Research Trends in Combinatorial Optimization

Bonn 2008
Recent Developments in Discrete Convex Analysis

Kazuo Murota

Summary. This paper describes recent developments in discrete convex analysis. Particular emphasis is laid on natural introduction of the classes of L-convex and M-convex functions in discrete and continuous variables. Expansion of the application areas is demonstrated by recent connections to submodular function maximization, finite metric space, eigenvalues of Hermitian matrices, discrete fixed point theorem, and matching games.

11.1 Introduction

This paper describes recent developments in discrete convex analysis. Particular emphasis is laid on natural introduction of the classes of L-convex and M-convex functions in discrete and continuous variables. Expansion of the application areas is demonstrated by recent connections to submodular function maximization, finite metric space, eigenvalues of Hermitian matrices, discrete fixed point theorem, and matching games.

Discrete convex analysis (Murota 1998b, 2001, 2003a) is aimed at establishing a general theoretical framework for solvable discrete optimization problems by means of a combination of the ideas in continuous optimization and combinatorial optimization. The framework of convex analysis is adapted to discrete settings and the mathematical results in matroid/submodular function theory are generalized. Viewed from the continuous side, it is a theory of convex functions $f : \mathbb{R}^n \to \mathbb{R}$ that have additional combinatorial properties. Viewed from the discrete side, it is a theory of discrete functions $f : \mathbb{Z}^n \to \mathbb{R}$ or $f : \mathbb{Z}^n \to \mathbb{Z}$ that enjoy certain nice properties comparable to convexity. Symbolically,

Discrete Convex Analysis = Convex Analysis + Matroid Theory.

The theory extends the direction set forth by J. Edmonds, A. Frank, S. Fujishige, and L. Lovász (Edmonds 1970; Frank 1982; Fujishige 1984; Lovász 1983); see also (Fujishige 2005, Chap. VII). The reader is referred to Rockafellar (1970) for convex

Two convexity concepts, called L-convexity and M-convexity, play primary roles. L-convex functions and M-convex functions are conjugate to each other through the (continuous or discrete) Legendre–Fenchel transformation. L-convex functions and M-convex functions generalize, respectively, the concepts of submodular set functions and base polyhedra. It is noted that “L” stands for “Lattice” and “M” for “Matroid.”

The contents of this paper are as follows. The first part, Sects. 11.2 to 11.5, presents the fundamental facts with some new observations, whereas the second part, Sects. 11.6 to 11.10, deals with recent topics.

Section 11.1: Introduction
Section 11.2: Concepts of Discrete Convex Functions
Section 11.3: Conjugacy
Section 11.4: Examples
Section 11.5: Separation and Fenchel Duality
Section 11.6: Submodular Function Maximization
Section 11.7: Finite Metric Space
Section 11.8: Eigenvalue of Hermitian Matrices
Section 11.9: Discrete Fixed Point Theorem
Section 11.10: Stable Marriage and Assignment Game

The set of all real numbers is denoted by \(\mathbb{R} \), and \(\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \) and \(\underline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \). The set of all integers is denoted by \(\mathbb{Z} \), and \(\overline{\mathbb{Z}} = \mathbb{Z} \cup \{+\infty\} \) and \(\underline{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty\} \).

Let \(V = \{1, 2, \ldots, n\} \) for a positive integer \(n \). The characteristic vector of \(X \subseteq V \) is denoted by \(\chi_X \in \{0, 1\}^n \). For \(i \in V \), we write \(\chi_i \) for \(\chi_{\{i\}} \), which is the \(i \)th unit vector, and \(\chi_0 = 0 \) (zero vector).

11.2 Concepts of Discrete Convex Functions

The concepts of L-convex and M-convex functions can be obtained through discretization of two different characterizations of convex functions.

11.2.1 Ordinary Convex Functions

We start by recalling the definition of ordinary convex functions. A function \(f : \mathbb{R}^n \rightarrow \overline{\mathbb{R}} \) is said to be convex if

\[
\lambda f(x) + (1 - \lambda) f(y) \geq f(\lambda x + (1 - \lambda)y)
\]

(1)

for all \(x, y \in \mathbb{R}^n \) and for all \(\lambda \) with \(0 \leq \lambda \leq 1 \), where it is understood that the inequality is satisfied if \(f(x) \) or \(f(y) \) is equal to \(+\infty \). A function \(h : \mathbb{R}^n \rightarrow \mathbb{R} \) is said to be concave if \(-h \) is convex.
A set $S \subseteq \mathbb{R}^n$ is called convex if, for any $x, y \in S$ and $0 \leq \lambda \leq 1$, we have $\lambda x + (1-\lambda)y \in S$. The indicator function of a set S is a function $\delta_S : \mathbb{R}^n \rightarrow \{0, +\infty\}$ defined by

$$\delta_S(x) = \begin{cases} 0 & (x \in S), \\ +\infty & (x \notin S). \end{cases}$$

Then S is a convex set if and only if δ_S is a convex function.

For a function $f : \mathbb{R}^n \rightarrow \mathbb{R} \cup (-\infty, +\infty)$ in general, the set

$$\text{dom}_f = \{ x \in \mathbb{R}^n \mid f(x) \in \mathbb{R} \}$$

is called the effective domain of f. A point $x \in \mathbb{R}^n$ is said to be a global minimum of f if the inequality $f(x) \leq f(y)$ holds for every $y \in \mathbb{R}^n$. Point x is a local minimum if this inequality holds for every y in some neighborhood of x. The set of global minima (minimizers) is denoted as

$$\text{argmin}_f = \{ x \in \mathbb{R}^n \mid f(x) \leq f(y) \ (\forall y \in \mathbb{R}^n) \}. $$

Convex functions are tractable in optimization (or minimization) problems and this is mainly because of the following properties.

1. Local optimality (or minimality) guarantees global optimality.
2. Duality theorems such as min-max relation and separation hold.

Duality is a central issue in convex analysis, and is discussed in Sect. 11.5.

A separable convex function is a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ that can be represented as

$$f(x) = \sum_{i=1}^{n} \varphi_i(x_i),$$

where $x = (x_i \mid i = 1, \ldots, n)$ and $\varphi_i : \mathbb{R} \rightarrow \mathbb{R}$ ($i = 1, \ldots, n$) are univariate convex functions.

11.2.2 Discrete Convex Functions

We now consider how convexity concept can (or should) be defined for functions in discrete variables. It would be natural to expect the following properties of any function $f : \mathbb{Z}^n \rightarrow \mathbb{R}$ that is qualified as a "discrete convex function."

1. Function f is extensible to a convex function on \mathbb{R}^n.
2. Local optimality (or minimality) guarantees global optimality.
3. Duality theorems such as min-max relation and separation hold.

Recall that $f : \mathbb{Z}^n \rightarrow \mathbb{R}$ is said to be convex-extensible if there exists a convex function $\tilde{f} : \mathbb{R}^n \rightarrow \mathbb{R}$ such that $\tilde{f}(x) = f(x)$ for all $x \in \mathbb{Z}^n$. It is widely understood that convex extensibility alone does not yield a fruitful theoretical framework, which fact motivates us to introduce L-convex and M-convex functions. In this section we focus on convex extensibility and local optimality while deferring duality issues to Sect. 11.5. The effective domain and the set of minimizers are denoted respectively as
\[\text{dom}_{\mathbb{Z}_+} f = \{ x \in \mathbb{Z}^n \mid f(x) \in \mathbb{R} \}, \]
\[\text{argmin}_{\mathbb{Z}_+} f = \{ x \in \mathbb{Z}^n \mid f(x) \leq f(y) \quad (\forall y \in \mathbb{Z}^n) \}. \]

Univariate and Separable Convex Functions

The univariate case \((n = 1)\) is simple and straightforward. We may regard a function \(f : \mathbb{Z} \to \overline{\mathbb{R}} \) as a discrete convex function if

\[f(x - 1) + f(x + 1) \geq 2f(x) \quad (\forall x \in \mathbb{Z}). \tag{4} \]

This is justified by the following facts.

Theorem 2.1. A function \(f : \mathbb{Z} \to \overline{\mathbb{R}} \) is convex-extensible if and only if it satisfies (4).

Theorem 2.2. For a function \(f : \mathbb{Z} \to \overline{\mathbb{R}} \) satisfying (4), a point \(x \in \text{dom}_{\mathbb{Z}_+} f \) is a global minimum if and only if it is a local minimum in the sense that

\[f(x) \leq \min \{ f(x - 1), f(x + 1) \}. \]

Theorems 2.1 and 2.2 above can be extended in obvious ways to a separable (discrete) convex function \(f : \mathbb{Z}^n \to \overline{\mathbb{R}} \), which is, by definition, representable in the form of (3) with univariate functions \(\varphi_i : \mathbb{Z} \to \overline{\mathbb{R}} \) having property (4).

L-convex Functions

We explain the concept of L-convex functions (Murota 1998b) by featuring an equivalent variant thereof, called \(L^1 \)-convex functions (Fujishige and Murota 2000) ("\(L^1 \)" should be read "el natural").

We first observe that a convex function \(g \) on \(\mathbb{R}^n \) satisfies

\[g(p) + g(q) \geq g \left(\frac{p + q}{2} \right) + g \left(\frac{p + q}{2} \right) \quad (p, q \in \mathbb{R}^n), \tag{5} \]

which is a special case of (1) with \(\lambda = 1/2 \). This property, called midpoint convexity, is known to be equivalent to convexity if \(g \) is a continuous function.

For a function \(g : \mathbb{Z}^n \to \overline{\mathbb{R}} \) in discrete variables the above inequality does not always make sense, since the midpoint \(\frac{p + q}{2} \) of two integer vectors \(p \) and \(q \) may not be integral. Instead we simulate (5) by

\[g(p) + g(q) \geq g \left(\left\lfloor \frac{p + q}{2} \right\rfloor \right) + g \left(\left\lceil \frac{p + q}{2} \right\rceil \right) \quad (p, q \in \mathbb{Z}^n), \tag{6} \]

where, for \(z \in \mathbb{R} \) in general, \(\lfloor z \rfloor \) denotes the smallest integer not smaller than \(z \) (rounding-up to the nearest integer) and \(\lceil z \rceil \) the largest integer not larger than \(z \) (rounding-down to the nearest integer), and this operation is extended to a vector
by componentwise applications, as illustrated in Fig. 11.1 in the case of $n = 2$. We refer to (6) as discrete midpoint convexity.

We say that a function $g : \mathbb{Z}^n \rightarrow \overline{\mathbb{R}}$ is L^λ-convex if it satisfies discrete midpoint convexity (6). In the case of $n = 1$, L^λ-convexity is equivalent to the condition (4). A concrete example of an L^λ-convex function ($n = 2$) is shown in Fig. 11.2. Examples of L^λ-convex functions are given in Sect. 11.4.1.

With this definition we can obtain the following desired statements in parallel with Theorems 2.1 and 2.2.

Theorem 2.3. An L^λ-convex function $g : \mathbb{Z}^n \rightarrow \overline{\mathbb{R}}$ is convex-extensible.

Theorem 2.4. For an L^λ-convex function $g : \mathbb{Z}^n \rightarrow \overline{\mathbb{R}}$, a point $p \in \text{dom}_Z g$ is a global minimum if and only if it is a local minimum in the sense that

$$g(p) \leq \min\{g(p - q), g(p + q)\} \quad (\forall q \in \{0, 1\}^n).$$

(7)

Although Theorem 2.4 affords a local criterion for global optimality of a point p, a straightforward verification of (7) requires $O(2^n)$ function evaluations. The verification can be done in polynomial time as follows. We consider set functions ρ^+_p and ρ^-_p defined by $\rho^+_p(Y) = g(p + \chi_Y) - g(p)$ for $Y \subseteq V$, both of which are submodular. Since (7) is equivalent to saying that both ρ^+_p and ρ^-_p achieve the minimum at $Y = \emptyset$, this condition can be verified in polynomial time by submodular function minimization algorithms (Iwata 2007).
L-convexity is closely related with submodularity. For two vectors \(p \) and \(q \), the vectors of componentwise maxima and minima are denoted respectively by \(p \vee q \) and \(p \wedge q \), that is,
\[
(p \vee q)_i = \max(p_i, q_i), \quad (p \wedge q)_i = \min(p_i, q_i).
\]
A function \(g : \mathbb{Z}^n \to \mathbb{R} \) is called submodular if
\[
g(p) + g(q) \geq g(p \vee q) + g(p \wedge q) \quad (p, q \in \mathbb{Z}^n),
\]
and translation submodular if
\[
g(p) + g(q) \geq g((p - \alpha \mathbf{1}) \vee q) + g(p \wedge (q + \alpha \mathbf{1})) \quad (\alpha \in \mathbb{Z}_+, \ p, q \in \mathbb{Z}^n),
\]
where \(\mathbf{1} = (1, 1, \ldots, 1) \) and \(\mathbb{Z}_+ \) denotes the set of nonnegative integers. The latter property characterizes L-convexity, as follows.

Theorem 2.5. For a function \(g : \mathbb{Z}^n \to \mathbb{R} \), translation submodularity (9) is equivalent to discrete midpoint convexity (6).

An L-convex function is defined as an L-convex function \(g \) that satisfies
\[
g(p + \mathbf{1}) = g(p) + r
\]
for some \(r \in \mathbb{R} \) (which is independent of \(p \)). It is known that \(g \) is L-convex if and only if it satisfies (8) and (10); in fact this is the original definition of L-convexity. L-convex functions and L-convex functions are essentially the same, in that L-convex functions in \(n \) variables can be identified, up to the constant \(r \) in (10), with L-convex functions in \(n + 1 \) variables.

M-convex Functions

Just as L-convexity is defined through discretization of midpoint convexity, another kind of discrete convexity, called M-convexity (Murota 1996c, 1998b), can be defined through discretization of another convexity property. We feature an equivalent variant of M-convexity, called M*-convexity (Murota and Shioura 1999) ("M*-convexity should be read "em natural").

