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Recent Developments. in Discrete Convex Analysis

Kazuo Murota

Summary. This paper describes recent developments in discrete convex analysis.
Particular emphasis is laid on natural introduction of the classes of L-convex and
M-convex functions in discrete and continuous variables. Expansion of the appli-
cation areas is demonstrated by recent connections to submodular function maxi-
mization, finite metric space, eigenvalues of Hermitian matrices, discrete fixed point
theorem, and matching games.

11.1 Introduction

This paper describes recent developments in discrete convex analysis. Particular
empbhasis is laid on natural introduction of the classes of L-convex and M-convex
functions in discrete and continuous variables. Expansion of the application areas
is demonstrated by recent connections to submodular function maximization, finite
metric space, eigenvalues of Hermitian matrices, discrete fixed point theorem, and
matching games. .

Discrete convex analysis (Murota 1998b, 2001, 2003a) is aimed at establishing a
general theoretical framework for solvable discrete optimization problems by means
of a combination of the ideas in continuous optimization and combinatorial opti-
mization. The framework of convex analysis is adapted to discrete settings and the
mathematical results in matroid/submodular function theory are generalized. Viewed
from the continuous side, it is a theory of convex functions f : R” — R that have
additional combinatorial properties. Viewed from the discrete side, it is a theory of
discrete functions f : Z" — R or f : Z" — Z that enjoy certain nice properties
comparable to convexity. Symbolically,

Discrete Convex Analysis = Convex Analysis + Matroid Theory.

The theory extends the direction set forth by J. Edmonds, A. Frank, S. Fujishige,
and L. Lovéasz (Edmonds 1970; Frank 1982; Fujishige 1984; Lovasz 1983); see also
(Fujishige 2005, Chap. VII). The reader is referred to Rockafellar (1970) for convex
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analysis, Cook et al. (1998), Korte and Vygen (2008) and Schrijver (2003) for com-
binatorial optimization, Oxley (1992), Recski (1989) and White (1986) for matroid
theory, and Fujishige (2005), Narayanan (1997) and Topkis (1998) for submodular
function theory.

Two convexity concepts, called L-convexity and M-convexity, play primary roles.
L-convex functions and M-convex functions are conjugate to each other through the
(continuous or discrete) Legendre—Fenchel transformation. L-convex functions and
M-convex functions generalize, respectively, the concepts of submodular set func-
tions and base polyhedra. It is noted that “L” stands for *“Lattice” and “M” for “Ma-
troid.”

The contents of this paper are as follows. The first part, Sects. 11.2 to 11.5,
presents the fundamental facts with some new observations, whereas the second part,
Sects. 11.6 to 11.10, deals with recent topics.

Section 11.1:  Introduction

Section 11.2:  Concepts of Discrete Convex Functions
Section 11.3: Conjugacy

Section 11.4: Examples

Section 11.5:  Separation and Fenchel Duality

Section 11.6:  Submodular Function Maximization
Section 11.7:  Finite Metric Space

Section 11.8: Eigenvalue of Hermitian Matrices
Section 11.9: Discrete Fixed Point Theorem

Section 11.10: Stable Marriage and Assignment Game

The set of all real numbers is denoted by R, and R = R U {+o0c} and R=RU
{—o00}. The set of all integers is denoted by Z, and Z = ZU{+00} and Z = ZU{—00}.
LetV ={1,2, ..., n} for a positive integer n. The characteristic vector of X C V is

denoted by xx € {0, 1}". Fori € V, we write x; for x{;}, which is the ith unit vector,
and xo = 0 (zero vector).

11.2 Concepts of Discrete Convex Functions

The concepts of L-convex and M-convex functions can be obtained through dis-
cretization of two different characterizations of convex functions.

11.2.1 Ordinary Convex Functions

We start by recalling the definition of ordinary convex functions. A function
f : R* - Ris said to be convex if

AME+A-Df) = fAx+ 0 —-N)y) 1)

for all x, y € R” and for all A with 0 < A < 1, where it is understood that the
inequality is satisfied if f(x) or f(y) is equal to +o00. A function 2 : R* — R is
said to be concave if —h is convex.
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A set S € R” is called convex if, for any x,y € Sand 0 < A < 1, we have
Ax+(1—A)y € S. The indicator function of a set § is a function 85 : R" — {0, +-o0}
defined by

0 x €9),
= 2
85(x) [ 1o (x g @)
Then S is a convex set if and only if §s is a convex function.
For a function f : R" — R U {—o00, 400} in general, the set

domgpf ={x e R*| f(x) e R}

is called the effective domain of f. A point x € R" is said to be a global minimum of
f if the inequality f(x) < f(») holds for every y € R". Point x is a local minimum
if this inequality holds for every y in some neighborhood of x. The set of global
minima (minimizers) is denoted as

argming f = {x e R" | f(x) = f(») (¥y e R")}.

