
DERIVED CATEGORIES IN REPRESENTATION
THEORY

JUN-ICHI MIYACHI

We survey recent methods of derived categories in the representation
theory of algebras.

1. Triangulated Categories and Brown Representability

Definition 1.1. A triangulated category C is an additive category to-
gether with (1) an autofunctor T : C ∼→ C (i.e. there is T−1 such that
T ◦ T−1 = T−1 ◦ T = 1C) called the translation, and
(2) a collection T of sextuples (X,Y, Z, u, v, w):

X
u−→ Y

v−→ Z
w−→ T (X)

called (distinguished) triangles. These data are subject to the following
four axioms:

(TR1) (1) Every sextuple (X,Y, Z, u, v, w) which is isomorphic to a
triangle is a triangle.

X

o f

²²

u // Y

o g

²²

v // Z

o h

²²

w // T (X)

o T (f)
²²

X ′
u′ // Y ′

v′ // Z ′
w′ // T (X ′) triangle

(2) Every morphism u : X → Y is embedded in a triangle

X
u−→ Y

v−→ Z
w−→ T (X)

(3) For any X ∈ C,
X

1−→ X → 0→ T (X)

is a triangle
(TR2) A sextuple

X
u−→ Y

v−→ Z
w−→ T (X)

is a triangle if and only if

Y
v−→ Z

w−→ T (X)
−T (u)−−−→ T (Y )

is a triangle.
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(TR3) For any triangles (X, Y, Z, u, v, w), (X ′, Y ′, Z ′, u′, v′, w′) and
a commutative diagram

X

f

²²

u // Y

g

²²

v // Z
w // T (X)

X ′
u′ // Y ′

v′ // Z ′
w′ // T (X ′)

there exists h : Z → Z ′ which makes a commutative diagram

X

f

²²

u // Y

g

²²

v // Z

h

²²

w // T (X)

T (f)
²²

X ′
u′ // Y ′

v′ // Z ′
w′ // T (X ′)

(TR4) (Octahedral axiom) For any two consecutive morphisms u :
X → Y and v : Y → Z, if we embed u, vu and v in triangles
(X,Y, Z ′, u, i, i′), (X,Z, Y ′, vu, k, k′) and (Y, Z, X ′, v, j, j′), re-
spectively, then there exist morphisms f : Z ′ → Y ′, g : Y ′ → X ′

such that the following diagram commute

X
u // Y

v

²²

i // Z ′

f

²²Â
Â
Â

i′ // T (X)

X
vu // Z

j

²²

k // Y ′

g

²²Â
Â
Â

k′ // T (X)

T (u)
²²

X ′

j′
²²

X ′

T (i)j′
²²

j′ // T (Y )

T (Y )
T (i)

// T (Z ′)

and the third column is a triangle.

Sometimes, we write X[i] for T i(X).

Definition 1.2 (∂-functor). Let C, C ′ be triangulated categories. An
additive functor F : C → C′ is called ∂-functor (sometimes exact func-

tor) provided that there is a functorial isomorphism α : FTC
∼→ TC′F

such that

F (X)
F (u)−−→ F (Y )

F (v)−−→ F (Z)
αXF (w)−−−−→ TC′(F (X))

is a triangle in C ′ whenever

X
u−→ Y

v−→ Z
w−→ TC(X)
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is a triangle in C. Moreover, if a ∂-functor F is an equivalence, then F

is called a triangulated equivalence . In this case, we denote by C
4∼= C ′.

For (F, α), (G, β) : C → C ′ ∂-functors, a functorial morphism φ :
F → G is called a ∂-functorial morphism if

(TC′φ) ◦ α = β ◦ φTC FTC

φTC
²²

α // TC′F

TC′φ
²²

GTC
β // TC′G

We denote by ∂(C, C ′) the collection of all ∂-functors from C to C ′,
and denote by ∂ Mor(F,G) the collection of ∂-functorial morphisms
from F to G.

Proposition 1.3. Let F : C → C ′ be a ∂-functor between triangulated
categories. If G : C ′ → C is a right (or left) adjoint of F , then G is
also a ∂-functor.