We first observe that a convex function \(f \) on \(\mathbb{R}^n \) satisfies the inequality
\[
f(x) + f(y) \geq f(x - \alpha(x - y)) + f(y + \alpha(x - y))
\]
for every \(\alpha \in \mathbb{R} \) with \(0 \leq \alpha \leq 1 \). This inequality follows from (1) for \(\lambda = \alpha \) and \(\lambda = 1 - \alpha \), whereas it implies (1) if \(f \) is a continuous function. The inequality (11) says that the sum of the function values evaluated at two points, \(x \) and \(y \), does not increase if the two points approach each other by the same distance on the line segment connecting them (see Fig. 11.3). We refer to this property as equidistance convexity.

For a function \(f : \mathbb{Z}^n \to \mathbb{R} \) in discrete variables we simulate equidistance convexity (11) by moving a pair of points \((x, y) \) to another pair \((x', y') \) along the co-
ordinate axes rather than on the connecting line segment. To be more specific, we consider two kinds of possibilities

\[(x', y') = (x - \chi_i, y + \chi_i) \quad \text{or} \quad (x', y') = (x - \chi_i + \chi_j, y + \chi_i - \chi_j)\]

(12)

with indices \(i\) and \(j\) such that \(x_i > y_i\) and \(x_j < y_j\); see Fig. 11.4. For a vector \(z \in \mathbb{R}^n\) in general, define the positive and negative supports of \(z\) as

\[\text{supp}^+(z) = \{i \mid z_i > 0\}, \quad \text{supp}^-(z) = \{j \mid z_j < 0\}.\]

Then the expression (12) can be rewritten compactly as \((x', y') = (x - \chi_i + \chi_j, y + \chi_i - \chi_j)\) with \(i \in \text{supp}^+(x - y)\) and \(j \in \text{supp}^-(x - y) \cup \{0\}\), where \(\chi_0\) is defined to be the zero vector.

As a discrete analogue of equidistance convexity (11) we consider the following condition: For any \(x, y \in \text{dom}_z f\) and any \(i \in \text{supp}^+(x - y)\), there exists \(j \in \text{supp}^-(x - y) \cup \{0\}\) such that

\[f(x) + f(y) \geq f(x - \chi_i + \chi_j) + f(y + \chi_i - \chi_j),\]

(13)

which is referred to as the exchange property. A function \(f : \mathbb{Z}^n \to \overline{\mathbb{R}}\) having this exchange property is called \(M^\chi\)-convex. In the case of \(n = 1\), \(M^\chi\)-convexity is equivalent to the condition (4). A concrete example of an \(M^\chi\)-convex function \((n = 2)\) is shown in Fig. 11.5. Examples of \(M^\chi\)-convex functions are given in Sect. 11.4.2.

With this definition we can obtain the following desired statements comparable to Theorems 2.1 and 2.2.
Theorem 2.6. An M^a-convex function $f : \mathbb{Z}^n \rightarrow \mathbb{R}$ is convex-extensible.

Theorem 2.7. For an M^a-convex function $f : \mathbb{Z}^n \rightarrow \mathbb{R}$, a point $x \in \text{dom}_f$ is a global minimum if and only if it is a local minimum in the sense that

$$f(x) \leq f(x - x_i + \chi_j) \quad (\forall i, j \in \{0, 1, \ldots, n\}).$$

An M-convex function is defined as an M^a-convex function f that satisfies (13) with $j \in \text{supp}^\prec(x - y)$. This is equivalent to saying that f is an M-convex function if and only if it is M^a-convex and $\text{dom}_f \subseteq \{x \in \mathbb{Z}^n : \sum_{i=1}^n x_i = r\}$ for some $r \in \mathbb{Z}$. M-convex functions and M^a-convex functions are essentially the same, in that M^a-convex functions in n variables can be obtained as projections of M-convex functions in $n + 1$ variables.

Classes of Discrete Convex Functions

We have thus defined L^a-convex functions and M^a-convex functions by discretization of midpoint convexity and equidistance convexity, respectively. The definitions are summarized in Fig. 11.6.

Figure 11.7 shows the classes of discrete convex functions we have introduced. L^a-convex functions contain L-convex functions as a special case. The same is true for M^a-convex and M-convex functions. By Theorems 2.3 and 2.6 both L^a-convex functions and M^a-convex functions are contained in the class of convex-extensible functions. It is known that the classes of L-convex functions and M-convex functions are disjoint, whereas the intersection of the classes of L^a-convex functions and M^a-convex functions is exactly the class of separable convex functions.
Fig. 11.6. Definitions of L^h-convexity and M^d-convexity by discretization

Fig. 11.7. Classes of discrete convex functions (L^h-convex \cap M^d-convex = separable convex)

Discrete Convex Sets

In the continuous case the convexity of a set $S \subseteq \mathbb{R}^n$ can be characterized by that of its indicator function δ_S as

$$S \text{ is a convex set } \iff \delta_S \text{ is a convex function.}$$

We make use of this relation to define the concepts of discrete convex sets.

For a set $S \subseteq \mathbb{Z}^n$ the indicator function of S is a function $\delta_S : \mathbb{Z}^n \to \mathbb{R}$ given by (2). L^h-convex sets and M^d-convex sets are defined as

S is an L^h-convex set $\iff \delta_S$ is an L^h-convex function,

S is an M^d-convex set $\iff \delta_S$ is an M^d-convex function.
Similarly for the definitions of L-convex and M-convex sets. We have \(S = \overline{S} \cap \mathbb{Z}^n \) for an \(L^b \)-convex (\(M^b \)-convex, L-convex or M-convex) set \(S \), where \(\overline{S} \) denotes the convex hull of \(S \).

For an \(L^b \)-convex function \(f \), both \(\text{dom}_x f \) and \(\text{argmin}_x f \) are \(L^b \)-convex sets. This statement remains true when \(L^b \)-convexity is replaced by \(M^b \)-convexity, L-convexity or M-convexity.

11.2.3 Discrete Convex Functions in Continuous Variables

So far we have been concerned with the translation from “continuous” to “discrete.” We have defined L-convex and M-convex functions by discretization of midpoint convexity and equidistance convexity, respectively. Although these two properties are both equivalent to (ordinary) convexity for continuous functions in continuous variables, their discrete versions have given rise to different concepts (cf. Fig. 11.6).

We are now interested in the reverse direction, from “discrete” to “continuous,” to define the concepts of L-convex and M-convex functions in continuous variables (Murota and Shioura 2000, 2004a, 2004b). In so doing we intend to capture certain classes of convex functions with additional combinatorial structures. We refer to such functions as discrete convex functions in continuous variables. This may sound somewhat contradictory, but the adjective “discrete” indicates the discreteness in direction in the space \(\mathbb{R}^n \) of continuous variables.

L-convex Functions

\(L^b \)-convex functions in discrete variables have been introduced in terms of a discretization of midpoint convexity. By Theorem 2.5, however, we can alternatively say that \(L^b \)-convex functions are those functions which satisfy translation submodularity (9).

This alternative definition enables us to introduce the concept of \(L^b \)-convex functions in continuous variables. That is, a convex function \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) is defined to be \(L^b \)-convex if

\[
g(p) + g(q) \geq g((p - \alpha) \vee q) + g(p \wedge (q + \alpha)) \quad (\alpha \in \mathbb{R}_+, \ p, q \in \mathbb{R}^n),
\]

where \(\mathbb{R}_+ \) denotes the set of nonnegative reals. Examples of \(L^b \)-convex functions are given in Sect. 11.4.1.

\(L^b \)-convex functions constitute a subclass of convex functions that are equipped with certain combinatorial properties in addition to convexity. It is known (Murota and Shioura 2004b), for example, that a smooth function \(g \) is \(L^b \)-convex if and only if the Hessian matrix \(H = (h_{ij} = \partial^2 g / \partial p_i \partial p_j) \) is a diagonally dominant symmetric M-matrix, i.e.,

\[
h_{ij} \leq 0 \quad (i \neq j), \quad \sum_{j=1}^n h_{ij} \geq 0 \quad (i = 1, \ldots, n)
\]
at each point. This is a combinatorial property on top of positive semidefiniteness, which is familiar in operations research, mathematical economics, and numerical analysis. It may be said that L^b-convexity extends this well-known property to non-smooth functions.

An L-convex function in continuous variables is defined as an L^b-convex function $g : \mathbb{R}^n \to \mathbb{R}$ that satisfies

$$g(p + \alpha 1) = g(p) + \alpha r \quad (\alpha \in \mathbb{R}, \ p \in \mathbb{R}^n) \quad (16)$$

for some $r \in \mathbb{R}$ (which is independent of p and α). L-convex functions and L^b-convex functions are essentially the same, in that L^b-convex functions in n variables can be identified, up to the constant r in (16), with L-convex functions in $n + 1$ variables.

The inequality (14) is a continuous version of the translation submodularity (9), in which we had $\alpha \in \mathbb{Z}_+$ and $p, q \in \mathbb{Z}^n$ instead of $\alpha \in \mathbb{R}_+$ and $p, q \in \mathbb{R}^n$. It may be said that (14) is obtained from (9) by prolongation, by which we mean a process converse to discretization. Figure 11.8 summarizes how we have defined L^b-convex functions in discrete and continuous variables. Note that prolongation of discrete midpoint convexity renders no novel concept, but reduces to midpoint convexity, which is (almost) equivalent to convexity.

M-convex Functions

M^b-convex functions in continuous variables can be defined by prolongation of the exchange property (13). We say that a convex function $f : \mathbb{R}^n \to \mathbb{R}$ is M^b-convex if, for any $x, y \in \text{dom}_f f$ and any $i \in \text{supp}^+(x - y)$, there exist $j \in \text{supp}^-(x - y) \cup \{0\}$ and a positive real number α_0 such that

$$f(x) + f(y) \geq f(x - \alpha(\chi_i - \chi_j)) + f(y + \alpha(\chi_i - \chi_j)) \quad (17)$$

for all $\alpha \in \mathbb{R}$ with $0 \leq \alpha \leq \alpha_0$.
$f : \mathbb{R}^n \to \overline{\mathbb{R}}$

![Diagram showing the relationship between convex, \(M^k\)-convex, \(L^k\)-convex, and \(L^b\)-convex functions.]

Fig. 11.9. Classes of convex functions (\(L^b\)-convex \(\cap \) \(M^d\)-convex = separable convex)

\(M^d\)-convex functions in continuous variables constitute another subclass of convex functions, different from \(L^b\)-convex functions, that are equipped with another kind of combinatorial properties. See examples in Sect. 11.4.2.

An \(M\)-convex function in continuous variables is defined as an \(M^d\)-convex function \(f : \mathbb{R}^n \to \overline{\mathbb{R}}\) that satisfies (17) with \(j \in \text{supp}^{-}(x - y)\). This is equivalent to saying that \(f\) is \(M\)-convex if and only if it is \(M^d\)-convex and \(\text{dom}_{\mathbb{R}} f \subseteq \{x \in \mathbb{R}^n \mid \sum_{i=1}^{n} x_i = r\}\) for some \(r \in \mathbb{R}\). \(M\)-convex functions and \(M^d\)-convex functions are essentially the same, in that \(M^d\)-convex functions in \(n\) variables can be obtained as projections of \(M\)-convex functions in \(n + 1\) variables.

Classes of Discrete Convex Functions in Continuous Variables

Figure 11.9 shows the classes of discrete convex functions in continuous variables. \(L^b\)-convex functions contain \(L\)-convex functions as a special case. The same is true for \(M^d\)-convex and \(M\)-convex functions. It is known that the classes of \(L\)-convex functions and \(M\)-convex functions are disjoint, whereas the intersection of the classes of \(L^b\)-convex functions and \(M^d\)-convex functions is exactly the class of separable convex functions.

Comparison of Fig. 11.9 with Fig. 11.7 shows the parallelism between the continuous and discrete cases.

11.3 Conjugacy

Conjugacy under the Legendre transformation is one of the most appealing facts in convex analysis. In discrete convex analysis, the discrete Legendre transformation gives a one-to-one correspondence between \(L\)-convex functions and \(M\)-convex functions.
11.3.1 Continuous Case

For a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) (not necessarily convex) with \(\text{dom}_{\mathbb{R}} f \neq \emptyset \), the convex conjugate \(f^* : \mathbb{R}^n \rightarrow \mathbb{R} \) is defined by

\[
f^*(p) = \sup\{\langle p, x \rangle - f(x) \mid x \in \mathbb{R}^n\} \quad (p \in \mathbb{R}^n),
\]

where \(\langle p, x \rangle = \sum_{i=1}^{n} p_i x_i \) is the inner product of \(p = (p_i) \in \mathbb{R}^n \) and \(x = (x_i) \in \mathbb{R}^n \).

The function \(f^* \) is also referred to as the (convex) Legendre-(Fenchel) transform of \(f \), and the mapping \(f \mapsto f^* \) as the (convex) Legendre-(Fenchel) transformation. Similarly to (18), the concave conjugate of \(h : \mathbb{R}^n \rightarrow \mathbb{R} \) is defined to be the function \(h^\circ : \mathbb{R}^n \rightarrow \mathbb{R} \) given by

\[
h^\circ(p) = \inf\{\langle p, x \rangle - h(x) \mid x \in \mathbb{R}^n\} \quad (p \in \mathbb{R}^n)
\]

Note that \(h^\circ(p) = -(-h^*)^*(-p) \).

The conjugacy theorem in convex analysis states that the Legendre transformation gives a one-to-one correspondence in the class of closed proper convex functions, where a convex function \(f \) is said to be proper if \(\text{dom}_{\mathbb{R}} f \) is nonempty, and closed if the epigraph \(\{(x, y) \in \mathbb{R}^{n+1} \mid y \geq f(x)\} \) is a closed subset of \(\mathbb{R}^{n+1} \). Notation \(f^{**} \) means \((f^*)^* \).