Convex functions are tractable in optimization (or minimization) problems and
this is mainly because of the following properties.

1. Local optimality (or minimality) guarantees global optimality.
2. Duality theorems such as min-max relation and separation hold.

Duality is a central issue in convex analysis, and is discussed in Sect. 11.5.
A separable convex function is a function f : R” — R that can be represented

as
n
F&® =) eix), 3)
i=l
wherex = (x; |[i=1,...,n)and ¢; : R — R (i =1, ..., n) are univariate convex
functions.

11.2.2 Discrete Convex Functions

We now consider how convexity concept can (or should) be defined for functions
in discrete variables. It would be natural to expect the following properties of any
function f : Z" — R that is qualified as a “discrete convex function.”

1. Function f is extensible to a convex function on R".
2. Local optimality (or minimality) guarantees global optimality.
3. Duality theorems such as min-max relation and separation hold.

Recall that f : Z" — R is said to be convex-extensible if there exists a convex
function f : R* — R such that f(x) = f(x) forall x € Z". It is widely understood
that convex extensibility alone does not yield a fruitful theoretical framework, which
fact motivates us to introduce L-convex and M-convex functions. In this section we
focus on convex extensibility and local optimality while deferring duality issues to
Sect. 11.5. The effective domain and the set of minimizers are denoted respectively
as
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domzf ={xe€Z" | f(x) e R},
argming f = {x € Z" | f(x) < f(y) ¥y € Z")).

Univariate and Separable Convex Functions

The univariate case (n = 1) is simple and straightforward. We may regard a function
f : Z — R as a discrete convex function if

Fa—-D+fx+1)=2f(x) (VxeZ). “)
This is justified by the following facts.

Theorem 2.1. A function f : Z — R is convex-extensible if and only if it satis-
fies (4).

Theorem 2.2. For a function f : Z — R satisfying (4), a point x € domzf is a
global minimum if and only if it is a local minimum in the sense that

fx) <min{f(x —1), f(x + D}.

- Theorems 2.1 and 2.2 above can be extended in obvious ways to a separable
(discrete) convex function f : Z" — R, which is, by definition, representable in the
form of (3) with univariate functions ¢; : Z — R having property (4).

L-convex Functions

We explain the concept of L-convex functions (Murota 1998b) by featuring an equiv-
alent variant thereof, called LY-convex functions (Fujishige and Murota 2000) (“L*”
should be read “el natural”).

We first observe that a convex function g on R” satisfies

gp)+glg)=>¢g (#) +g (%) (p,q €R"), (5)

which is a special case of (1) with A = 1/2. This property, called midpoint convexity,
is known to be equivalent to convexity if g is a continuous function.

For a function g : Z" — R in discrete variables the above inequality does not
always make sense, since the midpoint L”z"‘l of two integer vectors p and ¢ may not
be integral. Instead we simulate (5) by

g(p)+glqg) >¢g ([%2-’) +g (Lp—;r—qJ) (p.q €Z"), (6)

where, for z € R in general, [z] denotes the smallest integer not smaller than z
(rounding-up to the nearest integer) and |z] the largest integer not larger than z
(rounding-down to the nearest integer), and this operation is extended to a vector
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Fig. 11.1. Discrete midpoint convexity
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Fig. 11.2. An Lb-convex function (n = 2)

by componentwise applications, as illustrated in Fig. 11.1 in the case of n = 2. We
refer to (6) as discrete midpoint convexity.

We say that a function g : Z" — R is Li-convex if it satisfies discrete midpoint
convexity (6). In the case of n = 1, LY-convexity is equivalent to the condition (4).
A concrete example of an LP-convex function (n = 2) is shown in Fig. 11.2. Exam-
ples of L-convex functions are given in Sect. 11.4.1.

With this definition we can obtain the following desired statements in parallel
with Theorems 2.1 and 2.2.

Theorem 2.3. An LY-convex function g : Z" — R is convex-extensible.

