DERIVED CATEGORIES IN REPRESENTATION THEORY

JUN-ICHI MIYACHI

We survey recent methods of derived categories in the representation theory of algebras.

1. Triangulated Categories and Brown Representability

Definition 1.1. A triangulated category \mathcal{C} is an additive category together with (1) an autofunctor $T: \mathcal{C} \xrightarrow{\sim} \mathcal{C}$ (i.e. there is T^{-1} such that $T \circ T^{-1}=T^{-1} \circ T=\mathbf{1}_{\mathcal{C}}$) called the translation, and
(2) a collection \mathcal{T} of sextuples (X, Y, Z, u, v, w) :

$$
X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)
$$

called (distinguished) triangles. These data are subject to the following four axioms:
(TR1) (1) Every sextuple (X, Y, Z, u, v, w) which is isomorphic to a triangle is a triangle.

(2) Every morphism $u: X \rightarrow Y$ is embedded in a triangle

$$
X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)
$$

(3) For any $X \in \mathcal{C}$,

$$
X \xrightarrow{1} X \rightarrow 0 \rightarrow T(X)
$$

is a triangle
(TR2) A sextuple

$$
X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)
$$

is a triangle if and only if

$$
Y \xrightarrow{v} Z \xrightarrow{w} T(X) \xrightarrow{-T(u)} T(Y)
$$

is a triangle.
(TR3) For any triangles ($X, Y, Z, u, v, w),\left(X^{\prime}, Y^{\prime}, Z^{\prime}, u^{\prime}, v^{\prime}, w^{\prime}\right)$ and a commutative diagram

there exists $h: Z \rightarrow Z^{\prime}$ which makes a commutative diagram

(TR4) (Octahedral axiom) For any two consecutive morphisms u : $X \rightarrow Y$ and $v: Y \rightarrow Z$, if we embed u, $v u$ and v in triangles $\left(X, Y, Z^{\prime}, u, i, i^{\prime}\right),\left(X, Z, Y^{\prime}, v u, k, k^{\prime}\right)$ and $\left(Y, Z, X^{\prime}, v, j, j^{\prime}\right)$, respectively, then there exist morphisms $f: Z^{\prime} \rightarrow Y^{\prime}, g: Y^{\prime} \rightarrow X^{\prime}$ such that the following diagram commute

and the third column is a triangle.
Sometimes, we write $X[i]$ for $T^{i}(X)$.
Definition 1.2 (∂-functor). Let $\mathcal{C}, \mathcal{C}^{\prime}$ be triangulated categories. An additive functor $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ is called ∂-functor (sometimes exact functor) provided that there is a functorial isomorphism $\alpha: F T_{\mathcal{C}} \xrightarrow{\sim} T_{\mathcal{C}^{\prime}} F$ such that

$$
F(X) \xrightarrow{F(u)} F(Y) \xrightarrow{F(v)} F(Z) \xrightarrow{\alpha_{X} F(w)} T_{\mathcal{C}^{\prime}}(F(X))
$$

is a triangle in \mathcal{C}^{\prime} whenever

$$
X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T_{\mathcal{C}}(X)
$$

is a triangle in \mathcal{C}. Moreover, if a ∂-functor F is an equivalence, then F is called a triangulated equivalence . In this case, we denote by $\mathcal{C} \cong \mathcal{C}^{\prime}$.

For $(F, \alpha),(G, \beta): \mathcal{C} \rightarrow \mathcal{C}^{\prime}$--functors, a functorial morphism $\phi:$ $F \rightarrow G$ is called a ∂-functorial morphism if

We denote by $\partial\left(\mathcal{C}, \mathcal{C}^{\prime}\right)$ the collection of all ∂-functors from \mathcal{C} to \mathcal{C}^{\prime}, and denote by $\partial \operatorname{Mor}(F, G)$ the collection of ∂-functorial morphisms from F to G.

Proposition 1.3. Let $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ be a ∂-functor between triangulated categories. If $G: \mathcal{C}^{\prime} \rightarrow \mathcal{C}$ is a right (or left) adjoint of F, then G is also a ∂-functor.

Definition 1.4. A contravariant (resp., covariant) additive functor $H: \mathcal{C} \rightarrow \mathcal{A}$ from a triangulated category \mathcal{C} to an abelian category \mathcal{A} is called a homological functor (resp., cohomological functor), if for any triangle (X, Y, Z, u, v, w) in \mathcal{C} the sequence

$$
\begin{array}{r}
H(T(X)) \rightarrow H(Z) \rightarrow H(Y) \rightarrow H(X) \\
(\text { resp., } H(X) \rightarrow H(Y) \rightarrow H(Z) \rightarrow H(T(X))
\end{array}
$$

is exact. Taking $H\left(T^{i}(X)\right)=H^{i}(X)$, we have the long exact sequence:

$$
\cdots \rightarrow H^{i+1}(X) \rightarrow H^{i}(Z) \rightarrow H^{i}(Y) \rightarrow H^{i}(X) \rightarrow \cdots
$$

Proposition 1.5. The following hold.
(1) If (X, Y, Z, u, v, w) is a triangle, then $v u=0, w v=0$ and $T(u) w=0$.
(2) For any $X \in \mathcal{C}, \operatorname{Hom}_{\mathcal{C}}(-, X): \mathcal{C} \rightarrow \mathfrak{A} \mathfrak{b}$ (resp., $\operatorname{Hom}_{\mathcal{C}}(X,-)$: $\mathcal{C} \rightarrow \mathfrak{A} \mathfrak{b}$) is a homological functor (resp., cohomological functor).
(3) For any homomorphism of triangles

if two of f, g and h are isomorphisms, then the rest is also an isomorphism.

Definition 1.6 (Compact Object). Let \mathcal{C} be a triangulated category. An object $C \in \mathcal{C}$ is called a compact object in \mathcal{C} if the canonical morphism

$$
\coprod_{i \in I} \operatorname{Hom}_{\mathcal{C}}\left(C, X_{i}\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{C}}\left(C, \coprod_{i \in I} X_{i}\right)
$$

is an isomorphism for any set $\left\{X_{i}\right\}_{i \in I}$ of objects (if $\coprod_{i \in I} X_{i}$ exists in $\mathcal{C})$.