Theorem 3.1. The Legendre transformation (18) gives a symmetric one-to-one correspondence in the class of all closed proper convex functions. That is, for a closed proper convex function \(f \), the conjugate function \(f^* \) is a closed proper convex function and \(f^{**} = f \).

Addition of combinatorial ingredients to the above theorem yields the conjugacy between M-convex and L-convex functions.

Theorem 3.2 (Murota and Shioura 2004a). The Legendre transformation (18) gives a one-to-one correspondence between the classes of all closed proper M-b-convex functions and L-b-convex functions. Similarly for M-convex and L-convex functions.

The first statement above means that, for a closed proper M-b-convex function \(f \), \(f^* \) is a closed proper L-b-convex function and \(f^{**} = f \), and that, for a closed proper L-b-convex function \(g \), \(g^* \) is a closed proper M-b-convex function and \(g^{**} = g \).

To express this one-to-one correspondence we have indicated M-b-convex functions and L-b-convex functions by congruent regions in Fig. 11.9. The second statement means similarly that, for a closed proper M-convex function \(f \), \(f^* \) is a closed proper L-convex function and \(f^{**} = f \), and that, for a closed proper L-convex function \(g \), \(g^* \) is a closed proper M-convex function and \(g^{**} = g \). It is also noted that the conjugate of a separable convex function is another separable convex function.

The L/M-conjugacy is also valid for polyhedral convex functions.

Theorem 3.3 (Murota and Shioura 2000). The Legendre transformation (18) gives a one-to-one correspondence between the classes of all polyhedral M-b-convex functions and L-b-convex functions. Similarly for M-convex and L-convex functions.
11.3.2 Discrete Case

We turn to functions defined on integer points. For functions $f : \mathbb{Z}^n \to \overline{\mathbb{R}}$ and $h : \mathbb{Z}^n \to \mathbb{R}$ with $\text{dom}_Z f \neq \emptyset$ and $\text{dom}_Z h \neq \emptyset$, discrete versions of the Legendre transformations are defined by

$$f^*(p) = \sup \{(p, x) - f(x) \mid x \in \mathbb{Z}^n \} \quad (p \in \mathbb{R}^n), \tag{20}$$

$$h^o(p) = \inf \{(p, x) - h(x) \mid x \in \mathbb{Z}^n \} \quad (p \in \mathbb{R}^n). \tag{21}$$

We call (20) and (21), respectively, convex and concave discrete Legendre (Fenchel) transformations. The functions $f^* : \mathbb{R}^n \to \overline{\mathbb{R}}$ and $h^o : \mathbb{R}^n \to \mathbb{R}$ are called the convex conjugate of f and the concave conjugate of h, respectively.

Theorem 3.4. For an M^b-convex function $f : \mathbb{Z}^n \to \overline{\mathbb{R}}$, the conjugate function $f^* : \mathbb{R}^n \to \overline{\mathbb{R}}$ is a (locally polyhedral) L^b-convex function. For an L^b-convex function $g : \mathbb{Z}^n \to \mathbb{R}$, the conjugate function $g^* : \mathbb{R}^n \to \mathbb{R}$ is a (locally polyhedral) M^b-convex function. Similarly for M-convex and L-convex functions.

For an integer-valued function f, $f^*(p)$ is integer for an integer vector p. Hence (20) with $p \in \mathbb{Z}^n$ defines a transformation of $f : \mathbb{Z}^n \to \mathbb{Z}$ to $f^* : \mathbb{Z}^n \to \mathbb{Z}$; we refer to (20) with $p \in \mathbb{Z}^n$ as (20)$_\mathbb{Z}$.

The conjugacy theorem for discrete M-convex and L-convex functions reads as follows.

Theorem 3.5 (Murota 1998b). The discrete Legendre transformation (20)$_\mathbb{Z}$ gives a one-to-one correspondence between the classes of all integer-valued M^b-convex functions and L^b-convex functions in discrete variables. Similarly for M-convex and L-convex functions.

It should be clear that the first statement above means that, for an integer-valued M^b-convex function $f : \mathbb{Z}^n \to \mathbb{Z}$, the function f^* in (20)$_\mathbb{Z}$ is an integer-valued L^b-convex function and $f^{**} = f$, where f^{**} is a short-hand notation for $(f^*)^*$ using the discrete Legendre transformation (20)$_\mathbb{Z}$, and similarly when f is L^b-convex.

11.4 Examples

11.4.1 L-convex Functions

Some examples of L^b- and L-convex functions are given in this section. The following basic facts are noted.

1. The effective domain of an L^b-convex function is an L^b-convex set.
2. An L^b-convex function remains to be L^b-convex when its effective domain is restricted to any L^b-convex set.
3. A sum of L^b-convex functions is L^b-convex.
Similar statements are true when “L^b-convex” is replaced by “L-convex” in the above.

We first consider functions in discrete variable \(p = (p_1, \ldots, p_n) \in \mathbb{Z}^n \).

- **Linear function:** A linear (or affine) function
 \[
g(p) = \alpha + \langle p, x \rangle
 \]
 with \(x \in \mathbb{R}^n \) and \(\alpha \in \mathbb{R} \) is L-convex (and hence L^b-convex).

- **Quadratic function:** A quadratic function
 \[
g(p) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} p_i p_j
 \]
 with \(a_{ij} = a_{ji} \in \mathbb{R} \) \((i, j = 1, \ldots, n)\) is L^b-convex if and only if
 \[
a_{ij} \leq 0 \quad (i \neq j), \quad \sum_{j=1}^{n} a_{ij} \geq 0 \quad (i = 1, \ldots, n).
 \]
 It is L-convex if and only if
 \[
a_{ij} \leq 0 \quad (i \neq j), \quad \sum_{j=1}^{n} a_{ij} = 0 \quad (i = 1, \ldots, n).
 \]

- **Separable convex function:** For univariate convex functions \(\psi_i \) \((i = 1, \ldots, n)\) and \(\psi_{ij} \) \((i, j = 1, \ldots, n; i \neq j)\),
 \[
g(p) = \sum_{i=1}^{n} \psi_i(p_i) + \sum_{i \neq j} \psi_{ij}(p_i - p_j)
 \]
 is an L^b-convex function. This is L-convex if \(\psi_i = 0 \) for \(i = 1, \ldots, n \).

- **Maximum-component function:** For any \(\tau_0, \tau_1, \ldots, \tau_n \in \mathbb{R} \),
 \[
g(p) = \max\{\tau_0, p_1 + \tau_1, p_2 + \tau_2, \ldots, p_n + \tau_n\}
 \]
 is an L^b-convex function. This is L-convex if \(\tau_0 \) does not exist (i.e., \(\tau_0 = -\infty \)).

Hence
\[
g(p) = \max\{p_1, p_2, \ldots, p_n\} - \min\{p_1, p_2, \ldots, p_n\}
\]

is an L-convex function. Furthermore, if \(\psi \) is a nondecreasing univariate convex function,
\[
g(p) = \psi\left(\max_{1 \leq i \leq n} \{p_i + \tau_i\}\right)
\]

is an L^b-convex function. It is also mentioned that, if \(g_0(p, t) \) is L^b-convex in \((p, t) \in \mathbb{Z}^n \times \mathbb{Z}\) and nondecreasing in \(t \), then the max-aggregation \(g : \mathbb{Z}^n \times \mathbb{Z}^m \to \mathbb{R} \) defined by
\[
g(p, q) = g_0(p, \max(q_1, \ldots, q_m)) \quad (p \in \mathbb{Z}^n, q \in \mathbb{Z}^m)
\]
is L^b-convex in \((p, q)\), whereas \(g \) is L-convex if \(g_0 \) is L-convex.
• **Submodular set function**: A submodular set function \(\rho : 2^V \to \overline{\mathbb{R}} \) can be identified with an \(\mathcal{L}^b \)-convex function \(g \) under the correspondence \(g(\chi_X) = \rho(X) \) for \(X \subseteq V \), where \(\text{dom}_\mathbb{Z} g \subseteq \{0, 1\}^n \).

• **Multimodular function**: A function \(h : \mathbb{Z}^n \to \overline{\mathbb{R}} \) is multimodular if and only if it can be represented as

\[
h(p) = g(p_1, p_1 + p_2, \ldots, p_1 + \cdots + p_n)
\]

for some \(\mathcal{L}^b \)-convex function \(g \); see (Altman et al. 2000, 2003; Hajek 1985; Murota 2005).

The constructions above work for functions in continuous variable \(p \in \mathbb{R}^n \). That is, the functions \(g : \mathbb{R}^n \to \overline{\mathbb{R}} \) defined by the expressions (22) to (30) are \(\mathcal{L}^b \)- or \(\mathcal{L} \)-convex functions, if all the variables are understood as real numbers or vectors. It is noteworthy that quadratic \(\mathcal{L}^b \)-convex functions are exactly the same as the (finite dimensional case of) Dirichlet forms used in probability theory (Fukushima et al. 1994). The energy consumed in a nonlinear electrical network, when expressed as a function in terminal voltages, is an \(\mathcal{L}^b \)-convex function (Murota 2003a, Sect. 2.2).

11.4.2 M-convex Functions

Some examples of \(\mathcal{M}^b \)- and \(\mathcal{M} \)-convex functions are given in this section. The following basic facts are noted.

1. The effective domain of an \(\mathcal{M}^b \)-convex function is an \(\mathcal{M}^b \)-convex set.
2. An \(\mathcal{M}^b \)-convex function does not necessarily remain \(\mathcal{M}^b \)-convex when its effective domain is restricted to an \(\mathcal{M}^d \)-convex set.
3. A sum of \(\mathcal{M}^b \)-convex functions is not necessarily \(\mathcal{M}^b \)-convex.
4. The *infimal convolution* of \(\mathcal{M}^b \)-convex functions \(f_1 \) and \(f_2 \), defined as

\[
(f_1 \boxplus f_2)(x) = \inf\{f_1(x_1) + f_2(x_2) \mid x = x_1 + x_2\},
\]

is \(\mathcal{M}^b \)-convex if \(f_1 \boxplus f_2 \) does not take \(-\infty\), where \(x_1, x_2 \in \mathbb{Z}^n \) in the discrete case and \(x_1, x_2 \in \mathbb{R}^n \) in the continuous case.

Similar statements are true when "\(\mathcal{M}^b \)-convex" is replaced by "\(\mathcal{M} \)-convex" in the above.

We first consider functions in discrete variable \(x = (x_1, \ldots, x_n) \in \mathbb{Z}^n \).

• **Linear function**: A linear (or affine) function

\[
f(x) = \alpha + \langle p, x \rangle
\]

with \(p \in \mathbb{R}^n \) and \(\alpha \in \mathbb{R} \) is \(\mathcal{M}^b \)-convex. It is \(\mathcal{M} \)-convex if \(\text{dom}_\mathbb{Z} f \) is an \(\mathcal{M} \)-convex set.

• **Quadratic function**: A quadratic function

\[
f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j
\]
with $a_{ij} = a_{ji} \in \mathbb{R}$ ($i, j = 1, \ldots, n$) is M^3-convex if and only if $a_{ij} \geq 0$ for all (i, j) and
\begin{equation}
 a_{ij} \geq \min(a_{ik}, a_{jk}) \quad \text{if} \quad \{i, j\} \cap \{k\} = \emptyset,
\end{equation}
where $\text{dom}_Z f = \mathbb{Z}^n$. A function f of (33), with $\text{dom}_Z f = \{x \in \mathbb{Z}^n \mid \sum_{i=1}^n x_i = r\}$ for some $r \in \mathbb{Z}$, is M-convex if and only if
\begin{equation}
 a_{ij} + a_{kl} \geq \min(a_{ik} + a_{jl}, a_{il} + a_{jk}) \quad \text{if} \quad \{i, j\} \cap \{k, l\} = \emptyset.
\end{equation}

- **Laminar convex function**: By a laminar family we mean a nonempty family \mathcal{T} of subsets of V such that $X \cap Y = \emptyset$ or $X \subseteq Y$ or $X \supseteq Y$ for any $X, Y \in \mathcal{T}$. A function f is called laminar convex if it can be represented as
\begin{equation}
 f(x) = \sum_{X \in \mathcal{T}} f_X(x(X))
\end{equation}
for a laminar family \mathcal{T} and a family of univariate convex functions f_X indexed by $X \in \mathcal{T}$, where $x(X) = \sum_{i \in X} x_i$. A laminar convex function is M^3-convex. A separable convex function (3) is laminar convex and hence M^3-convex. It is known (Hirai and Murota 2004) that every quadratic M^3-convex function (in discrete variables) is laminar convex.

- **Minimum-value function**: Given a_i for $i \in V$ we define a set function $\mu : 2^V \to \mathbb{R}$ as $\mu(X) = \min\{a_i \mid i \in X\}$ for nonempty $X \subseteq V$. By convention we put $\mu(\emptyset) = a_*$ by choosing $a_* \in \mathbb{R}$ such that $a_* \geq \max\{a_i \mid i \in V\}$. Then μ is M^3-convex when identified with a function $f : \mathbb{Z}^n \to \mathbb{R}$ with $\text{dom}_Z f \subseteq \{0, 1\}^n$ by $f(\chi_X) = \mu(X)$ for $X \subseteq V$.

- **Bipartite matching**: Let $G = (V, W; E)$ be a bipartite graph with vertex set $V \cup W$ and edge set E, and suppose that each edge $e \in E$ is associated with weight $\gamma(e) \in \mathbb{R}$. For $X \subseteq V$ denote by $\Gamma(X)$ the minimum weight of a matching that matches with X, i.e.,
\begin{equation}
 \Gamma(X) = \min\left\{ \sum_{e \in M} \gamma(e) \mid M \text{ is a matching}, \ V \cap \partial M = X \right\},
\end{equation}
where $\Gamma(X) = +\infty$ if such M does not exist. Then Γ is M^3-convex when identified with a function $f : \mathbb{Z}^n \to \mathbb{R}$ with $\text{dom}_Z f \subseteq \{0, 1\}^n$ by $f(\chi_X) = \Gamma(X)$ for $X \subseteq V$. This construction can be extended to the minimum convex-cost flow problem.