Theorem 2.4. For an L°-convex function g : Z" — R, a point p € domgg is a
global minimum if and only if it is a local minimum in the sense that

g(p) < min{g(p —q), g(p +9)} (¥q € {0, 1}"). 7

Although Theorem 2.4 affords a local criterion for global optimality of a point p,
a straightforward verification of (7) requires O(2") function evaluations. The verifi-
cation can be done in polynomial time as follows. We consider set functions p;," and
Py defined by p;"(Y) = g(p X xy) — g(p) for Y C V, both of which are submod-
ular. Since (7) is equivalent to saying that both p;' and p,, achieve the minimum at
Y = 0, this condition can be verified in polynomial time by submodular function
minimization algorithms (Iwata 2007).
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LY-convexity is closely related with submodularity. For two vectors p and ¢, the
vectors of componentwise maxima and minima are denoted respectively by p v ¢
and p A g, that is,

(pV q)i = max(pi, gi), (p A q)i = min(p;, g;).
A function g : Z" — R is called submodular if

gp)+g@=glpva)+gpng) (p.qel), (8)

and translation submodular if

gp)+gl@)=gl(p—al)vg)+glpa(g+al)) (@e€Zy, p,gel’), 9

where 1 = (1,1, ..., 1) and Z; denotes the set of nonnegative integers. The latter
property characterizes L¥-convexity, as follows.

Theorem 2.5. For a function g : Z" — R, translation submodularity (9) is equiva-
lent to discrete midpoint convexity (6).

An L-convex function is defined as an LP-convex function g that satisfies

glp+1)=g(p)+r (10)

for some r € R (which is independent of p). It is known that g is L-convex if and
only if it satisfies (8) and (10); in fact this is the original definition of L-convexity.
L-convex functions and LF-convex functions are essentially the same, in that
L-convex functions in » variables can be identified, up to the constant r in (10),
with L-convex functions in n + 1 variables.

M-convex Functions

Just as L-convexity is defined through discretization of midpoint convexity, another
kind of discrete convexity, called M-convexity (Murota 1996¢, 1998b), can be de-
fined through discretization of another convexity property. We feature an equivalent
variant of M-convexity, called M"-convexity (Murota and Shioura 1999) (“M” should
be read “em natural”).

We first observe that a convex function f on R” satisfies the inequality

fO+fMz2fEx—ax—-—y)+ f(y+ax-—1y) 1)

for every @ € R with 0 < o < 1. This inequality follows from (1) for A = « and
A = 1 — «, whereas it implies (1) if f is a continuous function. The inequality (11)
says that the sum of the function values evaluated at two points, x and y, does not in-
crease if the two points approach each other by the same distance on the line segment
connecting them (see Fig. 11.3). We refer to this property as equidistance convexity.

For a function f : Z" — R in discrete variables we simulate equidistance con-
vexity (11) by moving a pair of points (x, y) to another pair (x’, y’) along the co-
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Fig. 11.3. Equidistance convexity

Fig. 11.4. Nearer pair in the definition of M®-convex functions

ordinate axes rather than on the connecting line segment. To be more specific, we
consider two kinds of possibilities

LYY= —xi,y+x) or Y )=x-—xi+xj,y+xi—x) (12

with indices i and j suchthat x; > y; and x; < y;; see Fig. 11.4. Fora vector z € R"
in general, define the positive and negative supports of z as

suppt () ={i |z >0},  supp~ () ={j |z; <O}

Then the expression (12) can be rewritten compactly as (x', y') = (x — x; + xj, ¥y +
Xi — x;j) with i € supp™(x — y) and j € supp™(x — y) U {0}, where xq is defined to
be the zero vector.

As a discrete analogue of equidistance convexity (11) we consider the follow-
ing condition: For any x,y € domgzf and any i € suppt(x — y), there exists
J € supp” (x — y) U {0} such that

fO+fO=2fa—xi+x)+ O+ x—xj) (13)

which is referred to as the exchange property. A function f : Z" — R having
this exchange property is called M"-convex. In the case of n = 1, MU-convexity
is equivalent to the condition (4). A concrete example of an M-convex function
(n =2) is shown in Fig. 11.5. Examples of M'-convex functions are given in
Sect. 11.4.2.

With this definition we can obtain the following desired statements comparable
to Theorems 2.1 and 2.2.
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Fig. 11.5. An M!-convex function (n = 2)

Theorem 2.6. An M°-convex function f : Z" — R is convex-extensible.

Theorem 2.7. For an MY-convex function f : Z" — R, a point x € domgf is a
global minimum if and only if it is a local minimum in the sense that

JO=fx—xi+x) ¥,jef{0,1,....n}.

