if it is a compact object in $\mathsf{D}(\mathsf{Mod}\,A)$.
- (2) D(Mod A) is compactly generated.

Theorem 2.21 ([BV]). Let X be a quasi-compact quasi-separated scheme, then the following hold.

- (1) A complex $X \in \mathsf{D}_{qc}(X)$ is perfect if and only if it is a compact object in $\mathsf{D}_{qc}(X)$.
- (2) $\mathsf{D}_{qc}(X)$ is compactly generated.

Theorem 2.22 ([BN]). Let X be a quasi-compact separated scheme, then the canonical functor $D(\operatorname{Qcoh} X) \to D_{qc}(X)$ is a triangulated equivalence, where $\operatorname{Qcoh} X$ is the category of quasi-coherent sheaves of \mathcal{O}_X -modules.

Corollary 2.23 ([BV]). Let X be smooth over a field, then we have

$$\mathsf{D}^{\mathrm{b}}(\operatorname{\mathsf{coh}} X) \stackrel{{\scriptscriptstyle \bigtriangleup}}{\cong} \mathsf{D}_{pf}(X).$$

where $\operatorname{coh} X$ is the category of coherent sheaves of \mathcal{O}_X -modules.

For a ring A, we denote by **proj** A the category of finitely generated projective A-modules.

Theorem 2.24 ([Rd1], [Rd2]). Let A, B be algebras over a field k. The following are equivalent.

- (1) $\mathsf{D}(\mathsf{Mod}\,A) \stackrel{\triangle}{\cong} \mathsf{D}(\mathsf{Mod}\,B).$
- (2) $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A) \stackrel{\triangle}{\cong} \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,B).$
- (3) There is a perfect complex $T^{\bullet} \in \mathsf{D}(\mathsf{Mod}\,A)$ such that (a) $B \cong \operatorname{End}_{\mathsf{D}(\mathsf{Mod}\,A)}(T^{\bullet}),$

(b) Hom_{D(Mod A)} $(T^{\bullet}, T^{\bullet}[i]) = 0$ for $i \neq 0$,

- (c) $\{T^{\cdot}[i] | i \in \mathbb{Z}\}$ is a generating set in $\mathsf{D}(\mathsf{Mod} A)$.
- (4) There is a complex X^{\cdot} of B-A-bimodules such that

 $\mathbf{R}\operatorname{Hom}_{A}^{\cdot}(X^{\cdot},-):\mathsf{D}(\operatorname{\mathsf{Mod}} A)\to\mathsf{D}(\operatorname{\mathsf{Mod}} B)$

is an equivalence.

In this case, T^{\cdot} is called a tilting complex for A, X^{\cdot} is called two-sided tilting complex, and $\mathbf{R} \operatorname{Hom}_{A}^{\cdot}(X^{\cdot}, -)$ is called a standard equivalence.

Theorem 2.25 ([BO]). Let X be a smooth irreducible projective variety with ample canonical or anticanonical sheaf. If X' is a smooth algebraic variety such that $\mathsf{D}^{\mathsf{b}}(\mathsf{coh}\,X) \stackrel{\triangle}{\cong} \mathsf{D}^{\mathsf{b}}(\mathsf{coh}\,X')$, then X' is isomorphic to X. **Theorem 2.26** ([Be]). Let $\mathbf{P} = \mathbf{P}_k^n$ be the n-dimensional projective space over a field k, and let $\mathcal{T}_1 = \bigoplus_{i=0}^n \mathcal{O}(i), \mathcal{T}_2 = \bigoplus_{i=0}^n \Omega(-i),$ and

space over a field k, and let $I_1 = \bigoplus_{i=0} O(i)$, $I_2 = \bigoplus_{i=0} \Omega(-i)$, and $B_1 = \operatorname{End}_{\mathbf{P}}(\mathcal{T}_1)$, $B_2 = \operatorname{End}_{\mathbf{P}}(\mathcal{T}_2)$. Then B_i are finite dimensional k-algebra of finite global dimension, and

$$\mathsf{D}^{\mathrm{b}}(\mathsf{coh}\,\mathbf{P}) \stackrel{\bigtriangleup}{\cong} \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\,B_1) \stackrel{\bigtriangleup}{\cong} \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\,B_2)$$

where $mod B_i$ is the category of finitely generated B_i -modules.