- **Stable marriage problem**: The payoff function of the stable marriage problem is M^3-concave; see (54) in Sect. 11.10.

- **Matroid**: Let $(V, B, \mathcal{I}, \rho)$ be a matroid on V with base family \mathcal{B}, independent-set family \mathcal{I} and rank function ρ. The characteristic vectors of bases $\{\chi_B \mid B \in \mathcal{B}\}$ form an M-convex set and those of independent sets $\{\chi_I \mid I \in \mathcal{I}\}$ form an M^3-convex set. The rank function $\rho : 2^V \to \mathbb{Z}$ is M^3-concave when identified with a function $f : \mathbb{Z}^n \to \mathbb{R}$ with $\text{dom}_Z f = \{0, 1\}^n$ by $f(\chi_X) = \rho(X)$ for $X \subseteq V$; see Sect. 11.6.1. More generally, the vector rank function of an integral submodular system is M^3-concave (Fujishige 2005, p. 51).
• **Valuated matroid:** A valuated matroid \(\omega : 2^V \to \mathbb{R} \) of Dress and Wenzel (1990, 1992) (see also Murota 2000, Chap. 5) can be identified with an \(M^a \)-concave function \(f \) under the correspondence \(f(\chi_X) = \omega(X) \) for \(X \subseteq V \), where \(\text{dom}_f \subseteq \{0, 1\}^n \). The tropical geometry (Speyer and Sturmfels 2004) is closely related with valuated matroids. For example, the tropical linear space (Speyer 2004) is essentially the same as the circuit valuation of matroids (Murota and Tamura 2001).

Next we turn to functions \(f : \mathbb{R}^n \to \mathbb{R} \) in continuous variable \(x \in \mathbb{R}^n \). The infimal convolution (31) preserves \(M^a \)-convexity when the infimum is taken over \(x_1, x_2 \in \mathbb{R}^n \). Laminar convex functions (36) as well as linear functions (32) remain to be \(M^b \)-convex when \(x \) is understood as a real vector. The energy consumed in a nonlinear electrical network, when expressed as a function in terminal currents, is an \(M^b \)-convex function (Murota 2003a, Sect. 2.2).

A subtlety arises for quadratic functions. Condition (34), together with \(a_{ij} \geq 0 \) for all \((i, j) \), is sufficient but not necessary for \(f : \mathbb{R}^n \to \mathbb{R} \) of the form of (33) to be \(M^b \)-convex. A necessary and sufficient condition in terms of the matrix \(A = (a_{ij}) \) is that, for any \(\beta > 0 \), \(A + \beta I \) is nonsingular and \((A + \beta I)^{-1} \) satisfies (24). It is also mentioned that not every quadratic \(M^b \)-convex function in real variables is laminar convex. As for \(M \)-convexity, condition (35) is sufficient but not necessary for \(f \) to be \(M \)-convex.

Thus the relation between discrete and continuous cases are not so simple in \(M \)-convexity as in \(L \)-convexity.

11.5 Separation and Fenchel Duality

11.5.1 Separation Theorem

The duality principle in convex analysis can be expressed in a number of different forms. One of the most appealing statements is in the form of the separation theorem, which asserts the existence of a separating affine function \(y = \alpha^* + \langle p^*, x \rangle \) for a pair of convex and concave functions.

In the continuous case we have the following.

Theorem 5.1. Let \(f : \mathbb{R}^n \to \mathbb{R} \) and \(h : \mathbb{R}^n \to \mathbb{R} \) be convex and concave functions, respectively (satisfying certain regularity conditions). If

\[
 f(x) \geq h(x) \quad (\forall x \in \mathbb{R}^n),
\]

there exist \(\alpha^* \in \mathbb{R} \) and \(p^* \in \mathbb{R}^n \) such that

\[
 f(x) \geq \alpha^* + \langle p^*, x \rangle \geq h(x) \quad (\forall x \in \mathbb{R}^n).
\]

A discrete separation theorem means a statement like:
For any \(f : \mathbb{Z}^n \rightarrow \overline{\mathbb{R}} \) and \(h : \mathbb{Z}^n \rightarrow \mathbb{R} \) belonging to certain classes of functions, if \(f(x) \geq h(x) \) for all \(x \in \mathbb{Z}^n \), then there exist \(\alpha^* \in \mathbb{R} \) and \(p^* \in \mathbb{R}^n \) such that

\[
f(x) \geq \alpha^* + \langle p^*, x \rangle \geq h(x) \quad (\forall x \in \mathbb{Z}^n).
\]

Moreover, if \(f \) and \(h \) are integer-valued, there exist integer-valued \(\alpha^* \in \mathbb{Z} \) and \(p^* \in \mathbb{Z}^n \).

Discrete separation theorems often capture deep combinatorial properties in spite of the apparent similarity to the separation theorem in convex analysis. In this connection we note the following facts (see Murota 2003a, Examples 1.5 and 1.6 for concrete examples), where \(\overline{f} \) denotes the convex closure of \(f \), \(\overline{h} \) the concave closure of \(h \), and \(\iff \) stands for "does not imply."

1. \(f(x) \geq h(x) \ (\forall x \in \mathbb{Z}^n) \iff \overline{f}(x) \geq \overline{h}(x) \ (\forall x \in \mathbb{R}^n) \).
2. \(f(x) \geq h(x) \ (\forall x \in \mathbb{Z}^n) \iff \) existence of \(\alpha^* \in \mathbb{R} \) and \(p^* \in \mathbb{R}^n \).
3. Existence of \(\alpha^* \in \mathbb{R} \) and \(p^* \in \mathbb{R}^n \iff \) existence of \(\alpha^* \in \mathbb{Z} \) and \(p^* \in \mathbb{Z}^n \).

The separation theorems for M-convex/M-concave functions and for L-convex/L-concave functions read as follows. It should be clear that \(f^* \) and \(h^* \) are the convex and concave conjugate functions of \(f \) and \(h \) defined by (20) and (21), respectively.

Theorem 5.2 (M-separation theorem). Let \(f : \mathbb{Z}^n \rightarrow \overline{\mathbb{R}} \) be an \(M^1 \)-convex function and \(h : \mathbb{Z}^n \rightarrow \mathbb{R} \) be an \(M^1 \)-concave function such that \(\text{dom}_{\mathbb{Z}} f \cap \text{dom}_{\mathbb{Z}} h \neq \emptyset \) or \(\text{dom}_{\mathbb{R}} f^* \cap \text{dom}_{\mathbb{R}} h^* \neq \emptyset \). If \(f(x) \geq h(x) \ (\forall x \in \mathbb{Z}^n) \), there exist \(\alpha^* \in \mathbb{R} \) and \(p^* \in \mathbb{R}^n \) such that

\[
f(x) \geq \alpha^* + \langle p^*, x \rangle \geq h(x) \quad (\forall x \in \mathbb{Z}^n).
\]

Moreover, if \(f \) and \(h \) are integer-valued, there exist integer-valued \(\alpha^* \in \mathbb{Z} \) and \(p^* \in \mathbb{Z}^n \).

Theorem 5.3 (L-separation theorem). Let \(g : \mathbb{Z}^n \rightarrow \overline{\mathbb{R}} \) be an \(L^1 \)-convex function and \(k : \mathbb{Z}^n \rightarrow \mathbb{R} \) be an \(L^1 \)-concave function such that \(\text{dom}_{\mathbb{Z}} g \cap \text{dom}_{\mathbb{Z}} k \neq \emptyset \) or \(\text{dom}_{\mathbb{R}} g^* \cap \text{dom}_{\mathbb{R}} k^* \neq \emptyset \). If \(g(p) \geq k(p) \ (\forall p \in \mathbb{Z}^n) \), there exist \(\beta^* \in \mathbb{R} \) and \(x^* \in \mathbb{R}^n \) such that

\[
g(p) \geq \beta^* + \langle p, x^* \rangle \geq k(p) \quad (\forall p \in \mathbb{Z}^n).
\]

Moreover, if \(g \) and \(k \) are integer-valued, there exist integer-valued \(\beta^* \in \mathbb{Z} \) and \(x^* \in \mathbb{Z}^n \).

As an immediate corollary of the M-separation theorem we can obtain an optimality criterion for the problem of minimizing the sum of two \(M \)-convex functions, which we call the \(M \)-convex intersection problem. Note that the sum of \(M \)-convex functions is no longer \(M \)-convex and Theorem 2.7 does not apply.
Theorem 5.4 (M-convex intersection theorem). For M^a-convex functions $f_1, f_2 : \mathbb{Z}^n \to \overline{\mathbb{R}}$ and a point $x^* \in \text{dom}_{\overline{\mathbb{Z}}} f_1 \cap \text{dom}_{\overline{\mathbb{Z}}} f_2$ we have

$$f_1(x^*) + f_2(x^*) \leq f_1(x) + f_2(x) \quad (\forall x \in \mathbb{Z}^n)$$

if and only if there exists $p^* \in \mathbb{R}^n$ such that

$$(f_1 - p^*)(x^*) \leq (f_1 - p^*)(x) \quad (\forall x \in \mathbb{Z}^n),$$

$$(f_2 + p^*)(x^*) \leq (f_2 + p^*)(x) \quad (\forall x \in \mathbb{Z}^n).$$

These conditions are equivalent, respectively, to

$$(f_1 - p^*)(x^*) \leq (f_1 - p^*)(x^* + x_i - x_j) \quad (\forall i, j \in \{0, 1, \ldots, n\}),$$

$$(f_2 + p^*)(x^*) \leq (f_2 + p^*)(x^* + x_i - x_j) \quad (\forall i, j \in \{0, 1, \ldots, n\}),$$

and for such p^* we have

$$\text{argmin}_{\overline{\mathbb{Z}}}(f_1 + f_2) = \text{argmin}_{\overline{\mathbb{Z}}}(f_1 - p^*) \cap \text{argmin}_{\overline{\mathbb{Z}}}(f_2 + p^*).$$

Moreover, if f_1 and f_2 are integer-valued, we can choose integer-valued $p^* \in \mathbb{Z}^n$.

Frank's discrete separation theorem (Frank 1982) for submodular/supermodular set functions is a special case of the L-separation theorem. Frank's weight splitting theorem (Frank 1981) for the weighted matroid intersection problem is a special case of the M-convex intersection problem. The submodular flow problem can be generalized to the M-convex submodular flow problem (Murota 1999); see also (Iwata et al. 2005; Iwata and Shigeno 2003).

11.5.2 Fenchel Duality

Another expression of the duality principle is in the form of the Fenchel duality. This is a min-max relation between a pair of convex and concave functions and their conjugate functions. Such a min-max theorem is computationally useful in that it affords a certificate of optimality.

The Fenchel duality theorem in the continuous case reads as follows. Recall the notations f^* and h° in (18) and (19).

Theorem 5.5. Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ and $h : \mathbb{R}^n \to \mathbb{R}$ be convex and concave functions, respectively (satisfying certain regularity conditions). Then

$$\inf\{f(x) - h(x) \mid x \in \mathbb{R}^n\} = \sup\{h^\circ(p) - f^*(p) \mid p \in \mathbb{R}^n\}.$$

We now turn to the discrete case. For any functions $f : \mathbb{Z}^n \to \overline{\mathbb{Z}}$ and $h : \mathbb{Z}^n \to \mathbb{Z}$ we have a chain of inequalities:

$$\inf\{f(x) - h(x) \mid x \in \mathbb{Z}^n\} \leq \sup\{h^\circ(p) - f^*(p) \mid p \in \mathbb{Z}^n\} \leq \inf\{\overline{f}(x) - \overline{h}(x) \mid x \in \mathbb{Z}^n\} \geq \sup\{\overline{h}^\circ(p) - \overline{f}^*(p) \mid p \in \mathbb{R}^n\}$$

from the definitions (20) and (21) of conjugate functions f^* and h°, where \overline{f} and \overline{h} are convex and concave closures of f and h, respectively. It should be observed that
1. The second inequality in the middle of (37) is in fact an equality by the Fenchel duality theorem (Theorem 5.5) in convex analysis;
2. The first (left) inequality in (37) can be strict even when \(f \) is convex-extendible and \(h \) is concave-extendible, and similarly for the third (right) inequality. See Examples 5.6 and 5.7 below.

Example 5.6. For \(f, h : \mathbb{Z}^2 \to \mathbb{Z} \) defined as

\[
f(x_1, x_2) = |x_1 + x_2 - 1|, \quad h(x_1, x_2) = 1 - |x_1 - x_2|
\]

we have \(\inf\{f - h\} = 0, \inf\{\overline{f} - \overline{h}\} = -1 \). The discrete Legendre transforms are given by

\[
f^*(p_1, p_2) = \begin{cases} p_1 & ((p_1, p_2) \in S) \\ +\infty & \text{(otherwise)} \end{cases}, \quad h^*(p_1, p_2) = \begin{cases} -1 & ((p_1, p_2) \in T) \\ -\infty & \text{(otherwise)} \end{cases}
\]

with \(S = \{(-1, 1), (0, 0), (1, 1)\} \) and \(T = \{(-1, 1), (0, 0), (1, -1)\} \). Hence \(\sup\{h^o - f^*\} = h^o(0, 0) - f^*(0, 0) = -1 - 0 = -1 \). Then (37) reads as

\[
\inf\{f - h\} > \inf\{\overline{f} - \overline{h}\} = \sup\{\overline{h}^o - \overline{f}^*\} = \sup\{h^o - f^*\}.
\]

\[
(0) \quad (0) \\
(-1) \quad (-1) \\
(-1) \quad (-1)
\]

Example 5.7. For \(f, h : \mathbb{Z}^2 \to \mathbb{Z} \) defined as

\[
f(x_1, x_2) = \max(0, x_1 + x_2), \quad h(x_1, x_2) = \min(x_1, x_2)
\]

we have \(\inf\{f - h\} = \inf\{\overline{f} - \overline{h}\} = 0 \). The discrete Legendre transforms are given as \(f^* = \delta_S \) and \(h^o = -\delta_T \) in terms of the indicator functions of \(S = \{(0, 0), (1, 1)\} \) and \(T = \{(1, 0), (0, 1)\} \). Since \(S \cap T = \emptyset \), \(h^o - f^* \) is identically equal to \(-\infty\), whereas \(\sup\{\overline{h}^o - \overline{f}^*\} = 0 \) since \(\overline{f}^* = \delta_{\overline{S}}, \overline{h}^o = -\delta_{\overline{T}} \) and \(\overline{S} \cap \overline{T} = \{(1/2, 1/2)\} \). Then (37) reads as

\[
\inf\{f - h\} = \inf\{\overline{f} - \overline{h}\} = \sup\{\overline{h}^o - \overline{f}^*\} > \sup\{h^o - f^*\}.
\]

\[
(0) \quad (0) \\
(0) \quad (-\infty)
\]

From the observations above, we see that the essence of the following theorem is the assertion that the first and third inequalities in (37) are in fact equalities for \(M^b\)-convex/\(M^b\)-concave functions and \(L^b\)-convex/\(L^b\)-concave functions.