A triangulated category \mathcal{C} is compactly generated if \mathcal{C} contains arbitrary coproducts, and if there is a set \mathcal{S} of compact objects such that

$$
\operatorname{Hom}_{\mathcal{C}}(\mathcal{S}, X)=0 \Rightarrow X=0
$$

For a compactly generated triangulated category \mathcal{C}, a set \mathcal{S} of compact objects is called a generating set if
(1) $\operatorname{Hom}_{\mathcal{C}}(\mathcal{S}, X)=0 \Rightarrow X=0$,
(2) $T(\mathcal{S})=\mathcal{S}$.

Definition 1.7 (Homotopy Limit). Let \mathcal{C} be a triangulated category which contains arbitrary coproducts (resp., products). For a sequence $\left\{X_{i} \rightarrow X_{i+1}\right\}_{i \in \mathbb{N}}$ (resp., $\left\{X_{i+1} \rightarrow X_{i}\right\}_{i \in \mathbb{N}}$) of morphisms in \mathcal{C}, the homotopy colimit (resp., homotopy limit) of the sequence is the third (resp., second) term of the triangle

$$
\left.\begin{array}{r}
\coprod_{i} X_{i} \xrightarrow{1-\text { shift }} \coprod_{i} X_{i} \rightarrow \underset{\longrightarrow}{\text { hocolim }} X_{i} \rightarrow T\left(\coprod_{i} X_{i}\right) \\
\left(\text { resp. }, T^{-1}\left(\prod_{i} X_{i}\right) \rightarrow\right. \\
\text { holim } X_{i}
\end{array} \prod_{i} X_{i} \xrightarrow{1-\text { shift }} \prod_{i} X_{i}\right)
$$

where the above shift morphism is the coproduct (resp., product) of $X_{i} \xrightarrow{f_{i}} X_{i+1}\left(\right.$ resp., $\left.X_{i+1} \xrightarrow{f_{i}} X_{i}\right)(i \in \mathbb{N})$.

Theorem 1.8 (Brown Representability Theorem [Ne], [Ke]). Let \mathcal{C} be a compactly generated triangulated category which contains arbitrary coproducts. If a homological functor $H: \mathcal{C} \rightarrow \mathfrak{A} \mathfrak{b}$ sends coproducts to products, then it is representable, that is, there is an object $X \in \mathcal{C}$ such that $H \cong \operatorname{Hom}_{\mathcal{C}}(-, X)$.
Sketch of Proof. Here we set $h_{X}=\operatorname{Hom}_{\mathcal{C}}(-, X)$. Let \mathcal{S} be a generating set of \mathcal{C}. There exist a coproduct X_{1} of objects of \mathcal{S} and a morphism $h_{X_{1}} \rightarrow H$ such that

$$
\operatorname{Hom}_{\mathcal{C}}\left(C, X_{1}\right) \rightarrow H(C)
$$

is surjective for any $C \in \mathcal{S}$. For a functor

$$
K_{1}=\underset{4}{\operatorname{Ker}\left(h_{X_{1}} \rightarrow H\right)}
$$

there exists a coproduct Z_{2} of objects in \mathcal{S} and a morphism $h_{Z_{2}} \rightarrow K_{1}$ such that

$$
\operatorname{Hom}_{\mathcal{C}}\left(C, Z_{2}\right) \rightarrow K_{1}(C)
$$

is surjective for any $C \in \mathcal{S}$. Then we have a triangle:

$$
Z_{2} \rightarrow X_{1} \rightarrow X_{2} \rightarrow Z_{2}[1]
$$

Since H is a homological functor, we have a commutative diagram

Then there is a morphism $h_{X_{2}} \rightarrow H$ satisfying a commutative diagram

and we have a morphism of exact sequence

for any $C \in \mathcal{S}$. By inductive step, we have a triangle

$$
\coprod_{i} X_{i} \xrightarrow{1-\text { shift }} \coprod_{i} X_{i} \rightarrow \underset{\longrightarrow}{\text { hocolim }} X_{i} \rightarrow T \coprod_{i} X_{i}
$$

and we have an exact sequence

Therefore there is a morphism $\operatorname{Hom}_{\mathcal{C}}\left(-\right.$, hocolim $\left.X_{i}\right) \rightarrow H$ such that

$$
\operatorname{Hom}_{\mathcal{C}}\left(C, \text { hocolim } X_{i}\right) \cong H(C)
$$

for any $C \in \mathcal{S}$. Considering the case $H=\operatorname{Hom}_{\mathcal{C}}(-, M)$, it is easy to see that hocolim $X_{i} \cong M$. Moreover, this result implies that

$$
\operatorname{Hom}_{\mathcal{C}}\left(-, \operatorname{\text {hocolim}} X_{i}\right) \cong H
$$

Remark 1.9 (Yoneda's Lemma). For a category \mathcal{C}, the following hold.
(1) For $X \in \mathcal{C}$ and a contravariant functor $F: \mathcal{C} \rightarrow \mathfrak{S c t}$, we have the bijection $F X \rightarrow \operatorname{Mor}\left(h_{X}, F\right)$.
(2) For $X, Y \in \mathcal{C}$, we have the bijection $\operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Mor}\left(h_{X}, h_{Y}\right)$.

Corollary 1.10 (Adjoint Functor Theorem [Ne]). Let \mathcal{C} be a compactly generated triangulated category which contains arbitrary coproducts. If a ∂-functor $F: \mathcal{C} \rightarrow \mathcal{D}$ commutes with arbitrary coproducts, then there exists a ∂-functor $G: \mathcal{D} \rightarrow \mathcal{C}$ which is a right adjoint of F.