An M-convex function is defined as an MP-convex function f that satisfies (13)
with j € supp™(x — y). This is equivalent to saying that f is an M-convex function
if and only if it is M?-convex and domz f C {x € Z" | Y _yxi = r} for some
r € Z. M-convex functions and MU-convex functions are essentially the same, in
that MY-convex functions in n variables can be obtained as projections of M-convex

functions in # + 1 variables.

Classes of Discrete Convex Functions

We have thus defined LY-convex functions and M®-convex functions by discretization
of midpoint convexity and equidistance convexity, respectively. The definitions are
summarized in Fig. 11.6.

Figure 11.7 shows the classes of discrete convex functions we have introduced.
L"-convex functions contain L-convex functions as a special case. The same is true
for M"-convex and M-convex functions. By Theorems 2.3 and 2.6 both LY-convex
functions and MP-convex functions are contained in the class of convex-extensible
functions. It is known that the classes of L-convex functions and M-convex func-
tions are disjoint, whereas the intersection of the classes of Li-convex functions and
MU-convex functions is exactly the class of separable convex functions.
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{Continuous variables) (Discrete vali_zibles)
f:R* >R f:Z" >R

midpoint convex — discrete midpoint convex (L"-convex)

&) [discretization]
(ordinary) convex

¢ [discretization]
equidistance convex — exchange property (M"-convex)
discrete midpoint convex: f(x) + f(y) = f ([%[I) +f (Li?_l)
midpoint convex: fXY+fn=2f (x—';—z)
(ordinary) convex: A+ A =NfO) = fAx+ (1 =1)y)
equidistance convex: fROO+fO=zfx—ax—y)+ fy+alx—1y)
exchange property: fX)+ f() 2 min[f(x — x;) + F( + Xxi)s

x?g‘lylj{f(x—xz' +xj))+fO+x—x)H

Fig. 11.6. Definitions of L!-convexity and M"-convexity by discretization

f:Z" - R

ﬁ)nvex-extensible \

M!-convex

M-convex
eparable convex
L-convex
L LY-convex /

Fig. 11.7. Classes of discrete convex functions (L“ -convex N MP-convex = separable convex)

Discrete Convex Sets

In the continuous case the convexity of a set § € R” can be characterized by that of
its indicator function &g as

S is a convex set <> 45 is a convex function.

We make use of this relation to define the concepts of discrete convex sets.
For a set § C Z" the indicator function of § is a function &5 : Z" — R given
by (2). L-convex sets and M?-convex sets are defined as

S is an Li-convex set <= &5 is an L-convex function,
S is an Ml-convex set <> &5 is an M?-convex function.
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Similarly for the definitions of L-convex and M-convex sets. We have § = § N Z"
for an LP-convex (MU-convex, L-convex or M-convex) set S, where S denotes the
convex hull of §.

For an LY-convex function f, both domgz f and argminy f are Li-convex sets.
This statement remains true when Lb-convexity is replaced by M!-convexity,
L-convexity or M-convexity.

11.2.3 Discrete Convex Functions in Continuous Variables

So far we have been concerned with the translation from “continuous” to “discrete.”
We have defined L-convex and M-convex functions by discretization of midpoint
convexity and equidistance convexity, respectively. Although these two properties
are both equivalent to (ordinary) convexity for continuous functions in continuous
variables, their discrete versions have given rise to different concepts (cf. Fig. 11.6).

We are now interested in the reverse direction, from “discrete” to “continuous,”
to define the concepts of L-convex and M-convex functions in continuous variables
(Murota and Shioura 2000, 2004a, 2004b). In so doing we intend to capture cer-
tain classes of convex functions with additional combinatorial structures. We refer to
such functions as discrete convex functions in continuous variables. This may sound
somewhat contradictory, but the adjective “discrete” indicates the discreteness in di-
rection in the space R” of continuous variables.

L-convex Functions

L3-convex functions in discrete variables have been introduced in terms of a dis-
cretization of midpoint convexity. By Theorem 2.5, however, we can alternatively
say that LY-convex functions are those functions which satisfy translation submodu-
larity (9).

This alternative definition enables us to introduce the concept of LY-convex func-
tions in continuous variables. That is, a convex function g : R* — R is defined to be
LP-convex if

gp)+g@)=zgl(p—al)vg)+g(pA(@+al)) (xeRy, p,geR"), (14

where R denotes the set of nonnegative reals. Examples of L°-convex functions are
given in Sect. 11.4.1.