Theorem 5.8 (Fenchel-type duality theorem).

1. Let \(f : \mathbb{Z}^n \to \mathbb{Z} \) be an integer-valued \(M^b\)-convex function and \(h : \mathbb{Z}^n \to \mathbb{Z} \) be an integer-valued \(M^b\)-concave function such that \(\text{dom}_{\mathbb{Z}} f \cap \text{dom}_{\mathbb{Z}} h \neq \emptyset \) or \(\text{dom}_{\mathbb{Z}} f^* \cap \text{dom}_{\mathbb{Z}} h^o \neq \emptyset \). Then we have

\[
\inf\{f(x) - h(x) \mid x \in \mathbb{Z}^n\} = \sup\{h^o(p) - f^*(p) \mid p \in \mathbb{Z}^n\}.
\]

(38)

If this common value is finite, the infimum and the supremum are attained.
(2) Let \(g : \mathbb{Z}^n \to \mathbb{Z} \) be an integer-valued \(L^1 \)-convex function and \(k : \mathbb{Z}^n \to \mathbb{Z} \) be an integer-valued \(L^1 \)-concave function such that \(\text{dom}_{\mathbb{Z}} g \cap \text{dom}_{\mathbb{Z}} k \neq \emptyset \) or \(\text{dom}_{\mathbb{Z}} g^* \cap \text{dom}_{\mathbb{Z}} k^0 \neq \emptyset \). Then we have

\[
\inf \{ g(p) - k(p) \mid p \in \mathbb{Z}^n \} = \sup \{ k^0(x) - g^*(x) \mid x \in \mathbb{Z}^n \}. \tag{39}
\]

If this common value is finite, the infimum and the supremum are attained.

Edmonds' intersection theorem (Edmonds 1970) in the integral case is a special case of Theorem 5.8(1) above, and Fujishige's Fenchel-type duality theorem (Fujishige 1984) (see also Fujishige 2005, Sect. 6.1) for submodular set functions is a special case of Theorem 5.8 (2) above.

Whereas L-separation and M-separation theorems are parallel or conjugate in their statements, the Fenchel-type duality theorem is self-conjugate, in that the substitution of \(f = g^* \) and \(h = k^0 \) into (38) results in (39) by virtue of \(g = g^{**} \) and \(k = k^{00} \). With the knowledge of M/L-conjugacy, these three duality theorems are almost equivalent to one another; once one of them is established, the other two theorems can be derived by relatively easy formal calculations.

11.6 Submodular Function Maximization

Maximization of a submodular set function is a difficult task in general. Many NP-hard problems can be reduced to this problem. Also known is that no polynomial algorithm exists in the ordinary oracle model (and this statement is independent of the \(P \neq \text{NP} \) conjecture) (Jensen and Korte 1982; Lovász 1980, 1983). For approximate maximization under matroid constraints the performance bounds of greedy or ascent type algorithms were analyzed in Conforti and Cornuéjols (1984), Fisher et al. (1978), Nemhauser et al. (1978) and, recently, a pipage rounding algorithm has been designed for a subclass of submodular functions in Calinescu et al. (2007), which is extended in Vondrák (2008) to general submodular functions with the aid of randomization.

\(M^1 \)-concave functions on \(\{0, 1\} \)-vectors form a subclass of submodular set functions that are algorithmically tractable for maximization. This is compatible with our general understanding that concave functions are easy to maximize, and explains why certain submodular functions treated in the literature are easier to maximize. To be specific, we have the following.

1. The greedy algorithm can be generalized for maximization of a single \(M^1 \)-concave function.
2. The matroid intersection algorithm can be generalized for maximization of a sum of two \(M^1 \)-concave functions.
3. The pipage rounding algorithm (Ageev and Sviridenko 2004) can be generalized for approximate maximization of a sum of nondecreasing \(M^1 \)-concave functions under a matroid constraint.
Note that a sum of M^a-concave functions is not necessarily M^a-concave, though it is submodular. It is also mentioned that maximization of a sum of three M^a-concave functions is NP-hard, since it includes the three-matroid intersection problem as a special case.

11.6.1 M^a-concave Set Functions

Let us say that a set function $\rho : 2^V \to \mathbb{R}$ is M^a-concave if the function $h : \mathbb{Z}^n \to \mathbb{R}$ defined as $h(x_X) = \rho(X)$ for $X \subseteq V$ and $h(x) = -\infty$ for $x \notin \{0, 1\}^n$ is M^a-concave. In other words, ρ is M^a-concave if and only if, for any $X, Y \subseteq V$ and $i \in X \setminus Y$, we have $\rho(X) + \rho(Y) \leq \rho(X \setminus \{i\}) + \rho(Y \cup \{i\})$ or $\rho(X) + \rho(Y) \leq \rho((X \setminus \{i\}) \cup \{j\}) + \rho((Y \cup \{i\}) \setminus \{j\})$ for some $j \in Y \setminus X$. An M^a-concave set function is submodular (Murata 2003a, Theorem 6.19).

Not every submodular set function is M^a-concave. An example of a submodular function that is not M^a-concave is given by ρ on $V = \{1, 2, 3\}$ defined as $\rho(\emptyset) = 0$, $\rho(\{2, 3\}) = 2$, $\rho(\{1\}) = \rho(\{2\}) = \rho(\{3\}) = \rho(\{1, 2\}) = \rho(\{1, 3\}) = \rho(\{1, 2, 3\}) = 1$. The condition above fails for $X = \{2, 3\}$, $Y = \{1\}$ and $i = 2$.

A simple example of an M^a-concave set function is given by $\rho(X) = \varphi(|X|)$, where φ is a univariate concave function. This is a classical example of a submodular function (Edmonds 1970; Lovász 1983) that connects submodularity and concavity.

For a family of univariate concave functions $\{\varphi_A \mid A \in \mathcal{T}\}$ indexed by a family \mathcal{T} of subsets of V, the function

$$\rho(X) = \sum_{A \in \mathcal{T}} \varphi_A(|A \cap X|) \quad (X \subseteq V)$$

is submodular. This function is M^a-concave if, in addition, \mathcal{T} is a laminar family (i.e., $A, B \in \mathcal{T} \Rightarrow A \cap B = \emptyset$ or $A \subseteq B$ or $A \supseteq B$).

Given a set of real numbers a_i indexed by $i \in V$, the maximum-value function

$$\rho(X) = \max_{i \in X} a_i \quad (X \subseteq V)$$

is an M^a-concave function, where $\rho(\emptyset)$ is defined to be sufficiently small.

A matroid rank function is M^a-concave (Fujishige 2005, p. 51). Given a matroid on V in terms of the family \mathcal{I} of independent sets, the rank function ρ is defined by

$$\rho(X) = \max\{|I| \mid I \in \mathcal{I}, I \subseteq X\} \quad (X \subseteq V),$$

which denotes the maximum size of an independent set contained in X. An interesting identity exists that indicates a kind of self-conjugacy of a matroid rank function. Let $g : \mathbb{Z}^n \to \mathbb{Z}$ be such that $g(x_X) = \rho(X)$ for $X \subseteq V$ and $\text{dom}_g = \{0, 1\}^n$, and denote by ρ^* the discrete Legendre transform g^* of g defined by (20)$_{\mathbb{Z}}$ (i.e., (20) with $p \in \mathbb{Z}^n$). Then we have

$$\rho(X) = |X| - \rho^*(x_X) \quad (X \subseteq V).$$
This can be shown as follows: $\rho^*(\chi_X) = \max_Y \{|X \cap Y| - \rho(Y) \mid Y \subseteq V\} = \max_Y \{|X \cap Y| - \rho(Y) \mid X \subseteq Y \subseteq V\} = \max_Y \{|X| - \rho(Y) \mid X \subseteq Y \subseteq V\} = |X| - \rho(X)$; see also (Fujishige 2005, Lemma 6.2). Since ρ is submodular, g is L^3-convex, and hence g^* ($= \rho^*$) is M^h-convex by conjugacy (Theorem 3.5). Then the expression (40) shows that ρ is M^3-concave.

A weighted matroid rank function, represented as

$$\rho(X) = \max \left\{ \sum_{i \in I} w_i \mid I \in \mathcal{I}, \ I \subseteq X \right\} \quad (X \subseteq V) \quad (41)$$

with a nonnegative vector $w \in \mathbb{R}^n$, is also M^h-concave. This is a recent observation by Shioura (2008).

11.6.2 Greedy Algorithm

M^h-concave set functions admit the following local characterization of global maximum, an immediate corollary of Theorem 2.7.

Theorem 6.1. For an M^h-concave set function $\rho : 2^V \to \mathbb{R}$ and a subset $X \subseteq V$, we have $\rho(X) \geq \rho(Y)$ ($\forall Y \subseteq V$) if and only if

$$\rho(X) \geq \max_{i \in X, j \in V \setminus X} \{\rho((X \setminus \{i\}) \cup \{j\}), \ \rho(X \setminus \{i\}), \ \rho(X \cup \{j\})\}.$$

A natural greedy algorithm works for maximization of an M^h-concave set function ρ:

S0: Put $X := \emptyset$.

S1: Find $j \in V \setminus X$ that maximizes $\rho(X \cup \{j\})$.

S2: If $\rho(X) \geq \rho(X \cup \{j\})$, then stop ($X$ is a maximizer of ρ).

S3: Set $X := X \cup \{j\}$ and go to S1.

This algorithm may be regarded as a variant of the algorithm of Dress and Wenzel (1990) for valued matroids, and the validity can be shown similarly.

11.6.3 Intersection Algorithm

Edmonds's matroid intersection/union algorithms show that we can efficiently maximize $\rho_1(X) + \rho_2(V \setminus X)$ and $\rho_1(X) + \rho_2(X) - |X|$ for two matroid rank functions ρ_1 and ρ_2. It should be clear that $\max_X \{\rho_1(X) + \rho_2(V \setminus X)\}$ is equal to the rank of the union of two matroids (V, ρ_1) and (V, ρ_2), and that $\max_X \{\rho_1(X) + \rho_2(X) - |X|\}$ is equal to the maximum size of a common independent set for matroid (V, ρ_1) and the dual of matroid (V, ρ_2). We note here that both $\rho_1(X) + \rho_2(V \setminus X)$ and $\rho_1(X) + (\rho_2(X) - |X|)$ are submodular functions that are represented as a sum of two M^3-concave functions.
Edmonds’s intersection algorithm can be generalized for M^3-concave functions. A sum of two M^3-concave set functions can be maximized in polynomial time by means of a variant of the valued matroid intersection algorithm (Murota 1996b); see also (Murota 1999, 2000, 2003a). It follows from the M-convex intersection theorem (Theorem 5.4) that, for two M^3-concave set functions ρ_1 and ρ_2, X maximizes $\rho_1(X) + \rho_2(X)$ if and only if there exists $p^* \in \mathbb{R}^n$ such that X maximizes both $\rho_1(X) + p^*(X)$ and $\rho_1(X) - p^*(X)$ at the same time, where $p^*(X) = \sum_{i \in X} p_i^*$.

11.6.4 Pipage Rounding Algorithm

Let ρ be a nondecreasing submodular set function on V and (V, \mathcal{I}) be a matroid on V with the family \mathcal{I} of independent sets. We consider the problem of maximizing $\rho(X)$ subject to $X \in \mathcal{I}$. It is assumed that the function evaluation oracle for ρ and the membership oracle for \mathcal{I} are available.

A recent paper of Calinescu et al. (2007) proposes a pipage rounding framework for approximate solution of this problem, showing that it works if the function ρ is represented as a sum of weighted matroid rank functions (41). Subsequently, it is pointed out by Shioura (2008) that this approach can be extended to the class of functions ρ represented as a sum of M^3-concave functions.

The framework of Calinescu et al. (2007) consists of three major steps.

1. Define a continuous relaxation: maximize $f(x)$ subject to $x \in P$, where P is the matroid polytope (convex hull of the characteristic vectors of independent sets) of (V, \mathcal{I}), and $f(x)$ is a nondecreasing concave function on P such that $f(x_X) = \rho(X)$ for all $X \subseteq V$.
2. Find an (approximately) optimal solution $x^* \in P$ of the continuous relaxation.
3. Round the fractional vector $x^* \in P$ to a $\{0, 1\}$-vector $\hat{x} \in P$ by applying the "pipage rounding scheme," and output the corresponding subset \hat{X} (such that $x_{\hat{X}} = \hat{x}$) as an approximate solution to the original problem.

This algorithm, if computationally feasible at all, is guaranteed to output a $(1 - 1/e)$-approximate solution, where e denotes the base of natural logarithm.