Proof. For any $Y \in \mathcal{D}$, the functor

$$
\operatorname{Hom}_{\mathcal{D}}(F(-), Y): \mathcal{C} \rightarrow \mathfrak{A} \mathfrak{A}
$$

is a homological functor. By Brown representability theorem there is an object $G Y \in \mathcal{C}$ such that

$$
\operatorname{Hom}_{\mathcal{D}}(F(-), Y) \cong \operatorname{Hom}_{\mathcal{C}}(-, G Y)
$$

Definition 1.11 (Quotient Category). Let S be a multiplicative system in a triangulated category \mathcal{C} which satisfies the following conditions:
(FR0) For a morphism s in \mathcal{C}, if there exist f, g such that $s f, g s \in \mathrm{~S}$, then $s \in S$.
(FR1) (1) $1_{X} \in S$ for every $X \in \mathcal{C}$.
(2) For $s, t \in \mathrm{~S}$, if st is defined, then st $\in \mathrm{S}$.
(FR2) (1) Every diagram in \mathcal{C}

with $s \in \mathrm{~S}$, can be completed to a commutative square

with $s, t \in \mathbf{S}$.
(2) Every diagram in \mathcal{C}

with $t \in \mathrm{~S}$, can be completed to a commutative square

with $s, t \in \mathbf{S}$.
(FR3) For $f, g \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ the following are equivalent.
(1) There exists $s \in S$ such that $s f=s g$.
(2) There exists $t \in \mathrm{~S}$ such that $f t=g t$.
(FR4) For a morphism u in $\mathcal{C}, u \in \mathrm{~S}$ if and only if $T u \in \mathrm{~S}$.
(FR5) For triangles $(X, Y, Z, u, v, w),\left(X^{\prime}, Y^{\prime}, Z^{\prime}, u^{\prime}, v^{\prime}, w^{\prime}\right)$ and morphisms $f: X \rightarrow X^{\prime}, g: Y \rightarrow Y^{\prime}$ in S with $g u=u^{\prime} f$, there exists $h: Z \rightarrow Z^{\prime}$ in S such that (f, g, h) is a homomorphism of triangles.
We define the quotient category $\mathrm{S}^{-1} \mathcal{C}$ of \mathcal{C}, as follows:
(1) $\mathrm{Ob}\left(\mathrm{S}^{-1} \mathcal{C}\right)=\mathrm{Ob}(\mathcal{C})$.
(2) For $X, Y \in \operatorname{Ob}(\mathcal{C})$, let $V(X, Y)=\left\{\left(s, Y^{\prime}, f\right) \mid s: Y \rightarrow Y^{\prime} \in\right.$ $\mathrm{S}, f: X \rightarrow Y\}$. In $V(X, Y)$, we define $\left(s, Y^{\prime}, f\right) \sim\left(s^{\prime}, Y^{\prime \prime}, f^{\prime}\right)$ if there is $\left(s^{\prime \prime}, Y^{\prime \prime \prime}, f^{\prime}\right)$ such that all triangles are commutative in the following diagram:

Then we define a morphism from X to Y by an equivalence class $s^{-1} f$ of $\left(s, Y^{\prime}, f\right)$.
(3) For $s^{-1} f: X \rightarrow Y, t^{-1} g: Y \rightarrow Z$, by (FR2) there are $s^{\prime}: Z^{\prime} \rightarrow$ $Z^{\prime \prime} \in \mathrm{S}$ and $g^{\prime}: Y^{\prime} \rightarrow Z^{\prime \prime}$ such that $s^{\prime} \circ g=g^{\prime} \circ s$. Then we define $\left(t^{-1} g\right) \circ\left(s^{-1} f\right)=\left(s^{\prime} \circ t\right)^{-1} g \circ f$.

Moreover, we define the quotient functor $Q: \mathcal{C} \rightarrow \mathrm{S}^{-1} \mathcal{C}$ by
(1) $Q(X)=X$ for $X \in \mathcal{C}$.
(2) $Q(f)=1_{Y}^{-1} f$ for a morphism $f: X \rightarrow Y$ in \mathcal{C}.

Remark 1.12. Can we define (2) in the above?
Definition 1.13 (Épaisse Subcategory). Let \mathcal{C} be a triangulated category. An additive full subcategory \mathcal{U} of \mathcal{C} is called a full triangulated subcategory if $X \rightarrow Y$ is a morphism in \mathcal{U}, then there is a triangle $X \rightarrow Y \rightarrow Z \rightarrow T X$ with $Z \in \mathcal{U}$.

A full triangulated subcategory \mathcal{U} is called an épaisse subcategory if it is closed under direct summands. In this case, let $\mathrm{S}(\mathcal{U})$ be the collection of morphisms s such that $X \xrightarrow{s} Y \rightarrow Z \rightarrow X[1]$ is a triangle with $Z \in \mathcal{U}$. Then $\mathrm{S}(\mathcal{U})$ is a multiplicative system satisfying (FR0) - (FR5). We write $\mathcal{C} / \mathcal{U}=\mathrm{S}(\mathcal{U})^{-1} \mathcal{C}$.

In the case that \mathcal{C} contains arbitrary coproducts, a full triangulated subcategory \mathcal{U} is called a localizing subcategory if it is closed under coproducts.
Proposition 1.14 ([BN]). Let \mathcal{C} be a triangulated category which contains arbitrary coproducts. Then any localizing subcategory is an épaisse subcategory.

Proposition 1.15. Let \mathcal{C} be a triangulated category. For a multiplicative system S satisfying the conditions (FR0) - (FR5), let $\mathcal{U}(\mathrm{S})$ be the full triangulated subcategory consisting of objects Z which is in a triangle $X \xrightarrow{s} Y \rightarrow Z \rightarrow X[1]$ with $s \in \mathrm{~S}$. Then the following hold.
(1) $\mathrm{S}(\mathcal{U})$ and $\mathcal{U}(\mathrm{S})$ induce a 1-1 correspondence between the collection of multiplicative systems S satisfying the conditions (FR0) - (FR5) and the collection of épaisse subcategories \mathcal{U}.
(2) For an épaisse subcategory $\mathcal{U}, \mathcal{C} / \mathcal{U}$ is a triangulated category whose triangles are defined to be isomorphic to triangles of \mathcal{C}.
(3) Assume \mathcal{C} contains arbitrary coproducts. For a localizing subcategory $\mathcal{U}, \mathcal{C} / \mathcal{U}$ also contains arbitrary coproducts.

Definition 1.16 (stable t-structure). For full subcategories \mathcal{U} and \mathcal{V} of a triangulated category $\mathcal{C},(\mathcal{U}, \mathcal{V})$ is called a stable t-structure in \mathcal{C} provided that
(1) \mathcal{U} and \mathcal{V} are stable for translations.
(2) $\operatorname{Hom}_{\mathcal{C}}(\mathcal{U}, \mathcal{V})=0$.
(3) For every $X \in \mathcal{C}$, there exists a triangle

$$
U \rightarrow X \rightarrow V \rightarrow T(U)
$$

with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.