Definition 1.4. A contravariant (resp., covariant) additive functor
H : C → A from a triangulated category C to an abelian category A is
called a homological functor (resp., cohomological functor), if for any
triangle (X,Y, Z, u, v, w) in C the sequence

H(T (X))→ H(Z)→ H(Y )→ H(X)

(resp., H(X)→ H(Y )→ H(Z)→ H(T (X)) )

is exact. Taking H(T i(X)) = H i(X), we have the long exact sequence:

· · · → H i+1(X)→ H i(Z)→ H i(Y )→ H i(X)→ · · ·
Proposition 1.5. The following hold.

(1) If (X,Y, Z, u, v, w) is a triangle, then vu = 0, wv = 0 and
T (u)w = 0.

(2) For any X ∈ C, HomC(−, X) : C → Ab (resp., HomC(X,−) :
C → Ab) is a homological functor (resp., cohomological func-
tor).

(3) For any homomorphism of triangles

X
u−−−→ Y

v−−−→ Z
w−−−→ T (X)yf

yg

yh

yT (f)

X ′
u′−−−→ Y ′

v′−−−→ Z ′
w′−−−→ T (X ′)

if two of f , g and h are isomorphisms, then the rest is also an
isomorphism.
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Definition 1.6 (Compact Object). Let C be a triangulated category.
An object C ∈ C is called a compact object in C if the canonical mor-
phism ∐

i∈I

HomC(C, Xi)
∼→ HomC(C,

∐
i∈I

Xi)

is an isomorphism for any set {Xi}i∈I of objects (if
∐

i∈I Xi exists in
C).

A triangulated category C is compactly generated if C contains arbi-
trary coproducts, and if there is a set S of compact objects such that

HomC(S, X) = 0⇒ X = 0

For a compactly generated triangulated category C, a set S of compact
objects is called a generating set if

(1) HomC(S, X) = 0⇒ X = 0,
(2) T (S) = S.

Definition 1.7 (Homotopy Limit). Let C be a triangulated category
which contains arbitrary coproducts (resp., products). For a sequence
{Xi → Xi+1}i∈N (resp., {Xi+1 → Xi}i∈N) of morphisms in C, the
homotopy colimit (resp., homotopy limit) of the sequence is the third
(resp., second) term of the triangle

∐
i
Xi

1− shift−−−−→
∐

i
Xi → hocolim

−→
Xi → T (

∐
i
Xi)

(resp., T−1(
∏

i
Xi)→ holim

←−
Xi →

∏
i
Xi

1− shift−−−−→
∏

i
Xi)

where the above shift morphism is the coproduct (resp., product) of

Xi
fi−→ Xi+1 (resp., Xi+1

fi−→ Xi) (i ∈ N).

Theorem 1.8 (Brown Representability Theorem [Ne], [Ke]). Let C be
a compactly generated triangulated category which contains arbitrary
coproducts. If a homological functor H : C → Ab sends coproducts to
products, then it is representable, that is , there is an object X ∈ C
such that H ∼= HomC(−, X).

Sketch of Proof. Here we set hX = HomC(−, X). Let S be a generating
set of C. There exist a coproduct X1 of objects of S and a morphism
hX1 → H such that

HomC(C, X1) ³ H(C)

is surjective for any C ∈ S. For a functor

K1 = Ker(hX1 → H)
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there exists a coproduct Z2 of objects in S and a morphism hZ2 → K1

such that
HomC(C, Z2) ³ K1(C)

is surjective for any C ∈ S. Then we have a triangle:

Z2 → X1 → X2 → Z2[1]

Since H is a homological functor, we have a commutative diagram

H(X2) −−−→ H(X1) −−−→ H(Z2)yo
yo

yo
Mor(hX2 , H) −−−→ Mor(hX1 , H) −−−→ Mor(hZ2 , H)

Then there is a morphism hX2 → H satisfying a commutative diagram

0 −−−→ K1 −−−→ HomC(−, X1) −−−→ Hy
y

∥∥∥
0 −−−→ K2 −−−→ HomC(−, X2) −−−→ H

and we have a morphism of exact sequence

0 −−−→ K1(C) −−−→ HomC(C, X1) −−−→ H(C) −−−→ 0y0

y
∥∥∥

0 −−−→ K2(C) −−−→ HomC(C, X2) −−−→ H(C) −−−→ 0

for any C ∈ S. By inductive step, we have a triangle
∐

i
Xi

1− shift−−−−→
∐

i
Xi → hocolim

−→
Xi → T

∐
i
Xi

and we have an exact sequence

H(hocolim
−→

Xi) −−−→ ∏
iH(Xi) −−−→ ∏

iH(Xi)yo
yo

yo
Mor(hhocolim−→ Xi

, H) −−−→ ∏
i Mor(hXi

, H) −−−→ ∏
i Mor(hXi

, H)

