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Abstract

Two further equivalent axioms are given for valuations of a matroid. Let
M = (V,B) be a matroid on a finite set V with the family of bases B. For
ω : B → R the following three conditions are equivalent:

(V1) ∀B,B′ ∈ B, ∀u ∈ B − B′,∃v ∈ B′ − B:
ω(B) + ω(B′) ≤ ω(B − u + v) + ω(B′ + u − v);

(V2) ∀B,B′ ∈ B with B 6= B′, ∃u ∈ B − B′,∃v ∈ B′ − B:
ω(B) + ω(B′) ≤ ω(B − u + v) + ω(B′ + u − v);

(V3) ∀B,B′ ∈ B, ∀u ∈ B − B′,∃v ∈ B′ − B, ∃u′ ∈ B − B′:
ω(B) + ω(B′) ≤ ω(B − u + v) + ω(B′ + u′ − v).

A similar result is obtained for valuations of a delta-matroid.

Keywords: valuated matroid, valuated delta-matroid, exchange axioms.

AMS Classifications: 05B35, 90C27

∗Report No. 95841-OR, Forschungsinstitut für Diskrete Mathematik, Universität Bonn, 1995.
An abridged version will appear in Combinatorica.

†Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan, e-mail:
murota@kurims.kyoto-u.ac.jp. This work was done while the author was at Forschungsinstitut
für Diskrete Mathematik, Universität Bonn.

1



1 Results

We consider valuated matroids first and then valuated delta-matroids. Let V be

a finite set and R be a totally ordered additive group (typically R = R (reals), Q

(rationals), or Z (integers)).

1.1 Axioms for valuated matroids

Recently Dress-Wenzel [4], [6] introduced the concept of valuation of a matroid.

Let M = (V,B) be a matroid [12], [14] defined on a finite set V in terms of the

family of bases B. A valuation of M = (V,B) is a function ω : B → R which

enjoys the following exchange property:

(V1) For distinct B,B′ ∈ B and u ∈ B − B′, there exists v ∈ B′ − B such that

B − u + v ∈ B, B′ + u − v ∈ B and

ω(B) + ω(B′) ≤ ω(B − u + v) + ω(B′ + u − v).

The valuated matroids afford a nice combinatorial framework to which the op-

timization algorithms for matroids can be generalized. In fact, a version of greedy

algorithm works for maximizing a matroid valuation (and conversely this property

characterizes a matroid valuation) [4], and the weighted matroid intersetion algo-

rithm can be extended for maximizing the sum of a pair of matroid valuations [7],

[8], [9].

In this note we show that either of the following seemingly weaker exchange

properties characterizes a matroid valuation:

(V2) For distinct B,B′ ∈ B, there exist u ∈ B − B′ and v ∈ B′ − B such that

B − u + v ∈ B, B′ + u − v ∈ B and

ω(B) + ω(B′) ≤ ω(B − u + v) + ω(B′ + u − v).

(V3) For distinct B,B′ ∈ B and u ∈ B−B′, there exist v ∈ B′−B and u′ ∈ B−B′

such that B − u + v ∈ B, B′ + u′ − v ∈ B and

ω(B) + ω(B′) ≤ ω(B − u + v) + ω(B′ + u′ − v).

Theorem 1.1 For ω : B → R, the three conditions, (V1), (V2), (V3), are equiv-

alent.
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For a trivial valuation ω ≡ 0, (V1) reduces to the symmetric exchange axiom

for matroids [14] and (V2) to Tomizawa’s self-dual base axiom for matroids [11],

whereas (V3) is somehow related to the augmentation axiom for independent sets.

Other axioms of valuations in terms of independent sets are investigated in [10].

1.2 Axioms for valuated delta-matroids

A valuated delta-matroid, due to Dress-Wenzel [5] and Wenzel [13], is a function

δ : 2V → R ∪ {−∞} such that

(D0) δ(I) 6= −∞ for some I ⊆ V ,

(D1) For distinct I, I ′ ⊆ V with δ(I) 6= −∞ 6= δ(I ′) and for u ∈ I∆I ′, there

exists v ∈ (I∆I ′) − u such that

δ(I) + δ(I ′) ≤ δ(I∆u∆v) + δ(I ′∆u∆v).

Here ∆ denotes the symmetric difference: I∆I ′ = (I−I ′)∪(I ′−I), and I∆u∆v =

I∆{u}∆{v}, etc. We put

F = {I ⊆ V | δ(I) 6= −∞}.