Definition 2.27. Let A be an algebra over a field k. The derived Picard group of A (relative to k) is

$$DPic_k(A) := \frac{\{tilting \ complexes \ T \in \mathsf{D}^{\mathsf{b}}(\mathsf{Mod}\ A^{\mathsf{e}})\}}{isomorphism}$$

with identity element A, product $(T_1, T_2) \mapsto T_1 \otimes_A^{\mathrm{L}} T_2$ and inverse $T \mapsto T^{\vee} := \operatorname{R}\operatorname{Hom}_A(T, A)$. Given any k-linear triangulated category \mathcal{C} we let

(2.1)
$$\operatorname{Out}_{k}^{\triangle}(\mathcal{C}) := \frac{\{k\text{-linear triangulated self-equivalences of } \mathcal{C}\}}{isomorphism}$$

Theorem 2.28 ([MY]). Let k be an algebraically closed field, and A a finite dimensional hereditary k-algebra. Then we have

$$\operatorname{DPic}_k(A) = \operatorname{Out}_k^{\bigtriangleup}(\mathsf{D}^{\operatorname{b}}(\mathsf{Mod}\,A)) = \operatorname{Out}_k^{\bigtriangleup}(\mathsf{D}^{\operatorname{b}}(\mathsf{mod}\,A))$$

M. Kontsevich and A. Rosenberg introduced the notion of noncommutative projective spaces \mathbf{NP}^n , and showed that

$$\mathsf{D}^{\mathrm{b}}(\operatorname{Qcoh} \mathbf{NP}^{n}) \stackrel{\triangle}{\cong} \mathsf{D}^{\mathrm{b}}(\operatorname{\mathsf{Mod}} kQ_{n})$$
$$\mathsf{D}^{\mathrm{b}}(\operatorname{coh} \mathbf{NP}^{n}) \stackrel{\triangle}{\cong} \mathsf{D}^{\mathrm{b}}(\operatorname{\mathsf{mod}} kQ_{n})$$

where Q_n is the quiver

$$\bullet \underbrace{\vdots}_{\alpha_n}^{\alpha_0} \bullet$$

Corollary 2.29 ([MY]). For a non-commutative projective spaces \mathbf{NP}^n , we have

$$\operatorname{Out}_{k}^{\Delta}(\operatorname{\mathsf{D}^{b}}(\operatorname{Qcoh} \mathbf{NP}^{n})) \cong \operatorname{Out}_{k}^{\Delta}(\operatorname{\mathsf{D}^{b}}(\operatorname{coh} \mathbf{NP}^{n}))$$
$$\cong \mathbb{Z} \times \left(\mathbb{Z} \ltimes \operatorname{PGL}_{n+1}(k)\right)$$

For \mathbf{P}^1 , we have $\operatorname{Out}_k^{\Delta}(\mathsf{D}^{\mathrm{b}}(\operatorname{coh} \mathbf{P}^1)) \cong \mathbb{Z} \times \mathbb{Z} \times \operatorname{PGL}_2(k)$.

Theorem 2.30 ([BO]). Let X be a smooth irreducible projective variety with ample canonical or anticanonical sheaf. Then $\operatorname{Out}_k^{\Delta}(\mathsf{D}^{\mathsf{b}}(\operatorname{coh} X))$ is generated by the automorphisms of variety, the twists by invertible sheaves and the translations, and hence $\operatorname{Out}_k^{\Delta}(\mathsf{D}^{\mathsf{b}}(\operatorname{coh} X)) \cong (\operatorname{Aut}_k X \ltimes$ $\operatorname{Pic} X) \times \mathbb{Z}$.