Proposition 1.17 ([BBD], c.f. [Mi]). Let \mathcal{C} be a triangulated category, $(\mathcal{U}, \mathcal{V})$ a stable t-structure in \mathcal{C}, and $i_{*}: \mathcal{U} \rightarrow \mathcal{C}, j_{*}: \mathcal{V} \rightarrow \mathcal{C}$ the canonical embeddings. Then the following hold.
(1) \mathcal{U} and \mathcal{V} is épaisse subcategories of \mathcal{C}.
(2) i_{*} (resp., j_{*}) has a right adjoint $i^{!}$(resp., a left adjoint j^{*}).
(3) The adjunction arrows induce a triangle

$$
i_{*} i^{!} X \xrightarrow{\alpha_{X}} X \xrightarrow{\beta_{X}} j_{*} j^{*} X \rightarrow i_{*} i^{!} X[1]
$$

for any $X \in \mathcal{C}$.
(4) $\mathcal{C} / \mathcal{U}$ (resp., $\mathcal{C} / \mathcal{V}$) exists, and it is triangulated equivalent to \mathcal{V} (resp., \mathcal{U}).

2. Derived Categories

Throughout this section, \mathcal{A} is an abelian category and \mathcal{B} is an additive subcategory of \mathcal{A} which is closed under isomorphisms.

Definition 2.1 (Complex). A (cochain) complex is a collection $X^{\cdot}=$ $\left(X^{n}, d_{X}^{n}: X^{n} \rightarrow X^{n+1}\right)_{n \in \mathbb{Z}}$ of objects and morphisms of \mathcal{B} such that $d_{X}^{n+1} d_{X}^{n}=0$. A complex $X^{\cdot}=\left(X^{n}, d_{X}^{n}: X^{n} \rightarrow X^{n+1}\right)_{n \in \mathbb{Z}}$ is called bounded below (resp., bounded above, bounded) if $X^{n}=0$ for $n \ll 0$ (resp., $n \gg 0, n \ll 0$ and $n \gg 0$).

A complex $X^{\cdot}=\left(X^{n}, d_{X}^{n}\right)$ is called a stalk complex if there exists an integer n_{0} such that $X^{i}=O$ if $i \neq n_{0}$. We identify objects of \mathcal{B} with a stalk complexes of degree 0 .

A morphism $f: X \rightarrow Y$ of complexes is a collection of morphisms $f^{n}: X^{n} \rightarrow Y^{n}$ which makes a commutative diagram

We denote by $\mathrm{C}(\mathcal{B})$ (resp., $\mathrm{C}^{+}(\mathcal{B}), \mathrm{C}^{-}(\mathcal{B}), \mathrm{C}^{\mathrm{b}}(\mathcal{B})$) the category of complexes (resp., bounded below complexes, bounded above complexes, bounded complexes) of \mathcal{B}. An autofunctor $T: \mathrm{C}(\mathcal{B}) \rightarrow \mathrm{C}(\mathcal{B})$ is called
translation if $\left(T\left(X^{\cdot}\right)\right)^{n}=X^{n+1}$ and $\left(T d_{X}\right)^{n}=-d_{X}^{n+1}$ for any complex $X^{\bullet}=\left(X^{n}, d_{X}^{n}\right)$.

In $\mathrm{C}(\mathcal{A})$, a morphism $u: X \rightarrow Y^{*}$ is called a quasi-isomorphism if $\mathrm{H}^{n}(u)$ is an isomorphism for any n.

In this section, "*" means "nothing", "+", "-" or "b".
Definition 2.2. For $u \in \operatorname{Hom}_{(\mathcal{B})}\left(X^{\cdot}, Y^{\bullet}\right)$, the mapping cone of u is a complex $\mathrm{M} \cdot(u)$ with

$$
\begin{aligned}
\mathrm{M}^{n}(u) & =X^{n+1} \oplus Y^{n} \\
d_{\mathrm{M} \cdot(u)}^{n} & =\left[\begin{array}{cc}
-d_{x}^{n+1} & 0 \\
u^{n+1} & d_{X}^{n}
\end{array}\right]: X^{n+1} \oplus Y^{n} \rightarrow X^{n+2} \oplus Y^{n+1} .
\end{aligned}
$$

Definition 2.3 (Homotopy Relation). Two morphisms $f, g \in \operatorname{Hom}_{\mathrm{C}(\mathcal{B})}\left(X^{\cdot}, Y^{\cdot}\right)$ are said to be homotopic (denote by $f \underset{h}{\sim} g$) if there is a collection of morphisms $h=\left(h^{n}\right), h^{n}: X^{n} \rightarrow Y^{n+1}$ such that

$$
f^{n}-g^{n}=d_{Y}^{n-1} h^{n}+h^{n+1} d_{X}^{n}
$$

for all $n \in \mathbb{Z}$.
Definition 2.4 (Homotopy Category). The homotopy category $\mathrm{K}^{*}(\mathcal{B})$ of \mathcal{B} is defined by
(1) $\operatorname{Ob}\left(\mathrm{K}^{*}(\mathcal{B})\right)=\operatorname{Ob}\left(\mathrm{C}^{*}(\mathcal{B})\right)$,
(2) $\operatorname{Hom}_{\mathbb{K}^{*}(\mathcal{B})}\left(X^{\prime}, Y^{*}\right)=\operatorname{Hom}_{\mathrm{C}^{*}(\mathcal{B})}\left(X^{*}, Y^{\cdot}\right) / \underset{h}{\widetilde{h}} \quad$ for $X^{\prime}, Y^{*} \in \operatorname{Ob}\left(\mathrm{~K}^{*}(\mathcal{B})\right)$.

Proposition 2.5. A category $\mathrm{K}^{*}(\mathcal{B})$ is a triangulated category whose triangles are defined to be isomorphic to

$$
X^{\cdot} \xrightarrow{u} Y^{\cdot} \rightarrow \mathrm{M}^{\cdot}(u) \rightarrow T\left(X^{\cdot}\right)
$$

for any $u: X^{*} \rightarrow Y^{*}$ in $\mathrm{K}^{*}(\mathcal{B})$.
Definition 2.6 (Derived Category). The derived category $\mathrm{D}^{*}(\mathcal{A})$ of an abelian category \mathcal{A} is $\mathrm{K}^{*}(\mathcal{A}) / \mathrm{K}^{*, \phi}(\mathcal{A})$, where $\mathrm{K}^{*, \phi}(\mathcal{A})$ is the full subcategory of $\mathrm{K}^{*}(\mathcal{A})$ consisting of null complexes, that is, complexes whose all homologies are 0.