In the case where $\rho = \sum_{k=1}^m \rho_k$ with nondecreasing M^3-concave set functions ρ_k, the above algorithm can be executed in polynomial time. As the concave extension f we may take the sum of the concave closures, say, $\overline{\rho}_k$ of ρ_k for $k = 1, \ldots, m$. The continuous relaxation can be solved by the ellipsoid method, which uses subgradients of $\overline{\rho}_k$. The subgradients of $\overline{\rho}_k$ can in turn be computed in polynomial time by exploiting the combinatorial structure of M^3-concave functions.

11.7 Finite Metric Space

Metrics are closely related to discrete convexity in several aspects. Distance functions satisfying triangle inequality are in one-to-one correspondence with positively homogeneous M-convex functions, and tree metrics are the same as valued matroids of rank two. Furthermore, the Buneman construction and the Bandelt–Dress
split decomposition can be derived as decompositions of polyhedral convex functions.

11.7.1 Positively Homogeneous M-convex Functions

Recall that $V = \{1, 2, \ldots, n\}$. By a distance function we mean a function $d : V \times V \to \overline{\mathbb{R}}$ such that $d(i, i) = 0$ for all $i \in V$, where d may take negative values and is not necessarily symmetric (i.e., $d(i, j) \neq d(j, i)$ in general). As usual, triangle inequality means the inequality:

$$d(i, j) + d(j, k) \geq d(i, k) \quad (\forall i, j, k \in V). \quad (42)$$

There exists a one-to-one correspondence between distance functions with triangle inequality and positively homogeneous (polyhedral) M-convex functions, as follows (see Murota 2003a, Sect. 6.12 for detail).

Theorem 7.1. For a distance function $d : V \times V \to \overline{\mathbb{R}}$ satisfying triangle inequality, the function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ defined by

$$f(x) = \inf_{\lambda} \left\{ \sum_{i,j \in V} \lambda_{ij} d(i, j) \left| \sum_{i,j \in V} \lambda_{ij} (\chi_j - \chi_i) = x, \ \lambda_{ij} \geq 0 \right. \right\} \quad (43)$$

is a positively homogeneous M-convex function, for which

$$d(i, j) = f(\chi_j - \chi_i) \quad (i, j \in V). \quad (44)$$

Conversely, for a positively homogeneous M-convex function f, the function d defined by (44) is a distance function with triangle inequality, for which (43) is true.

Figure 11.10 illustrates this correspondence when $V = \{1, 2, 3\}$; (a) shows the point set $\{\chi_j - \chi_i \mid i, j \in V\}$, (b) the function values of f, and (c) the corresponding positively homogeneous M-convex function f.

Fig. 11.10. Correspondence between distance functions and positively homogeneous M-convex functions ($n = 3$)
11.7.2 Tree Metrics and Buneman Construction

In the following we assume that d is a metric, which means that d is finite-valued ($d : V \times V \rightarrow \mathbb{R}$) and satisfies $d(i, i) = 0 \ (\forall i \in V)$, $d(i, j) = d(j, i) \geq 0 \ (\forall i, j \in V)$, and triangle inequality (42).

A tree metric means a metric that can be represented as the distance between vertices of a tree with nonnegative edge length. It is known that a metric d is a tree metric if and only if

$$d(i, j) + d(k, l) \leq \max\{d(i, k) + d(j, l), d(i, l) + d(j, k)\}$$

for all distinct $i, j, k, l \in V$. This condition is called the four-point condition.

Remark 7.2. Consider the family $\mathcal{B} = \{\{i, j\} \mid 1 \leq i < j \leq n\}$ of unordered pairs of V. A function $d : V \times V \rightarrow \mathbb{R}$ with $d(i, j) = d(j, i) \geq 0$ and $d(i, i) = 0$ for all $i, j \in V$ can be identified with a function $\omega : \mathcal{B} \rightarrow \mathbb{R}$. Then d is a tree metric if and only if ω is a valued matroid on the uniform matroid of rank two.

Remark 7.3. A metric d is called an ultrametric if

$$d(i, j) \leq \max\{d(i, k), d(j, k)\}$$

for all distinct $i, j, k \in V$. An ultrametric is a tree metric. For a tree metric d on V the function \tilde{d} defined by

$$\tilde{d}(i, j) = d(i, j) - d(i, n) - d(j, n) \ (i, j \in V \setminus \{n\})$$

satisfies (46), where $\tilde{d}(i, j) \leq 0$.

The four point condition is closely related to M- or M^\ast-convexity of a quadratic function $f(x) = x^T A x$ in $x \in \mathbb{Z}^n$. The condition (35) for M-convexity, $a_{ij} + a_{kl} \geq \min(a_{ik} + a_{jl}, a_{il} + a_{jk})$, is equivalent to the four point condition (45) for $d(i, j) = -a_{ij}$, and the condition (34) for M^\ast-convexity, $a_{ij} \geq \min(a_{ik}, a_{jk})$, is the same as (46). Note also that the substitution of $x_n = -(x_1 + \cdots + x_{n-1})$ into $f(x) = x^T A x$ yields a quadratic function $\tilde{f}(\tilde{x}) = \tilde{x}^T \tilde{A} \tilde{x}$ in $\tilde{x} = (x_1, \ldots, x_{n-1})^T$ with $\tilde{a}_{ij} = a_{ij} - a_{in} - a_{jn} + a_{nn} \ (i, j = 1, \ldots, n-1)$. This is identical with (47) up to a constant term a_{nn}.

The Buneman construction decomposes a given metric d into a tree metric \hat{d} and a residual d', as follows.

A partition of V into two nonempty sets is called a split. For a split $\sigma = \{A, B\}$, where $A \cap B = \emptyset, A \cup B = V$, $A \neq \emptyset, B \neq \emptyset$, we define split metric or cut metric $\Delta_\sigma : V \times V \rightarrow \mathbb{R}$ by

$$\Delta_\sigma(i, j) = \begin{cases} 1 & (|\{i, j\} \cap A| = |\{i, j\} \cap B| = 1), \\ 0 & (\{i, j\} \subseteq A \text{ or } \{i, j\} \subseteq B). \end{cases}$$

For a metric d and a split $\sigma = \{A, B\}$ the Buneman index is a real number defined as
\[\beta_\sigma(d) = \frac{1}{2} \min_{i,j \in A, k,l \in B} \{ d(i,k) + d(j,l) - d(i,j) - d(k,l) \}. \]

With the notation \(B(d) = \{ \sigma \mid \beta_\sigma(d) > 0 \} \) we define \(\hat{d} : V \times V \to \mathbb{R} \) as
\[\hat{d}(i,j) = \sum_{\sigma \in B(d)} \beta_\sigma(d) \Delta_\sigma(i,j). \]

Then \(B(d) \) is compatible in the sense that for any two splits \(\sigma_1 = \{ A_1, B_1 \}, \sigma_2 = \{ A_2, B_2 \} \) in \(B(d) \) at least one of \(A_1 \cap A_2, A_1 \cap B_2, B_1 \cap A_2, \) and \(B_1 \cap B_2 \) is empty. Accordingly, \(\hat{d} \) is a tree metric with \(\hat{d} \leq d \), where \(\hat{d} = d \) if (and only if) \(d \) is a tree metric. Furthermore, \(d' = d - \hat{d} \) is a metric such that \(\beta_{\sigma'}(d') \leq 0 \) for every split \(\sigma' \).

Note that we have obtained a decomposition of \(d \) in the form of
\[d = \sum_{\sigma \in B(d)} \beta_\sigma(d) \Delta_\sigma + d'. \quad (48) \]

11.7.3 Discrete Convex Approach to Buneman Construction

The decomposition (48) of a metric \(d \) can be derived from a general decomposition method for polyhedral convex functions applied to the positively homogeneous \(M \)-convex function \(f \) that corresponds to \(d \) as in Theorem 7.1. The decomposition method for polyhedral convex functions, called polyhedral split decomposition, is as follows.

For a hyperplane \(H \) lying in \(\mathbb{R}^n \) and a point \(x \in \mathbb{R}^n \) let \(l_H(x) \) denote half the distance between \(x \) and \(H \). That is, \(l_H(x) = \| (a, x) - b \| / 2 \) if \(H \) is represented as \(\langle a, x \rangle = b \), where \(a \in \mathbb{R}^n, b \in \mathbb{R} \) with \(\| a \|_2 = 1 \). This function \(l_H : \mathbb{R}^n \to \mathbb{R} \) is called the split function associated with \(H \).

For a polyhedral convex function \(f \) and a hyperplane \(H \) let \(c_H(f) \) be the maximum value of \(t \in \mathbb{R} \) such that \(f - tl_H \) is convex, i.e.,
\[c_H(f) = \sup \{ t \in \mathbb{R} \mid f - tl_H \text{ is convex} \}. \]

With the notation
\[\mathcal{H}(f) = \{ H : \text{hyperplane} \mid 0 < c_H(f) < +\infty \} \]
we obtain the following decomposition, called the polyhedral split decomposition.

Theorem 7.4 (Hirai 2006). Any polyhedral convex function \(f : \mathbb{R}^n \to \mathbb{R} \) with \(\dim \text{dom}_R f = n \) can be represented uniquely as
\[f = \sum_{H \in \mathcal{H}(f)} c_H(f) l_H + f', \quad (49) \]
where \(f' \) is a polyhedral convex function such that \(c_{H'}(f') \in \{ 0, +\infty \} \) for every hyperplane \(H' \).
Fig. 11.11. Polyhedral split decomposition of the positively homogeneous M-convex function associated with a metric \(n = 3 \)

Given a metric \(d \) we consider the polyhedral convex function \(f \) of (43) associated with \(d \) and apply the decomposition (49) to \(f \) with necessary modifications to adapt to the case of \(\dim \text{dom}_{\mathbb{R}}f = n - 1 \); see Fig. 11.11, where \(n = 3 \). It turns out that each hyperplane in \(\mathcal{H}(f) \) is represented as

\[
H_\sigma = \{ x \in \mathbb{R}^n \mid x(A) = x(B) \}
\]

for a split \(\sigma = \{ A, B \} \). Moreover, the split function \(l_{H_\sigma} \) coincides essentially with the split metric \(\Delta_\sigma \) in that

\[
\Delta_\sigma(i, j) = \frac{1}{2} |x(A) - x(B)| = \sqrt{n} l_{H_\sigma}(x) \quad (x = \chi_j - \chi_i)
\]

and the coefficient \(c_{H_\sigma}(f) \) is given in terms of the Buneman index \(\beta_\sigma(d) \) as

\[
c_{H_\sigma}(f) = \sqrt{n} \max\{\beta_\sigma(d), 0\}.
\]

Furthermore, the residual term \(f' \) turns out to be M-convex and it corresponds to a metric, which we denote as \(d' \). Thus the decomposition (49) evaluated at \(x = \chi_j - \chi_i \) \((i \neq j)\) yields the decomposition (48) of \(d \) based on the Buneman index.

All the terms in the decomposition (49) for \(f \) associated with \(d \) are positively homogeneous M-convex functions. In other words, the sum of the positively homogeneous M-convex functions, \(l_{H_\sigma} \) and \(f' \), is another positively homogeneous M-convex function \(f \). Compatibility of \(B(d) \) as a family of splits plays a crucial role here. Note that a sum of M-convex functions is not always M-convex.

11.7.4 Discrete Convex Approach to Split Decomposition

The split decomposition of Bandelt and Dress (1992) can also be derived through the polyhedral split decomposition.

For a metric \(d \) and a split \(\sigma = \{ A, B \} \) the isolation index is a real number defined as

\[
\alpha_\sigma(d) = \frac{1}{2} \min_{i, j \in A, \ k, l \in B} \left\{ \max \left\{ \begin{array}{l} d(i, k) + d(j, l), \\ d(i, l) + d(j, k) \end{array} \right\} - d(i, j) - d(k, l) \right\}.
\]

The split decomposition of \(d \) is defined as

\[
d = \sum_{\sigma \in \mathcal{A}(d)} \alpha_\sigma(d) \Delta_\sigma + d''
\]
with \(A(d) = \{ \sigma \mid \alpha_{\sigma}(d) > 0 \} \). The "remainder term" \(d'' \) is a metric such that \(\alpha_{\sigma'}(d'') \leq 0 \) for every split \(\sigma' \), whereas the "main part" \(\sum \alpha_{\sigma}(d) \Delta_{\sigma} \) admits a graphical representation (a generalization of tree representation).

Let \(f \) be the largest positively homogeneous convex function such that \(f(\chi_i + \chi_j) = -d(i, j) \) for \(i, j \in V \), which means, in particular, that \(f(2\chi_i) = 0 \) for \(i \in V \). This function \(f \) is a polyhedral convex function, to which the decomposition (49) can be applied. It turns out that each hyperplane \(H_{\sigma} \) in \(\mathcal{H}(f) \) appearing in this decomposition is represented as (50) for a split \(\sigma = \{ A, B \} \). Moreover, the split function \(l_{H_{\sigma}} \) coincides essentially with the split metric \(\Delta_{\sigma} \) in that

\[
\Delta_{\sigma}(i, j) = -\frac{1}{2} |x(A) - x(B)| + 1 = -\sqrt{n} \log_{H_{\sigma}}(x) + 1 \quad (x = \chi_i + \chi_j)
\]

and the coefficient \(c_{H_{\sigma}}(f) \) is given in terms of the isolation index \(\alpha_{\sigma}(d) \) as

\[
c_{H_{\sigma}}(f) = \sqrt{n} \max\{\alpha_{\sigma}(d), 0\}.
\]

Thus the polyhedral split decomposition (49) evaluated at \(x = \chi_i + \chi_j \) \((i \neq j) \) yields the split decomposition (51) of \(d \).

The reader is referred to Deza and Laurent (1997) and Semple and Steel (2003) for fundamental facts about metrics and phylogenetics, and to Dress et al. (1996) for a survey of T-theory. In particular the decomposition (48) based on the Buneman index is due to Buneman (1971). Discrete convex approach was initiated by Hirai (2006) for the split decomposition (51) of Bandelt and Dress (1992), whereas its application to the decomposition (48) based on the Buneman index is due to Koichi (2006).