Therefore there is a morphism HomC(−, hocolim
−→

Xi)→ H such that

HomC(C, hocolim
−→

Xi) ∼= H(C)

for any C ∈ S. Considering the case H = HomC(−,M), it is easy to
see that hocolim

−→
Xi
∼= M . Moreover, this result implies that

HomC(−, hocolim
−→

Xi) ∼= H

¤
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Remark 1.9 (Yoneda’s Lemma). For a category C, the following hold.

(1) For X ∈ C and a contravariant functor F : C → Set, we have
the bijection FX → Mor(hX , F ).

(2) For X,Y ∈ C, we have the bijection HomC(X,Y )→ Mor(hX , hY ).

Corollary 1.10 (Adjoint Functor Theorem [Ne]). Let C be a compactly
generated triangulated category which contains arbitrary coproducts. If
a ∂-functor F : C → D commutes with arbitrary coproducts, then there
exists a ∂-functor G : D → C which is a right adjoint of F .

Proof. For any Y ∈ D, the functor

HomD(F (−), Y ) : C → Ab

is a homological functor. By Brown representability theorem there is
an object GY ∈ C such that

HomD(F (−), Y ) ∼= HomC(−, GY )

¤
Definition 1.11 (Quotient Category). Let S be a multiplicative system
in a triangulated category C which satisfies the following conditions:

(FR0) For a morphism s in C, if there exist f, g such that sf, gs ∈ S,
then s ∈ S.

(FR1) (1) 1X ∈ S for every X ∈ C.
(2) For s, t ∈ S, if st is defined, then st ∈ S.

(FR2) (1) Every diagram in C
X

s−−−→ Y

f

y
X ′

with s ∈ S, can be completed to a commutative square

X
s−−−→ Y

f

y
yg

X ′
t−−−→ Y ′

with s, t ∈ S.
(2) Every diagram in C

Yyg

X ′
t−−−→ Y ′
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with t ∈ S, can be completed to a commutative square

X
s−−−→ Y

f

y
yg

X ′
t−−−→ Y ′

with s, t ∈ S.
(FR3) For f, g ∈ HomC(X,Y ) the following are equivalent.

(1) There exists s ∈ S such that sf = sg.
(2) There exists t ∈ S such that ft = gt.

(FR4) For a morphism u in C, u ∈ S if and only if Tu ∈ S.
(FR5) For triangles (X,Y, Z, u, v, w), (X ′, Y ′, Z ′, u′, v′, w′) and mor-

phisms f : X → X ′, g : Y → Y ′ in S with gu = u′f , there
exists h : Z → Z ′ in S such that (f, g, h) is a homomorphism of
triangles.

We define the quotient category S−1 C of C, as follows:

(1) Ob(S−1 C) = Ob(C).
(2) For X,Y ∈ Ob(C), let V (X,Y ) = {(s, Y ′, f)|s : Y → Y ′ ∈

S, f : X → Y }. In V (X,Y ), we define (s, Y ′, f) ∼ (s′, Y ′′, f ′) if
there is (s′′, Y ′′′, f ′) such that all triangles are commutative in
the following diagram:

Y

²²Â
Â
Â

X

f
==|||||||| f ′′ //___

f ′ ÃÃB
BB

BB
BB

B Y ′′ Y

s
``BBBBBBBB

s′′oo_ _ _

s′~~}}
}}

}}
}}

Y ′

OOÂ
Â
Â

Then we define a morphism from X to Y by an equivalence
class s−1f of (s, Y ′, f).

(3) For s−1f : X → Y, t−1g : Y → Z, by (FR2) there are s′ : Z ′ →
Z ′′ ∈ S and g′ : Y ′ → Z ′′ such that s′ ◦ g = g′ ◦ s. Then we
define (t−1g) ◦ (s−1f) = (s′ ◦ t)−1g ◦ f .

X
f

ÃÃA
AA

AA
AA

A Y

s

²²

g

!!B
BB

BB
BB

B Z

t
²²

Y ′
g′

!!B
B

B
B Z ′

s′
²²Â
Â
Â

Z ′′
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Moreover, we define the quotient functor Q : C → S−1 C by

(1) Q(X) = X for X ∈ C.
(2) Q(f) = 1−1

Y f for a morphism f : X → Y in C.
Remark 1.12. Can we define (2) in the above?