Proposition 2.7. The following hold.
(1) $\mathrm{D}^{*}(\mathcal{A})$ is a triangulated category, and the canonical functor Q : $\mathrm{K}^{*}(\mathcal{A}) \rightarrow \mathrm{D}^{*}(\mathcal{A})$ is a ∂-functor.
(2) The i-th cohomology of complexes is a cohomological functor in the sense of Definition 1.4.

Definition 2.8. A complex X of $\mathrm{K}(\mathcal{B})$ is called K -injective (resp., K-projective) if

$$
\begin{array}{r}
\operatorname{Hom}_{K(\mathcal{B})}\left(N^{\cdot}, X^{\cdot}\right)=0 \\
\left(\text { resp. }, \operatorname{Hom}_{K(\mathcal{B})}\left(X^{\prime}, N^{\cdot}\right)=0\right)
\end{array}
$$

for any null complex N.
Example 2.9. Let A be a ring, Mod A the category of right A-modules, and $\operatorname{Inj} A$ (resp., Proj A) the category of injective (resp., projective) right A-modules. Then any complex $I \in \mathrm{~K}^{+}(\operatorname{Inj} A)\left(r e s p ., P^{\cdot} \in \mathrm{K}^{-}(\operatorname{Proj} A)\right)$ is a K -injective (resp., K -projective) complex in $\mathrm{K}(\operatorname{Mod} A)$.
Example 2.10. Let k be a field, $A=k[x] /\left(x^{2}\right)$, and

$$
X^{\prime}: \cdots \xrightarrow{x} A \xrightarrow{x} A \xrightarrow{x} \cdots
$$

Then X^{\prime} is a null complex of finitely generated projective-injective A modules. But it is neither K-projective nor K-injective, because $0 \neq 1 \in$ $\operatorname{Hom}_{K(\operatorname{Mod} A)}\left(X^{\cdot}, X^{\cdot}\right)$.
Theorem $2.11([\mathrm{Sp}],[\mathrm{Ne}],[\mathrm{LAM}],[\mathrm{Fr}]) . \operatorname{Let} \mathrm{K}^{\text {inj }}(\operatorname{Mod} A)\left(\operatorname{resp} ., \mathrm{K}^{\text {proj }}(\operatorname{Mod} A)\right)$ be the category of K-injective (resp., K-projective) complexes, then the following hold.
(1) $\left(\mathrm{K}^{\text {proj }}(\operatorname{Mod} A), \mathrm{K}^{\phi}(\operatorname{Mod} A)\right)$ is a stable t-structure in $\mathrm{K}(\operatorname{Mod} A)$, and hence $\mathrm{D}(\operatorname{Mod} A)$ exists and is triangulated equivalent to $\mathrm{K}^{\text {proj }}(\operatorname{Mod} A)$.
(2) $\left(\mathrm{K}^{\phi}(\operatorname{Mod} A), \mathrm{K}^{\text {inj }}(\operatorname{Mod} A)\right)$ is a stable t-structure in $\mathrm{K}(\operatorname{Mod} A)$, and hence $\mathrm{D}(\operatorname{Mod} A)$ is triangulated equivalent to $\mathrm{K}^{\text {inj }}(\operatorname{Mod} A)$.
(3) For a Grothendieck category $\mathcal{A},\left(\mathrm{K}^{\phi}(\mathcal{A}), \mathrm{K}^{\text {inj }}(\mathcal{A})\right)$ is a stable t structure in $\mathrm{K}(\mathcal{A})$, and hence $\mathrm{D}(\mathcal{A})$ exists and is triangulated equivalent to $\mathrm{K}^{\text {inj }}(\mathcal{A})$.
Proof. (1) For a complex $X^{\cdot}=\left(X^{i}, d^{i}\right)$, we define the following truncation:

$$
\sigma_{\leq n} X^{\cdot}: \cdots \rightarrow X^{n-2} \rightarrow X^{n-1} \rightarrow \operatorname{Ker} d^{n} \rightarrow 0 \rightarrow \cdots
$$

For any n, there is a complex $P_{n}^{\cdot} \in \mathrm{K}^{-}(\operatorname{Proj} A)$ which has a quasiisomorphism $P_{n}^{\cdot} \rightarrow \sigma_{\leq n} X^{*}$. Then we have the following quasi-isomorphisms (qis)

$$
X^{\cdot} \cong \underset{\longrightarrow}{\lim } \sigma_{\leq n} X^{\cdot} \cdot \frac{\text { qis }}{\longleftrightarrow} \text { hocolim } \sigma_{\leq n} X^{\cdot} \stackrel{\text { qis }}{\longleftrightarrow} \text { hocolim } P_{n}^{\cdot}
$$

It is easy to see that hocolim P_{n} is K -projective.
(2) Similarly.
(3) Because there is a ring A such that \mathcal{A} is a localization of $\operatorname{Mod} A$ (Gabriel-Popescu Theorem). See [LAM] or [Fr].

Remark 2.12 (Grothendieck Category). An abelian category \mathcal{C} is called a Grothendieck category if
(1) \mathcal{C} has coproducts of objects indexed by arbitrary sets,
(2) the filtered colimit of exact sequences is exact,
(3) \mathcal{C} has a generator U.

In this case, we have Gabriel-Popescu Theorem:
Let $R=\operatorname{End}_{\mathcal{C}}(U)$, then there are functors $F: \operatorname{Mod} R \rightarrow \mathcal{C}, G:=$ $\operatorname{Hom}_{\mathcal{C}}(U,-): \mathcal{C} \rightarrow \operatorname{Mod} R$ such that
(1) F is an exact functor,
(2) G is a right adjoint of F,
(3) $F G \xrightarrow{\sim} \mathbf{1}_{\mathcal{C}}$.