11.8 Eigenvalue of Hermitian Matrices

An interesting connection exists between discrete concave functions in two variables and the range of eigenvalues of a sum of two Hermitian matrices with specified eigenvalues. For an \(n \times n \) Hermitian matrix \(A \) we denote by \(\lambda(A) \) the descending vector of eigenvalues of \(A \), where a descending vector means a vector \(\alpha = (\alpha_1, \ldots, \alpha_n) \) such that \(\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n \).

Given two descending vectors \(\alpha = (\alpha_1, \ldots, \alpha_n) \) and \(\beta = (\beta_1, \ldots, \beta_n) \), we are concerned with the problem of determining the set

\[
E(\alpha, \beta) = \{ \gamma \in \mathbb{R}^n \mid \lambda(A) = \alpha, \lambda(B) = \beta, \lambda(A + B) = \gamma \},
\]

which denotes the range of eigenvalues of \(A + B \) when Hermitian matrices \(A \) and \(B \) vary subject to the constraint that \(\lambda(A) = \alpha \) and \(\lambda(B) = \beta \). This problem was first addressed by H. Weyl in 1912 and investigated intensively by A. Horn around 1960, who posed a conjecture that \(E(\alpha, \beta) \) is a convex polyhedron described by the descending condition \(\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_n \), the trace condition \(\sum_{k=1}^{n} \gamma_k = \sum_{i=1}^{n} \alpha_i + \sum_{j=1}^{n} \beta_j \) and a family of inequalities of the form

\[
\sum_{k \in K} \gamma_k \leq \sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j,
\]
where \((I, J, K)\) runs over a finite index set \(\mathcal{I}\) such that \(|I| = |J| = |K|\) for \((I, J, K) \in \mathcal{I}\).

In the 1990's this problem received revived interest. With contributions by many researchers, in particular, by A. Klyachko, this problem has been settled in the affirmative. The range \(E(\alpha, \beta)\) is now understood and described in terms of "puzzles" or "honeycombs." See (Danilov and Koshevoy 2003; Fulton 2000; Karzanov 2005; Klyachko 1998; Knutson and Tao 2001; Knutson et al. 2003) for details.

The connection to discrete concave functions is as follows. Consider an \(L^b\)-convex set

\[\Delta = \{(i, j) \in \mathbb{Z}^2 \mid 0 \leq j \leq i \leq n\} \]

as depicted in Fig. 11.12. An \(L^b\)-concave function \(f\) on \(\Delta\) determines three descending vectors \(\alpha, \beta\) and \(\gamma\) from its boundary values as

\[
\begin{align*}
\alpha_i &= f(i, 0) - f(i - 1, 0) & (i = 1, \ldots, n), \\
\beta_j &= f(n, j) - f(n, j - 1) & (j = 1, \ldots, n), \\
\gamma_k &= f(k, k) - f(k - 1, k - 1) & (k = 1, \ldots, n),
\end{align*}
\]

(52)

It then follows that \(\sum_{k=1}^{n} \gamma_k = \sum_{i=1}^{n} \alpha_i + \sum_{j=1}^{n} \beta_j\). Conversely, given two descending vectors \(\alpha\) and \(\beta\), let \(C(\alpha, \beta)\) be the set of \(\gamma\) such that (52) holds for some \(L^b\)-concave function \(f : \Delta \to \mathbb{R}\), i.e.,

\[C(\alpha, \beta) = \{\gamma \in \mathbb{R}^n \mid \exists L^b\text{-concave } f : \Delta \to \mathbb{R} \text{ satisfying (52)}\} \]

It is easy to see that \(C(\alpha, \beta)\) is a polyhedral convex set, and moreover the following relationship is known.

Theorem 8.1 (Danilov and Koshevoy 2003). \(E(\alpha, \beta) = C(\alpha, \beta)\).

A further problem has been posed by Danilov and Koshevoy (2003). Theorem 8.1 shows that for any \((A, B)\) with \(\lambda(A) = \alpha\) and \(\lambda(B) = \beta\) there exists an \(L^b\)-concave function \(f\) that satisfies (52) for \(\gamma = \lambda(A + B)\). How can we construct such \(f\) from \((A, B)\)? It is conjectured in Danilov and Koshevoy (2003) that

\[f(i, j) = \max\{\text{tr } (AP + BQ) \mid \text{tr } P = i, \text{tr } Q = j, Q(I - P) = 0\}, \]
where P and Q run over orthogonal projectors satisfying the specified conditions, is an L^3-concave function on Δ, and that every L^3-concave function on Δ can be represented in this form with some (A, B). Note that we have (52), since

$$f(i, 0) = \max \{ \text{tr} (AP) \mid \text{tr} P = i \} = \alpha_1 + \cdots + \alpha_i,$$

$$f(n, j) = \max \{ \text{tr} (A + BQ) \mid \text{tr} Q = j \} = (\alpha_1 + \cdots + \alpha_n) + \beta_1 + \cdots + \beta_j,$$

$$f(k, k) = \max \{ \text{tr} (AP + BQ) \mid \text{tr} P = \text{tr} Q = k, P = Q \} = \gamma_1 + \cdots + \gamma_k.$$

Some attempts have been made, but no answer has yet been obtained, as far as the present author knows.

11.9 Discrete Fixed Point Theorem

To motivate a discrete fixed point theorem we first take a glimpse at Kakutani's fixed point theorem. Then we explain how the conditions assumed in that theorem can be "discretized" to yield a discrete fixed point theorem.

Let S be a subset of \mathbb{R}^n and F be a set-valued mapping (or a correspondence) from S to itself, which is denoted as $F : S \rightarrow S$ (or $F : S \rightarrow 2^S$). A point $x \in S$ satisfying $x \in F(x)$ is said to be a fixed point of F. Kakutani's fixed point theorem reads as follows.

Theorem 9.1. A set-valued function $F : S \rightarrow S$ has a fixed point if

(a) S is a bounded closed convex subset of \mathbb{R}^n,

(b) For each $x \in S$, $F(x)$ is a nonempty closed convex set, and

(c) F is upper-semicontinuous.

In a discrete fixed point theorem we are concerned with $F : S \rightarrow S$ where S is a subset of \mathbb{Z}^n. With reference to the three conditions in Theorem 9.1 above we proceed as follows to obtain a discrete fixed point theorem.

- Condition (a) assumes that the domain of definition S is nicely-shaped or well-behaved. In the discrete case we assume S to be "integrally convex."
- Condition (b) assumes that each value $F(x)$ is nicely-shaped or well-behaved. In the discrete case we assume that $F(x) = \mathring{F(x)} \cap \mathbb{Z}^n$, where $\mathring{F(x)}$ denotes the convex hull of $F(x)$.
- Condition (c) assumes that function F is continuous in some sense. In the discrete case we assume F to be "direction-preserving."

We will explain the key concepts, "integrally convex" and "direction-preserving", in turn.

The integral neighborhood of a point $y \in \mathbb{R}^n$ is defined to be

$$N(y) = \{ z \in \mathbb{Z}^n \mid \| z - y \|_{\infty} < 1 \},$$

where $\| \cdot \|_{\infty}$ means the maximum norm. A set $S \subseteq \mathbb{Z}^n$ is said to be *integrally convex* (Favati and Tardella 1990) if
Fig. 11.13. Projection $\pi(x)$ with $\sigma(x) = \text{sign} (\pi(x) - x) = (+1, -1)$

$y \in \overline{S} \implies y \in \overline{S} \cap N(y)$

for any $y \in \mathbb{R}^n$. We have $S = \overline{S} \cap \mathbb{Z}^n$ for an integrally convex set S. It is known that \mathbb{L}^n-convex sets and \mathbb{M}^n-convex sets are integrally convex.

Given $F : S \rightarrow S$ and $x \in \mathbb{Z}^n$ we denote by $\pi(x)$ the projection of x to $\overline{F}(x)$. This means that $\pi(x)$ is the point of $\overline{F}(x)$ that is nearest to x with respect to the Euclidean norm (see Fig. 11.13). We also define the direction sign vector $\sigma(x) = (\sigma_1(x), \ldots, \sigma_n(x)) = (\text{sign} (\pi_1(x) - x_1), \ldots, \text{sign} (\pi_n(x) - x_n))$.

Then we say that F is direction-preserving if for all $x, z \in S$ with $\|x - z\|_\infty \leq 1$ we have

$\sigma_i(x) > 0 \implies \sigma_i(z) \geq 0 \quad (i = 1, \ldots, n)$.

Note that this is equivalent to saying that $\sigma_i(x)\sigma_i(z) \neq -1$ for each $i = 1, \ldots, n$ if $x, z \in S$ and $\|x - z\|_\infty \leq 1$.

We are now ready to state the discrete fixed point theorem.

Theorem 9.2 (Imura 2003; Imura et al. 2005). A set-valued function $F : S \rightarrow S$ has a fixed point if

(a) S is a nonempty finite integrally convex subset of \mathbb{Z}^n,
(b) For each $x \in S$, $F(x)$ is nonempty and $F(x) = \overline{F(x)} \cap \mathbb{Z}^n$, and
(c) F is direction-preserving.

The proof of this theorem consists of three major steps.

1. We show that an integrally convex set S has a simplicial decomposition T such that for each $y \in \overline{S}$ all the vertices of $T(y)$ belong to $N(y)$, where \overline{S} means the convex hull of S and $T(y)$ the smallest simplex in T that contains y.

2. We consider a piecewise linear extension $f : \overline{S} \rightarrow \overline{S}$ of π defined as

$$f(y) = \sum_{x \in V(y)} \lambda_x \pi(x) \quad \left(y = \sum_{x \in V(y)} \lambda_x x, \sum_{x \in V(y)} \lambda_x = 1, \lambda_x \geq 0 \right)$$

where $V(y) = T(y) \cap N(y)$. By Brouwer's fixed point theorem applied to f we obtain a fixed point $y \in \overline{S}$ of f (i.e., $y = f(y)$).
3. From the identity
\[\sum_{x \in V(y)} \lambda_x (\pi(x) - x) = \sum_{x \in V(y)} \lambda_x \pi(x) - \sum_{x \in V(y)} \lambda_x x = f(y) - y = 0 \]

and the assumption of \(F \) being direction-preserving, we see that \(\pi(x) - x = 0 \)
for some \(x \in V(y) \), which is a fixed point of \(F \).

The discrete fixed point theorem originates in Limura (2003) with a subsequent
and van der Laan et al. (2006) for an algorithm.

11.10 Stable Marriage and Assignment Game

Two-sided matching (Roth and Sotomayor 1990) affords a fairly general framework
in game theory, including the stable matching of Gale and Shapley (1962) and the
assignment model of Shapley and Shubik (1972) as special cases. An even more
general framework has been proposed recently by Fujishige and Tamura (2007), in
which the existence of an equilibrium is established on the basis of a novel duality-
related property of \(M^b \)-concave functions.

Let \(P \) and \(Q \) be finite sets and put
\[E = P \times Q = \{(i, j) \mid i \in P, j \in Q\}, \]
where we think of \(P \) as a set of workers and \(Q \) as a set of firms, respectively. We
suppose that worker \(i \) works at firm \(j \) for \(x_{ij} \) units of time, gaining a salary \(s_{ij} \) per
unit time. Then the labor allocation is represented by an integer vector
\[x = (x_{ij} \mid (i, j) \in E) \in \mathbb{Z}^E \]
and the salary by a real vector \(s = (s_{ij} \mid (i, j) \in E) \in \mathbb{R}^E \). We are interested in the
stability of a pair \((x, s)\) in the sense to be made precise later.

For \(i \in P \) and \(j \in Q \) we put
\[E(i) = \{i\} \times Q = \{(i, j) \mid j \in Q\}, \quad E(j) = P \times \{j\} = \{(i, j) \mid i \in P\}, \]
and for a vector \(y \) on \(E \) we denote by \(y(i) \) and \(y(j) \) the restrictions of \(y \) to \(E(i) \) and
\(E(j) \), respectively. For example, for the labor allocation \(x \) we obtain
\[x(i) = (x_{ij} \mid j \in Q) \in \mathbb{Z}^{E(i)}, \quad x(j) = (x_{ij} \mid i \in P) \in \mathbb{Z}^{E(j)} \]
and this convention also applies to the salary vector \(s \) to yield \(s(i) \) and \(s(j) \).

It is supposed that for each \((i, j) \in E\) lower and upper bounds on the salary \(s_{ij} \)
are given, denoted by \(\underline{\pi}_{ij} \in \mathbb{R} \) and \(\overline{\pi}_{ij} \in \mathbb{R} \), where \(\underline{\pi}_{ij} \leq \pi_{ij} \). A salary \(s \) is called
feasible if \(\underline{\pi}_{ij} \leq s_{ij} \leq \overline{\pi}_{ij} \) for all \((i, j) \in E\). We put
\[\underline{\pi} = (\underline{\pi}_{ij} \mid (i, j) \in E) \in \mathbb{R}^E, \quad \overline{\pi} = (\overline{\pi}_{ij} \mid (i, j) \in E) \in \mathbb{R}^E. \]
Each agent (worker or firm) \(k \in P \cup Q \) evaluates his/her state \(x_{(k)} \) of labor allocation in monetary terms through a function \(f_k : \mathbb{Z}^{E_{(k)}} \to \mathbb{R} \). Here the effective domain \(\text{dom}_{\mathbb{Z}} f_k = \{ z \in \mathbb{Z}^{E_{(k)}} \mid f_k(z) > -\infty \} \) is assumed to satisfy the following natural condition:

\[
\text{dom}_{\mathbb{Z}} f_k \text{ is bounded and hereditary, with unique minimal element } 0,
\]

where \(\text{dom}_{\mathbb{Z}} f_k \) being hereditary means that \(0 \leq z \leq y \in \text{dom}_{\mathbb{Z}} f_k \) implies \(z \in \text{dom}_{\mathbb{Z}} f_k \). In what follows we always assume that \(x \) is feasible in the sense that

\[
x_{(i)} \in \text{dom}_{\mathbb{Z}} f_i \quad (i \in P), \quad x_{(j)} \in \text{dom}_{\mathbb{Z}} f_j \quad (j \in Q).
\]

A pair \((x, s) \) of feasible allocation \(x \) and feasible salary \(s \) is called an outcome.