The valuated delta-matroid is also natural in connection to optimization. The

underlying family F is a well-behaved delta-matroid (“even delta-matroid”) such

that |I∆I ′| is even for I, I ′ ∈ F (see [1], [2], [3] for delta-matroids). Again a

version of greedy algorithm works for maximizing a valuated delta-matroid (and

conversely this property characterizes a matroid valuation) [5].

We show that either of the following seemingly weaker exchange properties

characterizes a valuated delta-matroid:

(D2) For distinct I, I ′ ⊆ V with δ(I) 6= −∞ 6= δ(I ′), there exist distinct u, v ∈
I∆I ′ such that

δ(I) + δ(I ′) ≤ δ(I∆u∆v) + δ(I ′∆u∆v).

(D3) For distinct I, I ′ ⊆ V with δ(I) 6= −∞ 6= δ(I ′) and for u ∈ I∆I ′, there

exists v ∈ (I∆I ′) − u and u′ ∈ (I∆I ′) − v such that

δ(I) + δ(I ′) ≤ δ(I∆u∆v) + δ(I ′∆u′∆v).

Theorem 1.2 For δ : 2V → R ∪ {−∞} satisfying (D0), the three conditions,

(D1), (D2), (D3), are equivalent.
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2 Proofs

2.1 Proof for valuated matroids

Obviously, (V1) ⇒ (V2) and (V1) ⇒ (V3). To prove (V2) ⇒ (V1) and (V3) ⇒
(V1) we first show two lemmas. For ω : B → R and p : V → R define

ωp(B) = ω(B) +
∑

{p(u) | u ∈ B} (B ⊆ V ), (2.1)

where we put ω(B) = ωp(B) = −∞ if B 6∈ B, and

ω(B, u, v) = ω(B − u + v) − ω(B) (B ∈ B),

ωp(B, u, v) = ωp(B − u + v) − ωp(B) (B ∈ B),

where ω(B, u, v) = ωp(B, u, v) = −∞ if B − u + v 6∈ B. If B,B′ ∈ B we have

ω(B − u + v) + ω(B′ + u − v) − ω(B) − ω(B′)

= ω(B, u, v) + ω(B′, v, u)

= ωp(B, u, v) + ωp(B
′, v, u) (u ∈ B − B′, v ∈ B′ − B). (2.2)

Lemma 2.1 Assume (V3). If B ∈ B and |B′ − B| = |B − B′| = 2, then there

exist u ∈ B − B′ and v ∈ B′ − B such that

ω(B) + ω(B′) ≤ ω(B − u + v) + ω(B′ + u − v).

(Proof) Put B − B′ =: {u0, u1}, B′ − B =: {v0, v1}, and ω(B, ui, vj) =: αij

(i, j = 0, 1). Since

ω(B − ui + vj) + ω(B′ + ui − vj) = αij + α1−i,1−j + 2ω(B),

the claim is equivalent to saying that

max(α00 + α11, α01 + α10) ≥ γ ≡ ω(B′) − ω(B).

Using (V3) with u = u0 we obtain α0j + αi,1−j ≥ γ for some i, j ∈ {0, 1}. If i = 1,

we are done. Otherwise, we have

α00 + α01 ≥ γ. (2.3)

Similarly, using (V3) with u = u1 we obtain α1j +αi,1−j ≥ γ for some i, j ∈ {0, 1}.
If i = 0, we are done. Otherwise, we have

α10 + α11 ≥ γ. (2.4)
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Addition of (2.3) and (2.4) yields

(α00 + α11) + (α01 + α10) ≥ 2γ,

which implies that α00 + α11 ≥ γ or α01 + α10 ≥ γ.

Lemma 2.2 Let B ∈ B, B − B′ = {u0, u1}, B′ − B = {v0, v1} (with u0 6= u1,

v0 6= v1) and p : V → R. If (V2) or (V3) is satisfied, then

ωp(B
′) − ωp(B) ≤ max(π00 + π11, π01 + π10),

where πij = ωp(B, ui, vj) for i, j = 0, 1.

(Proof) The case (V2) is immediate from (2.2). The case (V3) follows from Lemma

2.1 and (2.2).

Define

D = {(B,B′) | B,B′ ∈ B, ∃u∗ ∈ B − B′, ∀v ∈ B′ − B :

ω(B) + ω(B′) > ω(B − u∗ + v) + ω(B′ + u∗ − v)},

which denotes the set of pairs (B,B′) for which the exchangeability in (V1) fails.