Definition 1.13 (Épaisse Subcategory). Let C be a triangulated cat-
egory. An additive full subcategory U of C is called a full triangulated
subcategory if X → Y is a morphism in U , then there is a triangle
X → Y → Z → TX with Z ∈ U .

A full triangulated subcategory U is called an épaisse subcategory if it
is closed under direct summands. In this case, let S(U) be the collection

of morphisms s such that X
s−→ Y → Z → X[1] is a triangle with

Z ∈ U . Then S(U) is a multiplicative system satisfying (FR0) - (FR5).
We write C/U = S(U)−1C.

In the case that C contains arbitrary coproducts, a full triangulated
subcategory U is called a localizing subcategory if it is closed under
coproducts.

Proposition 1.14 ([BN]). Let C be a triangulated category which con-
tains arbitrary coproducts. Then any localizing subcategory is an épaisse
subcategory.

Proposition 1.15. Let C be a triangulated category. For a multiplica-
tive system S satisfying the conditions (FR0) - (FR5), let U(S) be the
full triangulated subcategory consisting of objects Z which is in a tri-
angle X

s−→ Y → Z → X[1] with s ∈ S. Then the following hold.

(1) S(U) and U(S) induce a 1 - 1 correspondence between the collec-
tion of multiplicative systems S satisfying the conditions (FR0)
- (FR5) and the collection of épaisse subcategories U .

(2) For an épaisse subcategory U , C/U is a triangulated category
whose triangles are defined to be isomorphic to triangles of C.

(3) Assume C contains arbitrary coproducts. For a localizing sub-
category U , C/U also contains arbitrary coproducts.

Definition 1.16 (stable t-structure). For full subcategories U and V
of a triangulated category C, (U ,V) is called a stable t-structure in C
provided that

(1) U and V are stable for translations.
(2) HomC(U ,V) = 0.
(3) For every X ∈ C, there exists a triangle

U → X → V → T (U)

with U ∈ U and V ∈ V.
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Proposition 1.17 ([BBD], c.f. [Mi]). Let C be a triangulated category,
(U ,V) a stable t-structure in C, and i∗ : U → C, j∗ : V → C the
canonical embeddings. Then the following hold.

(1) U and V is épaisse subcategories of C.
(2) i∗ (resp., j∗) has a right adjoint i! (resp., a left adjoint j∗).
(3) The adjunction arrows induce a triangle

i∗i!X
αX−−→ X

βX−→ j∗j∗X → i∗i!X[1]

for any X ∈ C.
(4) C/U (resp., C/V) exists , and it is triangulated equivalent to V

(resp., U).

C/V

U
o

OO

i∗ // C
i!

oo

``BBBBBBBB

ÃÃB
BB

BB
BB

B

j∗ // V
o

²²

j∗
oo

C/U

2. Derived Categories

Throughout this section, A is an abelian category and B is an addi-
tive subcategory of A which is closed under isomorphisms.

Definition 2.1 (Complex). A (cochain) complex is a collection X ¦ =
(Xn, dn

X : Xn → Xn+1)n∈Z of objects and morphisms of B such that
dn+1

X dn
X = 0. A complex X ¦ = (Xn, dn

X : Xn → Xn+1)n∈Z is called
bounded below (resp., bounded above, bounded) if Xn = 0 for n ¿ 0
(resp., nÀ 0, n¿ 0 and nÀ 0).

A complex X ¦ = (Xn, dn
X) is called a stalk complex if there exists an

integer n0 such that X i = O if i 6= n0. We identify objects of B with a
stalk complexes of degree 0.

A morphism f : X · → Y · of complexes is a collection of morphisms
fn : Xn → Y n which makes a commutative diagram

· · · −−−→ Xn
dn

X−−−→ Xn+1 −−−→ · · ·yfn

yfn+1

· · · −−−→ Y n
dn

Y−−−→ Y n+1 −−−→ · · ·
We denote by C(B) (resp., C+(B), C−(B), Cb(B)) the category of

complexes (resp., bounded below complexes, bounded above complexes,
bounded complexes) of B. An autofunctor T : C(B) → C(B) is called
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translation if (T (X ¦))n = Xn+1 and (TdX)n = −dn+1
X for any complex

X ¦ = (Xn, dn
X).