Remark 2.13. If P^{*} is K -projective complex (e.g. bounded above complex of projective A-modules), then we have

$$
\operatorname{Hom}_{K(\operatorname{Mod} A)}\left(P^{\prime}, X^{\prime}\right) \cong \operatorname{Hom}_{D(\operatorname{Mod} A)}\left(P^{\prime}, X^{\prime}\right)
$$

for any complex X^{*}. Similarly, for a K-injective complex I- (e.g. bounded below complex of injective A-modules), then we have

$$
\operatorname{Hom}_{K(\operatorname{Mod} A)}\left(X^{\prime}, I^{\prime}\right) \cong \operatorname{Hom}_{\mathrm{D}(\operatorname{Mod} A)}\left(X^{\prime}, I^{\cdot}\right)
$$

for any complex $X^{\text {. }}$.
Proposition 2.14. If $0 \rightarrow X \cdot \xrightarrow{u} Y \stackrel{v}{\rightarrow} Z \cdot \rightarrow 0$ is a exact sequence in $\mathrm{C}(\mathcal{A})$, then it can be embedded in a triangle in $\mathrm{D}(\mathcal{A})$

$$
Q X^{\cdot} \xrightarrow{Q u} Q Y^{\bullet} \xrightarrow{Q v} Q Z \cdot \xrightarrow{w} T Q\left(X^{\bullet}\right) .
$$

Definition 2.15 (Right Derived Functor). For a ∂-functor $F: K^{*}(\mathcal{A}) \rightarrow$ $\mathrm{K}\left(\mathcal{A}^{\prime}\right)$, the right derived functor of F is a ∂-functor

$$
\boldsymbol{R}^{*} F: \mathrm{D}^{*}(\mathcal{A}) \rightarrow \mathrm{D}\left(\mathcal{A}^{\prime}\right)
$$

together with a functorial morphism of ∂-functors

$$
\xi \in \partial \operatorname{Mor}\left(Q_{\mathcal{A}^{\prime}} \circ F, \boldsymbol{R}^{*} F \circ Q_{\mathcal{A}}^{*}\right)
$$

with the following property:
For $G \in \partial\left(\mathrm{D}^{*}(\mathcal{A}), \mathrm{D}\left(\mathcal{A}^{\prime}\right)\right)$ and $\zeta \in \partial \operatorname{Mor}\left(Q_{\mathcal{A}^{\prime}} \circ F, G \circ Q_{\mathcal{A}}^{*}\right)$, there exists a unique morphism $\eta \in \partial \operatorname{Mor}\left(\boldsymbol{R}^{*} F, G\right)$ such that

$$
\zeta=\left(\eta Q_{\mathcal{A}}^{*}\right) \xi .
$$

In other words, we can simply write the above using functor categories. For triangulated categories $\mathcal{C}, \mathcal{C}^{\prime}$, the ∂-functor category $\partial\left(\mathcal{C}, \mathcal{C}^{\prime}\right)$ is the category (?) consisting of ∂-functors from \mathcal{C} to \mathcal{C}^{\prime} as objects and ∂-functorial morphisms as morphisms. Then we have

$$
\partial \operatorname{Mor}\left(Q_{\mathcal{A}^{\prime}} \circ F,-Q_{\mathcal{A}}^{*}\right) \cong \partial \operatorname{Mor}\left(\boldsymbol{R}^{*} F,-\right)
$$

as functors from $\partial\left(\mathrm{D}^{*}(\mathcal{A}), \mathrm{D}\left(\mathcal{A}^{\prime}\right)\right)$ to $\mathfrak{S e t}$.
Proposition 2.16. Let $\mathcal{A}, \mathcal{A}^{\prime}$ be abelian categories, $F: \mathrm{K}(\mathcal{A}) \rightarrow \mathrm{K}\left(\mathcal{A}^{\prime}\right)$ a ∂-functor. If \mathcal{A} is a Grothendieck category, then we have the right derived functor $\boldsymbol{R} F: \mathrm{D}(\mathcal{A}) \rightarrow \mathrm{D}\left(\mathcal{A}^{\prime}\right)$ such that $F\left(X^{\cdot}\right) \cong \boldsymbol{R} F\left(X^{\cdot}\right)$ for any K-injective complex X.

Definition $2.17\left(\mathrm{Hom}_{A}, \dot{\otimes}_{A}\right)$. Let X^{*}, Y^{\cdot} be complexes in $\mathrm{C}(\operatorname{Mod} A)$, Z a complex in $\mathrm{C}\left(\operatorname{Mod} A^{o p}\right)$. We define the complex $\operatorname{Hom}_{A}^{*}\left(X^{\cdot}, Y^{\cdot}\right)$ in $\mathrm{C}(\mathfrak{A} \mathfrak{b})$ by

$$
\begin{aligned}
& \operatorname{Hom}_{A}^{n}\left(X^{\cdot}, Y^{\cdot}\right)=\prod_{j-i=n} \operatorname{Hom}_{A}\left(X^{i}, Y^{j}\right) \\
& d_{\text {Hom }}{ }^{\cdot}(X, Y) \\
&(f)=d_{X} \circ f-(-1)^{n} f \circ d_{Y} \quad \text { for } f \in \operatorname{Hom}_{A}^{n}\left(X^{\cdot}, Y^{\cdot}\right)
\end{aligned}
$$

And we define the complex $X \cdot \dot{\otimes}_{A} Z$ in $\mathrm{C}(\mathfrak{A b})$ by

$$
\begin{aligned}
X \cdot \stackrel{n}{\otimes}_{A} Z & =\coprod_{i+j=n} X^{i} \otimes_{A} Z^{j} \\
d_{X \otimes Y}^{n} & =d_{X} \otimes 1+(-1)^{n} 1 \otimes d_{Z}
\end{aligned}
$$

Proposition 2.18. Let A are a ring. Then we have a right derived functor

$$
\boldsymbol{R} \operatorname{Hom}_{A}^{-}: \mathrm{D}(\operatorname{Mod} A)^{o p} \times \mathrm{D}(\operatorname{Mod} A) \rightarrow \mathrm{D}(\mathfrak{A} \mathfrak{k})
$$

and a left derived functor

$$
\dot{\otimes}_{A}^{L}: \mathrm{D}(\operatorname{Mod} A) \times \mathrm{D}\left(\operatorname{Mod} A^{o p}\right) \rightarrow \mathrm{D}(\mathfrak{A} \mathfrak{k})
$$

Definition 2.19 (Perfect Complex). Let A be a ring. A complex $X \in$ $\mathrm{D}(\operatorname{Mod} A)$ is called a perfect complex if X^{*} is quasi-isomorphic to a bounded complex of finitely generated projective A-modules.