In what follows we are to show D = ∅ if (V2) or (V3) is satisfied.

Suppose to the contrary that D 6= ∅, and take (B,B′) ∈ D such that |B′ − B|
is minimum and let u∗ ∈ B −B′ be as in the definition of D. Define p : V → R by

p(v) =


−ω(B, u∗, v) (v ∈ B′ − B,B − u∗ + v ∈ B)

ω(B′, v, u∗) + ε (v ∈ B′ − B,B − u∗ + v 6∈ B, B′ + u∗ − v ∈ B)

0 (otherwise)

with some ε > 0 and consider ωp defined in (2.1).

Claim 1:

ωp(B, u∗, v) = 0 if v ∈ B′ − B,B − u∗ + v ∈ B, (2.5)

ωp(B
′, v, u∗) < 0 for v ∈ B′ − B. (2.6)

The inequality (2.6) can be shown as follows. If B − u∗ + v ∈ B, we have

ωp(B, u∗, v) = 0 by (2.5) and

ωp(B, u∗, v) + ωp(B
′, v, u∗) = ω(B, u∗, v) + ω(B′, v, u∗) < 0

by (2.2) and the definition of u∗. Otherwise we have ωp(B
′, v, u∗) = −ε or −∞

according to whether B′ + u∗ − v ∈ B or not.

Next we claim under the assumption of (V2) or (V3) that
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Claim 2: There exist u0 ∈ B − B′ and v0 ∈ B′ − B such that u0 6= u∗ and

B′ + u0 − v0 ∈ B.

In fact, (V2) implies that ∃u0 ∈ B − B′, ∃v0 ∈ B′ − B with

−∞ 6= ω(B) + ω(B′) ≤ ω(B − u0 + v0) + ω(B′ + u0 − v0),

whereas (V3) implies that ∃u0 ∈ B − B′, ∃v0 ∈ B′ − B with

−∞ 6= ω(B) + ω(B′) ≤ ω(B − u∗ + v0) + ω(B′ + u0 − v0).

In either case we have u0 6= u∗ by the definition of u∗, and B′ + u0 − v0 ∈ B by

ω(B′ + u0 − v0) 6= −∞.

In addition to the conditions imposed in Claim 2 we can further assume

ωp(B
′, v0, u0) ≥ ωp(B

′, v, u0) (v ∈ B′ − B) (2.7)

by choosing v0 appropriately. Put B′′ = B′ + u0 − v0.

Claim 3: (B,B′′) ∈ D.

To prove this it suffices to show

ωp(B, u∗, v) + ωp(B
′′, v, u∗) < 0 (v ∈ B′′ − B).

We may restrict ourselves to v with B − u∗ + v ∈ B, since otherwise the first term

ωp(B, u∗, v) is equal to −∞. For such v the first term is equal to zero by (2.5).

For the second term it follows from Lemma 2.2, (2.6) and (2.7) that

ωp(B
′′, v, u∗) = ωp(B

′ + {u0, u∗} − {v0, v}) − ωp(B
′ + u0 − v0)

≤ max [ωp(B
′, v0, u0) + ωp(B

′, v, u∗), ωp(B
′, v, u0) + ωp(B

′, v0, u∗)]

−ωp(B
′, v0, u0)

< max [ωp(B
′, v0, u0), ωp(B

′, v, u0)] − ωp(B
′, v0, u0)

= 0.

Since |B′′ − B| = |B′ − B| − 1, Claim 3 contradicts our choice of (B,B′) ∈ D.

Therefore we conclude D = ∅.
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2.2 Proof for valuated delta-matroids

Obviously, (D1) ⇒ (D2) and (D1) ⇒ (D3). To prove (D2) ⇒ (D1) and (D3) ⇒
(D1) we first show two lemmas. For δ : 2V → R ∪ {−∞} and p : V → R define

δp(I) = δ(I) +
∑

{p(u) | u ∈ I} (I ⊆ V ) (2.8)

and

δ(I, u, v) = δ(I∆u∆v) − δ(I) (I ∈ F , u 6= v),

δp(I, u, v) = δp(I∆u∆v) − δp(I) (I ∈ F , u 6= v).