In C(A), a morphism u : X · → Y · is called a quasi-isomorphism if
Hn(u) is an isomorphism for any n.

In this section, “∗” means “nothing”, “+”, “−” or “b”.

Definition 2.2. For u ∈ HomC(B)(X
¦, Y ¦), the mapping cone of u is a

complex M¦(u) with

Mn(u) = Xn+1⊕Y n,

dn
M¦(u) =

[
−dn+1

X 0

un+1 dn
X

]
: Xn+1⊕Y n → Xn+2⊕Y n+1.

Definition 2.3 (Homotopy Relation). Two morphisms f, g ∈ HomC(B)(X
¦, Y ¦)

are said to be homotopic (denote by f '
h

g) if there is a collection of

morphisms h = (hn), hn : Xn → Y n+1 such that

fn − gn = dn−1
Y hn + hn+1dn

X

for all n ∈ Z.

Definition 2.4 (Homotopy Category). The homotopy category K∗(B)
of B is defined by

(1) Ob(K∗(B)) = Ob(C∗(B)),
(2) HomK∗(B)(X

·, Y ·) = HomC∗(B)(X
·, Y ·)/ '

h
for X ·, Y · ∈ Ob(K∗(B)).

Proposition 2.5. A category K∗(B) is a triangulated category whose
triangles are defined to be isomorphic to

X ·
u−→ Y · → M·(u)→ T (X ·)

for any u : X · → Y · in K∗(B).

Definition 2.6 (Derived Category). The derived category D∗(A) of an
abelian category A is K∗(A)/ K∗,φ(A), where K∗,φ(A) is the full subcat-
egory of K∗(A) consisting of null complexes, that is, complexes whose
all homologies are 0.

Proposition 2.7. The following hold.

(1) D∗(A) is a triangulated category, and the canonical functor Q :
K∗(A)→ D∗(A) is a ∂-functor.

(2) The i-th cohomology of complexes is a cohomological functor in
the sense of Definition 1.4.
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Definition 2.8. A complex X · of K(B) is called K-injective (resp.,
K-projective) if

HomK(B)(N
·, X ·) = 0

( resp., HomK(B)(X
·, N ·) = 0 )

for any null complex N ·.

Example 2.9. Let A be a ring, Mod A the category of right A-modules,
and Inj A (resp., Proj A) the category of injective (resp., projective) right
A-modules. Then any complex I · ∈ K+(Inj A) (resp., P · ∈ K−(Proj A))
is a K-injective (resp., K-projective) complex in K(Mod A).

Example 2.10. Let k be a field, A = k[x]/(x2), and

X · : · · · x−→ A
x−→ A

x−→ · · · .
Then X · is a null complex of finitely generated projective-injective A-
modules. But it is neither K-projective nor K-injective, because 0 6= 1 ∈
HomK(Mod A)(X

·, X ·).

Theorem 2.11 ([Sp], [Ne], [LAM], [Fr]). Let Kinj(Mod A) (resp., Kproj(Mod A))
be the category of K-injective (resp., K-projective) complexes, then the
following hold.

(1) (Kproj(Mod A), Kφ(Mod A)) is a stable t-structure in K(Mod A),
and hence D(Mod A) exists and is triangulated equivalent to
Kproj(Mod A).

(2) (Kφ(Mod A), Kinj(Mod A)) is a stable t-structure in K(Mod A),
and hence D(Mod A) is triangulated equivalent to Kinj(Mod A).

(3) For a Grothendieck category A, (Kφ(A), Kinj(A)) is a stable t-
structure in K(A), and hence D(A) exists and is triangulated
equivalent to Kinj(A).

Proof. (1) For a complex X ¦ = (X i, di), we define the following trun-
cation:

σ≤nX
¦ : · · · → Xn−2 → Xn−1 → Ker dn → 0→ · · ·

For any n, there is a complex P ·n ∈ K−(Proj A) which has a quasi-
isomorphism P ·n → σ≤nX

¦. Then we have the following quasi-isomorphisms
(qis)

X · ∼= lim−→ σ≤nX
· qis←− hocolim

−→
σ≤nX

· qis←− hocolim
−→

P ·n

It is easy to see that hocolim
−→

Pn is K-projective.