Let X be a scheme, $\mathrm{D}(X)$ the derived category of sheaves of $\mathcal{O}_{X^{-}}$ modules. We denote by $\mathrm{D}_{q c}(X)$ the full subcategory of $\mathrm{D}(X)$ consisting of complexes whose cohomologies are quasi-coherent sheaves. A complex $X \in \mathrm{D}_{q c}(X)$ is called a perfect complex if X is locally quasiisomorphic to a bounded complex of vector bundles.

We denote by $\mathrm{D}_{p f}(\mathcal{A})$ the full triangulated subcategory of $\mathrm{D}(\mathcal{A})$ consisting of perfect complexes.

Proposition 2.20 ([Rd1], [Ne]). For a ring A, the following hold.
(1) A complex $X^{\cdot} \in \mathrm{D}(\operatorname{Mod} A)$ is perfect if and only if it is a compact object in $\mathrm{D}(\operatorname{Mod} A)$.
(2) $\mathrm{D}(\operatorname{Mod} A)$ is compactly generated.

Theorem 2.21 ([BV]). Let X be a quasi-compact quasi-separated scheme, then the following hold.
(1) A complex $X \in \mathrm{D}_{q c}(X)$ is perfect if and only if it is a compact object in $\mathrm{D}_{q c}(X)$.
(2) $\mathrm{D}_{q c}(X)$ is compactly generated.

Theorem 2.22 ([BN]). Let X be a quasi-compact separated scheme, then the canonical functor $\mathrm{D}(\mathrm{Q} \operatorname{coh} X) \rightarrow \mathrm{D}_{q c}(X)$ is a triangulated equivalence, where Qcoh X is the category of quasi-coherent sheaves of \mathcal{O}_{X}-modules.
Corollary 2.23 ([BV]). Let X be smooth over a field, then we have

$$
\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X) \triangleq \mathrm{D}_{p f}(X) .
$$

where coh X is the category of coherent sheaves of \mathcal{O}_{X}-modules.
For a ring A, we denote by proj A the category of finitely generated projective A-modules.
Theorem 2.24 ([Rd1], [Rd2]). Let A, B be algebras over a field k. The following are equivalent.
(1) $\mathrm{D}(\operatorname{Mod} A) \triangleq \mathrm{D}(\operatorname{Mod} B)$.
(2) $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A) \triangleq \mathrm{K}^{\mathrm{b}}(\operatorname{proj} B)$.
(3) There is a perfect complex $T^{\bullet} \in \mathrm{D}(\operatorname{Mod} A)$ such that
(a) $B \cong \operatorname{End}_{\mathrm{D}(\operatorname{Mod} A)}\left(T^{*}\right)$,
(b) $\operatorname{Hom}_{D(\operatorname{Mod} A)}\left(T^{*}, T \cdot[i]\right)=0$ for $i \neq 0$,
(c) $\{T \cdot[i] \mid i \in \mathbb{Z}\}$ is a generating set in $\mathrm{D}(\operatorname{Mod} A)$.
(4) There is a complex X of B - A-bimodules such that

$$
\boldsymbol{R} \operatorname{Hom}_{A}\left(X^{\cdot},-\right): \mathrm{D}(\operatorname{Mod} A) \rightarrow \mathrm{D}(\operatorname{Mod} B)
$$

is an equivalence.
In this case, T^{*} is called a tilting complex for A, X^{*} is called two-sided tilting complex, and $\boldsymbol{R} \operatorname{Hom}_{A}^{*}\left(X^{\cdot},-\right)$ is called a standard equivalence.
Theorem 2.25 ([BO]). Let X be a smooth irreducible projective variety with ample canonical or anticanonical sheaf. If X^{\prime} is a smooth algebraic variety such that $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X) \triangleq \mathrm{D}^{\mathrm{b}}\left(\operatorname{coh} X^{\prime}\right)$, then X^{\prime} is isomorphic to X.
Theorem 2.26 ([Be]). Let $\mathbf{P}=\mathbf{P}_{k}^{n}$ be the n-dimensional projective space over a field k, and let $\mathcal{T}_{1}=\bigoplus_{i=0}^{n} \mathcal{O}(i), \mathcal{T}_{2}=\bigoplus_{i=0}^{n} \Omega(-i)$, and $B_{1}=\operatorname{End}_{\mathbf{P}}\left(\mathcal{T}_{1}\right), B_{2}=\operatorname{End}_{\mathbf{P}}\left(\mathcal{T}_{2}\right)$. Then B_{i} are finite dimensional k algebra of finite global dimension, and

$$
\mathrm{D}^{\mathrm{b}}(\operatorname{coh} \mathbf{P}) \triangleq \mathrm{D}^{\mathrm{b}}\left(\bmod _{14} B_{1}\right) \triangleq \mathrm{D}^{\mathrm{b}}\left(\bmod B_{2}\right)
$$

where $\bmod B_{i}$ is the category of finitely generated B_{i}-modules.
Definition 2.27. Let A be an algebra over a field k. The derived Picard group of A (relative to k) is

$$
\operatorname{DPic}_{k}(A):=\frac{\left\{\text { tilting complexes } T \in \mathrm{D}^{\mathrm{b}}\left(\operatorname{Mod} A^{\mathrm{e}}\right)\right\}}{\text { isomorphism }}
$$

with identity element A, product $\left(T_{1}, T_{2}\right) \mapsto T_{1} \otimes_{A}^{\mathrm{L}} T_{2}$ and inverse $T \mapsto$ $T^{\vee}:=\mathrm{R}_{\operatorname{Hom}_{A}}(T, A)$. Given any k-linear triangulated category \mathcal{C} we let

$$
\begin{equation*}
\text { Out }_{k}^{\triangle}(\mathcal{C}):=\frac{\{k \text {-linear triangulated self-equivalences of } \mathcal{C}\}}{\text { isomorphism }} . \tag{2.1}
\end{equation*}
$$