References

- [Be] A.A. Beilinson, Coherent sheaves on \mathbf{P}^n and problems of linear algebra, Func. Anal. Appl. **12** (1978), 214-216.
- [BBD] A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux Pervers, Astérisque 100 (1982).
- [BN] M. Böckstedt and A. Neeman, Homotopy Limits in Triangulated Categories, Compositio Math. 86 (1993), 209-234.
- [BV] A. Bondal, M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, math.AG/0204218.
- [BO] A. Bondal and D. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, preprint; eprint: alg-geom/9712029.
- [BV] A. Bondal, M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, math.AG/0204218.
- [CE] H. Cartan, S. Eilenberg, "Homological Algebra," Princeton Univ. Press, 1956.
- [Fr] J, Franke, On the Brown representability theorem for triangulated categories. Topology 40 (2001), no. 4, 667–680.
- [Ha] D. Happel, "Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras," London Math. Soc. Lecture Notes 119, University Press, Cambridge, 1987.
- [HS] P. J. Hilton, U. Stammbach, "A Course in Homological Algebra," GTM 4, Springer-Verlag, Berlin, 1971.
- [Ke] B. Keller, Deriving DG Categories, Ann. Scient. Ec. Norm. Sup. 27 (1994), 63 - 102.
- [Ke2] B. Keller, A remark on tilting theory and DG algebras, manuscripta math. 79 (1993), 247-252.
- [4] M. Kontsevich and A. Rosenberg, Noncommutative smooth spaces, preprint; eprint math.AG/9812158.
- [LAM] Leovigildo Alonso Tarrío, Ana Jeremías López, María José Souto Salorio, Localization in categories of complexes and unbounded resolutions, Canad. J. Math. 52 (2000), no. 2, 225–247.
- [ML] S. Mac Lane, "Homology," Springer-Verlag, Berlin, 1963.
- [Mi] J. Miyachi, Localization of Triangulated Categories and Derived Categories, J. Algebra 141 (1991), 463-483.
- [MY] J. Miyachi, A. Yekutieli, Derived Picard groups of finite-dimensional hereditary algebras. Compositio Math. 129 (2001), no. 3, 341–368.
- [Ne] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. American Math. Soc. 9 (1996), 205-236.
- [Po] N. Popescu, "Abelian Categories with Applications to Rings and Modules, " Academic Press, London-New York, 1973.
- [RD] R. Hartshorne, "Residues and Duality," Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966.
- [Rd1] J. Rickard, Morita Theory for Derived Categories, J. London Math. Soc. 39 (1989), 436-456.
- [Rd2] J. Rickard, Derived Equivalences as Derived Functors, J. London Math. Soc. 43 (1991), 37-48.
- [Rd3] J. Rickard, Splendid Equivalences: Derived Categories and Permutation Modules, Proc. London Math. Soc. 72 (1996), 331-358.

- [RZ] R. Rouquier and A. Zimmermann, Picard Groups for Derived Module Categories, Proc. London Math. Soc. (3) 87 (2003), no. 1, 197-225.
- [TT] R. W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, 247–435, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990.
- [We] C. A. Weibel, "An Introduction to Homological Algebra," Cambridge studies in advanced mathematics. **38**, Cambridge Univ. Press, 1995.
- [Sp] N. Spaltenstein, Resolutions of Unbounded Complexes, Composition Math. 65 (1988), 121-154.
- [Ye] A. Yekutieli, Dualizing Complexes over Noncommutative Graded Algebras, J. Algebra 153 (1992), 41-84.
- [Ve] J. Verdier, "Catéories Déivées, état 0", pp. 262-311, Lecture Notes in Math.
 569, Springer-Verlag, Berlin, 1977.