(2) Similarly.
(3) Because there is a ring A such that A is a localization of Mod A

(Gabriel-Popescu Theorem). See [LAM] or [Fr]. ¤
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Remark 2.12 (Grothendieck Category). An abelian category C is called
a Grothendieck category if

(1) C has coproducts of objects indexed by arbitrary sets,
(2) the filtered colimit of exact sequences is exact,
(3) C has a generator U .

In this case, we have Gabriel-Popescu Theorem:
Let R = EndC(U), then there are functors F : Mod R → C, G :=
HomC(U,−) : C → Mod R such that

(1) F is an exact functor,
(2) G is a right adjoint of F ,

(3) FG
∼→ 1C.

Remark 2.13. If P · is K-projective complex (e.g. bounded above com-
plex of projective A-modules), then we have

HomK(Mod A)(P
·, X ·) ∼= HomD(Mod A)(P

·, X ·)

for any complex X ·. Similarly, for a K-injective complex I · (e.g. bounded
below complex of injective A-modules), then we have

HomK(Mod A)(X
·, I ·) ∼= HomD(Mod A)(X

·, I ·)

for any complex X ·.

Proposition 2.14. If 0→ X ¦ u−→ Y ¦ v−→ Z ¦ → 0 is a exact sequence in
C(A), then it can be embedded in a triangle in D(A)

QX ¦ Qu−→ QY ¦ Qv−→ QZ ¦ w−→ TQ(X ¦).

Definition 2.15 (Right Derived Functor). For a ∂-functor F : K∗(A)→
K(A′), the right derived functor of F is a ∂-functor

R∗F : D∗(A)→ D(A′)
together with a functorial morphism of ∂-functors

ξ ∈ ∂ Mor(QA′ ◦ F, R∗F ◦Q∗A)

with the following property:
For G ∈ ∂(D∗(A), D(A′)) and ζ ∈ ∂ Mor(QA′ ◦ F,G ◦Q∗A), there exists
a unique morphism η ∈ ∂ Mor(R∗F,G) such that

ζ = (ηQ∗A)ξ.

In other words, we can simply write the above using functor cate-
gories. For triangulated categories C, C ′, the ∂-functor category ∂(C, C ′)
is the category (?) consisting of ∂-functors from C to C ′ as objects and
∂-functorial morphisms as morphisms. Then we have

∂ Mor(QA′ ◦ F,−Q∗A) ∼= ∂ Mor(R∗F,−)
12



as functors from ∂(D∗(A), D(A′)) to Set.

Proposition 2.16. Let A,A′ be abelian categories, F : K(A)→ K(A′)
a ∂-functor. If A is a Grothendieck category, then we have the right
derived functor RF : D(A) → D(A′) such that F (X ·) ∼= RF (X ·) for
any K-injective complex X ·.

Definition 2.17 (Hom¦
A,

¦⊗A). Let X ·, Y · be complexes in C(Mod A),
Z · a complex in C(Mod Aop). We define the complex Hom¦

A(X ·, Y ·) in
C(Ab) by

Homn
A(X ·, Y ·) =

∏
j−i=n

HomA(X i, Y j)

dn
Hom¦(X,Y )(f) = dX ◦ f − (−1)nf ◦ dY for f ∈ Homn

A(X ·, Y ·)

And we define the complex X ·
¦⊗A Z · in C(Ab) by

X ·
n⊗A Z · =

∐
i+j=n

X i ⊗A Zj

dn
X⊗Y = dX ⊗ 1 + (−1)n1⊗ dZ

Proposition 2.18. Let A are a ring. Then we have a right derived
functor

R Hom¦
A : D(Mod A)op × D(Mod A)→ D(Ab)

and a left derived functor

¦⊗L
A : D(Mod A)× D(Mod Aop)→ D(Ab)

Definition 2.19 (Perfect Complex). Let A be a ring. A complex X · ∈
D(Mod A) is called a perfect complex if X · is quasi-isomorphic to a
bounded complex of finitely generated projective A-modules.

Let X be a scheme, D(X) the derived category of sheaves of OX-
modules. We denote by Dqc(X) the full subcategory of D(X) consisting
of complexes whose cohomologies are quasi-coherent sheaves. A com-
plex X · ∈ Dqc(X) is called a perfect complex if X · is locally quasi-
isomorphic to a bounded complex of vector bundles.

We denote by Dpf (A) the full triangulated subcategory of D(A) con-
sisting of perfect complexes.