Theorem 2.28 ([MY]). Let k be an algebraically closed field, and A a finite dimensional hereditary k-algebra. Then we have

$$
\operatorname{DPic}_{k}(A)=\operatorname{Out}_{k}^{\triangle}\left(\mathrm{D}^{\mathrm{b}}(\operatorname{Mod} A)\right)=\operatorname{Out}_{k}^{\triangle}\left(\mathrm{D}^{\mathrm{b}}(\bmod A)\right)
$$

M. Kontsevich and A. Rosenberg introduced the notion of noncommutative projective spaces $\mathbf{N P}^{n}$, and showed that

$$
\begin{aligned}
\mathrm{D}^{\mathrm{b}}\left(\mathrm{Q} \operatorname{coh} \mathbf{N P}^{n}\right) & \triangleq \mathrm{D}^{\mathrm{b}}\left(\operatorname{Mod} k Q_{n}\right) \\
\mathrm{D}^{\mathrm{b}}\left(\operatorname{coh} \mathbf{N P}^{n}\right) & \triangleq \mathrm{D}^{\mathrm{b}}\left(\bmod k Q_{n}\right)
\end{aligned}
$$

where Q_{n} is the quiver

Corollary 2.29 ([MY]). For a non-commutative projective spaces $\mathbf{N P}^{n}$, we have

$$
\begin{aligned}
\operatorname{Out}_{k}^{\triangle}\left(\mathrm{D}^{\mathrm{b}}\left(\mathrm{Qcoh} \mathrm{NP}^{n}\right)\right) & \cong \operatorname{Out}_{k}^{\triangle}\left(\mathrm{D}^{\mathrm{b}}\left(\operatorname{coh}^{n} \mathbf{N P}^{n}\right)\right) \\
& \cong \mathbb{Z} \times\left(\mathbb{Z} \ltimes \mathrm{PGL}_{n+1}(k)\right)
\end{aligned}
$$

For \mathbf{P}^{1}, we have $\operatorname{Out}_{k}^{\triangle}\left(\mathrm{D}^{\mathrm{b}}\left(\operatorname{coh} \mathbf{P}^{1}\right)\right) \cong \mathbb{Z} \times \mathbb{Z} \times \mathrm{PGL}_{2}(k)$.
Theorem 2.30 ([BO]). Let X be a smooth irreducible projective variety with ample canonical or anticanonical sheaf. Then $\operatorname{Out}_{k}^{\triangle}\left(\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)\right)$ is generated by the automorphisms of variety, the twists by invertible sheaves and the translations, and hence $\operatorname{Out}_{k}^{\triangle}\left(\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)\right) \cong\left(\operatorname{Aut}_{k} X \ltimes\right.$ $\operatorname{Pic} X) \times \mathbb{Z}$.

References

[Be] A.A. Beilinson, Coherent sheaves on \mathbf{P}^{n} and problems of linear algebra, Func. Anal. Appl. 12 (1978), 214-216.
[BBD] A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux Pervers, Astérisque 100 (1982).
[BN] M. Böckstedt and A. Neeman, Homotopy Limits in Triangulated Categories, Compositio Math. 86 (1993), 209-234.
[BV] A. Bondal, M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, math.AG/0204218.
[BO] A. Bondal and D. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, preprint; eprint: alg-geom/9712029.
[BV] A. Bondal, M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, math.AG/0204218.
[CE] H. Cartan, S. Eilenberg, "Homological Algebra," Princeton Univ. Press, 1956.
[Fr] J, Franke, On the Brown representability theorem for triangulated categories. Topology 40 (2001), no. 4, 667-680.
[Ha] D. Happel, "Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras," London Math. Soc. Lecture Notes 119, University Press, Cambridge, 1987.
[HS] P. J. Hilton, U. Stammbach, "A Course in Homological Algebra," GTM 4, Springer-Verlag, Berlin, 1971.
[Ke] B. Keller, Deriving DG Categories, Ann. Scient. Ec. Norm. Sup. 27 (1994), 63-102.
[Ke2] B. Keller, A remark on tilting theory and DG algebras, manuscripta math. 79 (1993), 247-252.
[4] M. Kontsevich and A. Rosenberg, Noncommutative smooth spaces, preprint; eprint math.AG/9812158.
[LAM] Leovigildo Alonso Tarrío, Ana Jeremías López, María José Souto Salorio, Localization in categories of complexes and unbounded resolutions, Canad. J. Math. 52 (2000), no. 2, 225-247.
[ML] S. Mac Lane, "Homology," Springer-Verlag, Berlin, 1963.
[Mi] J. Miyachi, Localization of Triangulated Categories and Derived Categories, J. Algebra 141 (1991), 463-483.
[MY] J. Miyachi, A. Yekutieli, Derived Picard groups of finite-dimensional hereditary algebras. Compositio Math. 129 (2001), no. 3, 341-368.
[Ne] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. American Math. Soc. 9 (1996), 205-236.
[Po] N. Popescu, "Abelian Categories with Applications to Rings and Modules, " Academic Press, London-New York, 1973.
[RD] R. Hartshorne, "Residues and Duality," Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966.
[Rd1] J. Rickard, Morita Theory for Derived Categories, J. London Math. Soc. 39 (1989), 436-456.
[Rd2] J. Rickard, Derived Equivalences as Derived Functors, J. London Math. Soc. 43 (1991), 37-48.
[Rd3] J. Rickard, Splendid Equivalences: Derived Categories and Permutation Modules, Proc. London Math. Soc. 72 (1996), 331-358.
[RZ] R. Rouquier and A. Zimmermann, Picard Groups for Derived Module Categories, Proc. London Math. Soc. (3) 87 (2003), no. 1, 197-225.
[TT] R. W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, 247-435, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990.
[We] C. A. Weibel, "An Introduction to Homological Algebra," Cambridge studies in advanced mathematics. 38, Cambridge Univ. Press, 1995.
[Sp] N. Spaltenstein, Resolutions of Unbounded Complexes, Composition Math. 65 (1988), 121-154.
[Ye] A. Yekutieli, Dualizing Complexes over Noncommutative Graded Algebras, J. Algebra 153 (1992), 41-84.
[Ve] J. Verdier, "Catéories Déivées, état 0", pp. 262-311, Lecture Notes in Math. 569, Springer-Verlag, Berlin, 1977.