Note that δ(I, u, v) = δ(I, v, u) and δp(I, u, v) = δp(I, v, u). If {u, v} ⊆ I∆I ′,

I ∈ F and I ′ ∈ F we have

δ(I∆u∆v) + δ(I ′∆u∆v) − δ(I) − δ(I ′)

= δ(I, u, v) + δ(I ′, v, u)

= δp(I, u, v) + δp(I
′, v, u). (2.9)

Lemma 2.3 Let I ∈ F , I∆I ′ = {v1, v2, v3, v4} (with vi being distinct) and p :

V → R. If (D2) or (D3) is satisfied, then

δp(I
′) − δp(I) ≤ max(π12 + π34, π13 + π24, π14 + π23), (2.10)

where πij = δp(I, vi, vj) for i, j ∈ {1, 2, 3, 4}.

(Proof) Put γ = δ(I ′) − δ(I) and αij = δ(I, vi, vj) for {i, j} ⊂ {1, 2, 3, 4} with

i 6= j. First note that for {i, j} ⊂ {1, 2, 3, 4} with i 6= j, we have

I ′∆vi∆vj = I∆vl∆vm

with {l,m} = {1, 2, 3, 4} − {i, j}, and hence

δ(I ′∆vi∆vj) − δ(I) = αlm. (2.11)

Note also that by (2.9) the desired inequality (2.10) is equivalent to

γ ≤ max(α12 + α34, α13 + α24, α14 + α23). (2.12)

Suppose (D2) is satisfied. We have

δ(I) + δ(I ′) ≤ δ(I∆vi∆vj) + δ(I ′∆vi∆vj)
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for some {i, j} with i 6= j. Using (2.11) we obtain (2.12).

Suppose now (D3) is satisfied. Using (D3) with u = vk we obtain

δ(I) + δ(I ′) ≤ δ(I∆vk∆vi) + δ(I ′∆vj∆vi) (2.13)

for some {i, j} = {ik, jk} with i 6= k and i 6= j. Note that (2.13) can be written as

αki + αlm ≥ γ

with {l,m} = {1, 2, 3, 4} − {i, j}. If jk = k for some k ∈ {1, 2, 3, 4}, we are done.

Therefore we assume that jk 6= k for any k ∈ {1, 2, 3, 4}. Then the following lemma

establishes (2.12).

Lemma 2.4 If for each k ∈ {1, 2, 3, 4} there exists {i,m} ⊂ {1, 2, 3, 4}−{k} with

i 6= m such that

αki + αkm ≥ γ, (2.14)

then we have

max(α12 + α34, α13 + α24, α14 + α23) ≥ γ. (2.15)

(Proof) Though the proof is elementary and similar to the one for Lemma 2.1, it

is included here for completeness.

In (2.14) with k = 1 we may assume i = 2 and m = 4, which yields

α12 + α14 ≥ γ. (2.16)

From (2.14) with k = 3 we see that at least one of the following three inequalities

holds:

α13 + α34 ≥ γ, (2.17)

α23 + α34 ≥ γ, (2.18)

α13 + α23 ≥ γ. (2.19)

In view of the symmetry between (2.17) and (2.19) under (2.16) we may concen-

trate upon the first two cases (2.17) and (2.18).

In the second case (2.18) we add (2.16) and (2.18) to get

(α12 + α34) + (α14 + α23) ≥ 2γ, (2.20)

which implies

max(α12 + α34, α14 + α23) ≥ γ,
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establishing (2.15).

We consider the other case (2.17). We use (2.14) with k = 2 to see that at

least one of the following three inequalities holds:

α12 + α24 ≥ γ, (2.21)

α23 + α24 ≥ γ, (2.22)

α12 + α23 ≥ γ. (2.23)

In the first case (2.21) we add (2.17) and (2.21) to obtain

(α12 + α34) + (α13 + α24) ≥ 2γ,

which implies

max(α12 + α34, α14 + α23) ≥ γ,

establishing (2.15). In the second case (2.22) we add (2.16), (2.17) and (2.22) to

obtain

(α12 + α34) + (α13 + α24) + (α14 + α23) ≥ 3γ, (2.24)

which implies (2.15).

The remaining case (2.23), where (2.16) and (2.17) are valid, can be resolved

as follows. From (2.14) with k = 4 we see that at least one of the following three

inequalities holds:

α14 + α24 ≥ γ, (2.25)

α14 + α34 ≥ γ, (2.26)

α24 + α34 ≥ γ. (2.27)

In case of (2.25) we add (2.17), (2.23) and (2.25) to obtain (2.24). In case of (2.26)

we add (2.23) and (2.26) to obtain (2.20). Finally, in case of (2.27) we add (2.16),

(2.17), (2.23) and (2.27) to obtain

2(α12 + α34) + (α13 + α24) + (α14 + α23) ≥ 4γ,

which implies (2.15).