Example 10.1. The *stable marriage problem* can be formulated as a special case of the present setting. Put \(\pi = \pi = 0 \) and define \(f_i : \mathbb{Z}^{E_{(i)}} \to \mathbb{R} \) for \(i \in P \) and \(f_j : \mathbb{Z}^{E_{(j)}} \to \mathbb{R} \) for \(j \in Q \) as

\[
f_i(y) = \begin{cases}
 a_{ij} & (y = x_j, j \in Q), \\
 0 & (y = 0), \\
 -\infty & \text{(otherwise)},
\end{cases} \quad f_j(z) = \begin{cases}
 b_{ij} & (z = x_i, i \in P), \\
 0 & (z = 0), \\
 -\infty & \text{(otherwise)},
\end{cases}
\]

where the vector \((a_{ij} \mid j \in Q) \in \mathbb{R}^Q \) represents (or, is an encoding of) the preference of "man" \(i \in P \) over "women" \(Q \), and \((b_{ij} \mid i \in P) \in \mathbb{R}^P \) the preference of "woman" \(j \in Q \) over "men" \(P \). Then a matching \(X \) is stable if and only if \((x, s) = (\chi_X, 0) \) is stable in the present model.

Example 10.2. The *assignment model* is a special case where \(\pi = (-\infty, \ldots, -\infty), \quad \pi = (+\infty, \ldots, +\infty) \) and the functions \(f_i \) and \(f_j \) are of the form of (54) with some \(a_{ij}, b_{ij} \in \mathbb{R} \) for all \(i \in P, j \in Q \).

Given an outcome \((x, s) \) the payoff of worker \(i \in P \) is defined to be the sum of his/her evaluation of \(x_{(i)} \) and the total income from firms:

\[
f_i(x_{(i)}) + \sum_{j \in Q} s_{ij} x_{ij} \quad (=: (f_i + s_{(i)})(x_{(i)})).
\]

Similarly, the payoff of firm \(j \in Q \) is defined as

\[
f_j(x_{(j)}) - \sum_{i \in P} s_{ij} x_{ij} \quad (=: (f_j - s_{(j)})(x_{(j)})).
\]

Each agent \((i \in P \text{ or } j \in Q) \) naturally wishes to maximize his/her payoff function.

A *market equilibrium* is defined as an outcome \((x, s) \) that is stable under reasonable actions (i) by each worker \(i \), (ii) by each firm \(j \), and (iii) by each worker-firm pair \((i, j) \). To be specific, we say that \((x, s) \) is stable with respect to \(i \in P \) if

\[
(f_i + s_{(i)})(x_{(i)}) = \max \{(f_i + s_{(i)})(y) \mid y \leq x_{(i)}\}.
\]
Similarly, \((x, s)\) is said to be stable with respect to \(j \in Q\) if
\[
(f_j - s(j))(x(j)) = \max\{(f_j - s(j))(z) \mid z \leq x(j)\}.
\] (56)

In technical terms \((x, s)\) is said to satisfy the incentive constraint if it satisfies (55) and (56).

The stability of \((x, s)\) with respect to \((i, j)\) is defined as follows. Suppose that worker \(i\) and firm \(j\) think of a change of their contract to a new salary \(\alpha \in [\bar{\pi}_{ij}, \bar{\pi}_{ij}]\mathbb{R}\) and a new working time \(\beta \in \mathbb{Z}_+\) units. Worker \(i\) will be happy with this contract if there exists \(y \in \mathbb{Z}^{E(i)}\) such that
\[
y_j = \beta, \quad y_k \leq x_{ik} \quad (k \in Q \setminus \{j\}),
\] (57)
\[
(f_i + s(i))(x(i)) < (f_i + (s_i, \alpha))(y),
\] (58)
where \((s_i, \alpha)\) denotes the vector \(s(i)\) with its \(j\)-th component replaced by \(\alpha\). Note that \(y\) means the new labor allocation of worker \(i\) with an increased payoff given on the right-hand side of (58). Similarly, firm \(j\) is motivated to make the new contract if there exists \(z \in \mathbb{Z}^{E(j)}\) such that
\[
z_i = \beta, \quad z_k \leq x_{kj} \quad (k \in P \setminus \{i\}),
\] (59)
\[
(f_j - s(j))(x(j)) < (f_j - (s_j, \alpha))(z),
\] (60)
where \((s_j, \alpha)\) is the vector \(s(j)\) with its \(i\)-th component replaced by \(\alpha\). Then we say that \((x, s)\) is stable with respect to \((i, j)\) if there exists no \((\alpha, \beta, y, z)\) that simultaneously satisfies (57), (58), (59) and (60).

We now define an outcome \((x, s)\) to be stable if, for every \(i \in P, j \in Q, (x, s)\) is (i) stable with respect to \(i\), (ii) stable with respect to \(j\), and (iii) stable with respect to \((i, j)\). This is our concept of market equilibrium.

A remarkable fact, Theorem 10.3 below, is that a market equilibrium exists if the functions \(f_k\) are \(M^b\)-concave. See (Murota 2003a, Sect. 11.3) for the relevance of \(M^b\)-concave functions for economic or game-theoretic problems; in particular, \(M^b\)-concave functions enjoy gross substitutes property, concave-extendibility. and submodularity. See (Topkis 1998) for the role of submodularity in this context.

Theorem 10.3 (Fujishige and Tamura 2007). Assume that \(\bar{\pi} \leq \bar{\pi}\) and, for each \(k \in P \cup Q\), \(f_k\) is an \(M^b\)-concave function satisfying (53). Then a stable outcome \((x, s) \in \mathbb{Z}^E \times \mathbb{R}^E\) exists. Furthermore, we can take an integral \(s \in \mathbb{Z}^E\) if \(\bar{\pi} \in \mathbb{Z}^E\), \(\bar{\pi} \in \mathbb{Z}^E\), and \(f_k\) is integer-valued for every \(k \in P \cup Q\).

The technical ingredients of the above theorem can be divided into the following two theorems. Note also that sufficiency part of Theorem 10.4 (which we need here) is independent of \(M^b\)-concavity.

Theorem 10.4 (Fujishige and Tamura 2007). Under the same assumption as in Theorem 10.3 let \(x\) be a feasible allocation. Then \((x, s)\) is a stable outcome for some \(s\) if and only if there exist \(p \in \mathbb{R}^E, u = (u(i) \mid i \in P) \in \mathbb{Z}^E, v = (v(j) \mid j \in Q) \in \mathbb{Z}^E\) such that
\[x_{(i)} \in \arg\max_{\pi} \{(f_i + p_{(i)})(y) \mid y \leq u_{(i)}\}, \quad (61) \]
\[x_{(j)} \in \arg\max_{\pi} \{(f_j - p_{(j)})(z) \mid z \leq v_{(j)}\}, \quad (62) \]
\[\pi \leq p \leq \pi, \quad (63) \]
\[(i, j) \in E, \quad u_{ij} < +\infty \implies p_{ij} = \pi_{ij}, \quad (64) \]
\[v_{ij} = +\infty \implies p_{ij} = \pi_{ij}, \quad (65) \]

Moreover, \((x, p)\) is a stable outcome for any \((x, p, u, v)\) satisfying the above conditions.

Theorem 10.5 (Fujishige and Tamura 2007). Under the same assumption as in Theorem 10.3 there exists \((x, p, u, v)\) that satisfies (61)–(65). Furthermore, we can take an integral \(p \in Z^E\) if \(\pi \in Z^E, \pi \in \bar{Z}^E, \) and \(f_k\) is integer-valued for every \(k \in P \cup Q\).

It is worth while noting that the essence of Theorem 10.5 is an intersection-type theorem for a pair of \(M^E\)-concave functions. Indeed it can be derived easily from Theorem 10.6 below applied to
\[f_P(x) = \sum_{i \in P} f_i(x_{(i)}), \quad f_Q(x) = \sum_{j \in Q} f_j(x_{(j)}). \]

Theorem 10.6 (Fujishige and Tamura 2007). Assume \(\pi \leq \bar{\pi}\) for \(\pi \in \mathbb{R}^E\) and \(\bar{\pi} \in \mathbb{R}^E\), and let \(f, g : Z^E \to \mathbb{R}\) be \(M^E\)-concave functions such that the effective domains are bounded and hereditary, with unique minimal element 0. Then there exist \(x \in \text{dom}_Z f \cap \text{dom}_Z g, p \in \mathbb{R}^E, u \in \bar{Z}^E\) and \(v \in \bar{Z}^E\) such that
\[x \in \arg\max_{\pi} \{(f + p)(y) \mid y \leq u\}, \]
\[x \in \arg\max_{\pi} \{(g - p)(z) \mid z \leq v\}, \]
\[\pi \leq p \leq \bar{\pi}, \]
\[e \in E, \quad u_e < +\infty \implies p_e = \pi_e, \quad v_e = +\infty, \]
\[e \in E, \quad v_e < +\infty \implies p_e = \bar{\pi}_e, \quad u_e = +\infty. \]

Furthermore, we can take an integral \(p \in Z^E\) if \(\pi \in \bar{Z}^E, \bar{\pi} \in \bar{Z}^E\), and \(f\) and \(g\) are integer-valued.

The Fujishige–Tamura model contains recently proposed matching models such as (Eriksson and Karlander 2000; Fleiner 2001; Sotomayor 2002) special cases. In particular, the hybrid model of Eriksson and Karlander (2000), with flexible and rigid agents, is a special case where \(P\) and \(Q\) are partitioned as \(P = P_\infty \cup P_0\) and \(Q = Q_\infty \cup Q_0, \) and \(\pi_{ij} = -\infty, \pi_{ij} = +\infty\) for \((i, j) \in P_\infty \times Q_\infty\) and \(\pi_{ij} = \pi_{ij} = 0\) for other \((i, j).\) Fleiner’s fixed point theorem approach (Fleiner 2003) seems to be independent of the Fujishige–Tamura model.

Concepts and results of discrete convex analysis are also useful for other problems of mathematical economics. For instance, Walrasian equilibria of indivisible markets are discussed in Murota (2003a, Chap. 11) and combinatorial auctions are treated in Lehmann et al. (2006). See Tamura (2004) for a survey.
Conclusion

Efficient algorithms are available for minimization of L-convex and M-convex functions (Murata 2003a, Chap. 10). The complexity analysis for the L-convex function minimization algorithm of Murata (2003b) is improved in Kolmogorov and Shioura (2007). As other recent papers we refer to Shioura (2003), Tamura (2005) for M-convex function minimization, and Iwata et al. (2005) for the submodular flow problem, or equivalently for the Fenchel duality. Most of the efficient algorithms employ scaling techniques based on proximity theorems; see (Iwata and Shigeno 2003; Moriguchi et al. 2002; Murata and Tamura 2004) for proximity theorems.

Discrete convex functions appear naturally in operations research. Multimodular functions, which are L^n-convex functions in disguise, are used in the analysis of queueing systems (or more generally, discrete event systems) (Altman et al. 2000, 2003; Hajek 1985; Murata 2005). In inventory theory Miller (1971) was a forerunner of discrete convexity in the 1970's and a recent paper of Zipkin (2008) sheds a new light on some classical results of Karlin, Scarf, and Morton.

A jump system (Bouchet and Cunningham 1995) is a generalization of a matroid, a delta-matroid and a base polyhedron of an integral polymatroid (or a submodular system). The concept of M-convex functions can be extended to functions on constant-parity jump systems (Murata 2006). For $x, y \in \mathbb{Z}^n$ we call $s \in \mathbb{Z}^n$ an (x, y)-increment if $s = \chi_i$ for some $i \in \text{supp}^+(y - x)$ or $s = -\chi_i$ for some $i \in \text{supp}^-(y - x)$. We call $f : \mathbb{Z}^n \to \mathbb{R}$ an M-convex function (on a constant-parity jump system) if it satisfies the following exchange property: For any $x, y \in \text{dom}_\mathbb{Z} f$ and any (x, y)-increment s, there exists an $(x + s, y)$-increment t such that

$$f(x) + f(y) \geq f(x + s + t) + f(y - s - t).$$

It then follows that $\text{dom}_\mathbb{Z} f$ is a constant-parity jump system. Theorem 2.7 can be extended and operations such as infimal convolution can be generalized. See (Kobayashi and Murata 2007; Kobayashi et al. 2007; Kobayashi and Takazawa 2007; Shioura and Tanaka 2007).

Acknowledgements

My research of discrete convex analysis was started during my stay at Forschungsinstitut für Diskrete Mathematik, Universität Bonn, 1994–1995. In fact, the papers at the earlier stage were published as technical reports of the institute: (Murata 1996a) as No. 95837-OR (January 1995), (Murata 1996b) as No. 95838-OR (January 1995), (Murata 1998a) as No. 95839-OR (January 1995), (Murata 1999) as No. 95843-OR (March 1995), (Murata 1996c) as No. 95848-OR (June 1995). On this occasion I would like to express my deep gratitude to Professor Bernhard Korte for providing me with comfortable working environment.

I am indebted to Satoru Fujishige, Satoru Iwata, Shungo Koichi, Satoko Moriguchi, Akiyoshi Shioura, and Akihisa Tamura for helpful comments.
References

Koichi, S.: The Buneman index via polyhedral split decomposition. METR 2006-57, Department of Mathematical Informatics, University of Tokyo (November 2006)
Miller, B.L.: On minimizing nonseparable functions defined on the integers with an inventory application. SIAM J. Appl. Math. 21, 166–185 (1971)
Shioura, A.: On the pipage rounding algorithm for submodular function maximization: A view from discrete convex analysis. METR 2008-03, Department of Mathematical Informatics, University of Tokyo (January 2008)