Proposition 2.20 ([Rd1], [Ne]). For a ring A, the following hold.

(1) A complex X · ∈ D(Mod A) is perfect if and only if it is a com-
pact object in D(Mod A).

(2) D(Mod A) is compactly generated.
13



Theorem 2.21 ([BV]). Let X be a quasi-compact quasi-separated scheme,
then the following hold.

(1) A complex X · ∈ Dqc(X) is perfect if and only if it is a compact
object in Dqc(X).

(2) Dqc(X) is compactly generated.

Theorem 2.22 ([BN]). Let X be a quasi-compact separated scheme,
then the canonical functor D(Qcoh X) → Dqc(X) is a triangulated
equivalence, where Qcoh X is the category of quasi-coherent sheaves
of OX-modules.

Corollary 2.23 ([BV]). Let X be smooth over a field, then we have

Db(coh X)
4∼= Dpf (X).

where coh X is the category of coherent sheaves of OX-modules.

For a ring A, we denote by proj A the category of finitely generated
projective A-modules.

Theorem 2.24 ([Rd1], [Rd2]). Let A, B be algebras over a field k.
The following are equivalent.

(1) D(Mod A)
4∼= D(Mod B).

(2) Kb(proj A)
4∼= Kb(proj B).

(3) There is a perfect complex T ¦ ∈ D(Mod A) such that
(a) B ∼= EndD(Mod A)(T

¦),
(b) HomD(Mod A)(T

¦, T ¦[i]) = 0 for i 6= 0,
(c) {T ·[i]|i ∈ Z} is a generating set in D(Mod A).

(4) There is a complex X · of B-A-bimodules such that

R Hom¦
A(X ·,−) : D(Mod A)→ D(Mod B)

is an equivalence.

In this case, T · is called a tilting complex for A, X · is called two-sided
tilting complex, and R Hom¦

A(X ·,−) is called a standard equivalence.

Theorem 2.25 ([BO]). Let X be a smooth irreducible projective variety
with ample canonical or anticanonical sheaf. If X ′ is a smooth algebraic

variety such that Db(coh X)
4∼= Db(coh X ′), then X ′ is isomorphic to X.

Theorem 2.26 ([Be]). Let P = Pn
k be the n-dimensional projective

space over a field k, and let T1 =
⊕n

i=0O(i), T2 =
⊕n

i=0 Ω(−i), and
B1 = EndP(T1), B2 = EndP(T2). Then Bi are finite dimensional k-
algebra of finite global dimension, and

Db(cohP)
4∼= Db(mod B1)

4∼= Db(mod B2)
14



where mod Bi is the category of finitely generated Bi-modules.

Definition 2.27. Let A be an algebra over a field k. The derived
Picard group of A (relative to k) is

DPick(A) :=
{tilting complexes T ∈ Db(Mod Ae)}

isomorphism

with identity element A, product (T1, T2) 7→ T1⊗L
A T2 and inverse T 7→

T∨ := R HomA(T, A). Given any k-linear triangulated category C we
let

(2.1) Out4k (C) :=
{k-linear triangulated self-equivalences of C}

isomorphism
.

Theorem 2.28 ([MY]). Let k be an algebraically closed field, and A a
finite dimensional hereditary k-algebra. Then we have

DPick(A) = Out4k (Db(Mod A)) = Out4k (Db(mod A))

M. Kontsevich and A. Rosenberg introduced the notion of non-
commutative projective spaces NPn, and showed that

Db(QcohNPn)
4∼= Db(Mod kQn)

Db(cohNPn)
4∼= Db(mod kQn)

where Qn is the quiver

•
α0

!!...
αn

== •

Corollary 2.29 ([MY]). For a non-commutative projective spaces NPn,
we have

Out4k (Db(QcohNPn)) ∼= Out
4
k (Db(cohNPn))

∼= Z×
(
Z n PGLn+1(k)

)

For P1, we have Out4k (Db(cohP1)) ∼= Z× Z× PGL2(k).

Theorem 2.30 ([BO]). Let X be a smooth irreducible projective variety

with ample canonical or anticanonical sheaf. Then Out4k (Db(coh X))
is generated by the automorphisms of variety, the twists by invertible
sheaves and the translations, and hence Out4k (Db(coh X)) ∼= (Autk Xn
Pic X)× Z.

15
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