Define

D = {(I, I ′) | I, I ′ ∈ F ,∃u∗ ∈ I∆I ′,∀v ∈ (I∆I ′) − u∗ :

δ(I) + δ(I ′) > δ(I∆u∗∆v) + δ(I ′∆u∗∆v)},

which denotes the set of pairs (I, I ′) for which the exchangeability in (D1) fails.

In what follows we are to show D = ∅ if (D2) or (D3) is satisfied.
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Suppose to the contrary that D 6= ∅, and take (I, I ′) ∈ D such that |I∆I ′| is

minimum and let u∗ ∈ I∆I ′ be as in the definition of D. Define p : V → R by

p(v) =



δ(I, u∗, v) (v ∈ (I − I ′) − u∗, I∆u∗∆v ∈ F)

−δ(I, u∗, v) (v ∈ (I ′ − I) − u∗, I∆u∗∆v ∈ F)

−δ(I ′, v, u∗) − ε (v ∈ (I − I ′) − u∗, I∆u∗∆v 6∈ F , I ′∆u∗∆v ∈ F)

δ(I ′, v, u∗) + ε (v ∈ (I ′ − I) − u∗, I∆u∗∆v 6∈ F , I ′∆u∗∆v ∈ F)

0 (otherwise)

with some ε > 0 and consider δp defined in (2.8).

Claim 1:

δp(I, u∗, v) = 0 if v ∈ (I∆I ′) − u∗, I∆u∗∆v ∈ F , (2.28)

δp(I
′, v, u∗) < 0 for v ∈ (I∆I ′) − u∗. (2.29)

The inequality (2.29) can be shown as follows. If I∆u∗∆v ∈ F , we have δp(I, u∗, v) =

0 by (2.28) and

δp(I, u∗, v) + δp(I
′, v, u∗) = δ(I, u∗, v) + δ(I ′, v, u∗) < 0

by (2.9) and the definition of u∗. Otherwise we have δp(I
′, v, u∗) = −ε or −∞

according to whether I ′∆u∗∆v ∈ F or not.

Next we claim under the assumption of (D2) or (D3) that

Claim 2: There exists {u0, v0} ⊆ (I∆I ′)− u∗ such that u0 6= v0 and I ′∆u0∆v0 ∈
F .

In fact, (D2) implies that ∃{u0, v0} ⊆ I∆I ′ with u0 6= v0 and

−∞ 6= δ(I) + δ(I ′) ≤ δ(I∆u0∆v0) + δ(I ′∆u0∆v0),

whereas (D3) implies that ∃{u0, v0} ⊆ I∆I ′ with u0 6= v0 6= u∗ and

−∞ 6= δ(I) + δ(I ′) ≤ δ(I∆u∗∆v0) + δ(I ′∆u0∆v0).

In either case we have u0 6= u∗ 6= v0 by the definition of u∗, and I ′∆u0∆v0 ∈ F by

δ(I ′∆u0∆v0) 6= −∞.

In addition to the conditions imposed in Claim 2 we can further assume

δp(I
′, v0, u0) ≥ δp(I

′, v, u) ({u, v} ⊆ (I∆I ′) − u∗, u 6= v) (2.30)

by choosing u0 and v0 appropriately. Put I ′′ = I ′∆u0∆v0.
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Claim 3: (I, I ′′) ∈ D.

To prove this it suffices to show

δp(I, u∗, v) + δp(I
′′, v, u∗) < 0 (v ∈ (I∆I ′′) − u∗).

We may restrict ourselves to v with I∆u∗∆v ∈ F , since otherwise the first term

δp(I, u∗, v) is equal to −∞. For such v the first term is equal to zero by (2.28).

For the second term it follows from Lemma 2.3, (2.29) and (2.30) that

δp(I
′′, v, u∗) = δp(I

′∆{u0, u∗, v0, v}) − δp(I
′∆u0∆v0)

≤ max[δp(I
′, v0, u0) + δp(I

′, v, u∗), δp(I
′, v, u0) + δp(I

′, v0, u∗),

δp(I
′, v0, v) + δp(I

′, u0, u∗)] − δp(I
′, v0, u0)

< max[δp(I
′, v0, u0), δp(I

′, v, u0), δp(I
′, v0, v)] − δp(I

′, v0, u0)

= 0.

Since |I∆I ′′| = |I∆I ′| − 2, Claim 3 contradicts our choice of (I, I ′) ∈ D.

Therefore we conclude D = ∅.
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