L%-convex functions constitute a subclass of convex functions that are equipped
with certain combinatorial properties in addition to convexity. It is known (Murota
and Shioura 2004b), for example, that a smooth function g is Li-convex if and only
if the Hessian matrix H = (h;; = 32g/8p;dp i) is a diagonally dominant symmetric
M-matrix, i.e.,

hiy<0 G#j), D hijz0 (=1...,n (15)
j=1
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{Continuous variables) (Discrete van'_ables)

g:R" >R g:Z"->R
(ordinary) convex '

¢ [discretization]
midpoint convex — discrete midpoint convex
¢

translation submodular «— translation submodular

(Ln-convex) [prolongation] (Ln-convex)
(ordinary) convex: Ag(p) + (1 —A)g(g) = gAp + (1 — A)q)
midpoint convex: gp+g@)=2g (L'{‘l\)

discrete midpoint convex: g(p) + g(q) > g ([%ﬁ") +8 (I_%ﬁ_l)

translation submodular: g(p) + g(g) > g((p —al) v q) + g(p A (g + al))

Fig. 11.8. Definitions of LY -convexity by discretization and prolongation

at each point. This is a combinatorial property on top of positive semidefiniteness,
which is familiar in operations research, mathematical economics, and numerical
analysis. It may be said that LY-convexity extends this well-known property to non-
smooth functions.

An L-convex function in continuous variables is defined as an L¥-convex function
g : R* > R that satisfies

glp+al)=g(p)+ar (@eR, peR (16)

for some r € R (which is independent of p and ). L-convex functions and L!-convex
functions are essentially the same, in that L¥-convex functions in n variables can be
identified, up to the constant r in (16), with L-convex functions in n + 1 variables.

The inequality (14) is a continuous version of the translation submodularity (9),
in which we had @ € Z, and p,q € Z" instead of @ € R, and p, g € R". It may
be said that (14) is obtained from (9) by prolongation, by which we mean a process
converse to discretization. Figure 11.8 summarizes how we have defined L¥-convex
functions in discrete and continuous variables. Note that prolongation of discrete
midpoint convexity renders no novel concept, but reduces to midpoint convexity,
which is (almost) equivalent to convexity.

M-convex Functions

7M”-convex functions in continuous variables can be defined by prolongation of the
exchange property (13). We say that a convex function f : R” — R is M"-convex if,
forany x, y € domg f and any i € supp™(x — y), there exist j € supp~ (x — y) U{0}
and a positive real number o such that

fO+fO) = fx—alxi—x;)+ fFO+alx — x;)) an

foralle e Rwith0 < a < ap.
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f:R" >R

/convex

M!-convex

(@arable con% .]
L-convex

k L"-convey j

Fig. 11.9. Classes of convex functions (LU-convex N MP-convex = separable convex)

MU-convex functions in continuous variables constitute another subclass of con-
vex functions, different from L%-convex functions, that are equipped with another
kind of combinatorial properties. See examples in Sect. 11.4.2.

An M-convex function in continuous variables is defined as an M%-convex func-
tion f : R* — R that satisfies (17) with j € supp~(x — y). This is equivalent to
saying that f is M-convex if and only if it is M"-convex and domg f C {x € R" |
Y.i—1xi = r} for some r € R. M-convex functions and M!-convex functions are
essentially the same, in that MP-convex functions in n variables can be obtained as
projections of M-convex functions in n + 1 variables.

Classes of Discrete Convex Functions in Continuous Variables

Figure 11.9 shows the classes of discrete convex functions in continuous variables.
L%-convex functions contain L-convex functions as a special case. The same is true
for MP-convex and M-convex functions. It is known that the classes of L-convex
functions and M-convex functions are disjoint, whereas the intersection of the classes
of LY-convex functions and MP-convex functions is exactly the class of separable
convex functions.

Comparison of Fig. 11.9 with Fig. 11.7 shows the parallelism between the con-
tinuous and discrete cases.

11.3 Conjugacy

Conjugacy under the Legendre transformation is one of the most appealing facts in
convex analysis. In discrete convex analysis, the discrete Legendre transformation
gives a one-to-one correspondence between L-convex functions and M-convex func-
tions.
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11.3.1 Continuous Case

For a function f : R" — R (not necessarily convex) with domg f s @, the convex
conjugate f°* : R* — R is defined by

fo(p) =sup{(p.x) — f(x) | x €eR"} (peR"), L))

where (p, x) = Y ;_, pixi is the inner product of p = (p;) € R" and x = (x;) € R".
The function f*° is also referred to as the (convex) Legendre(—Fenchel) transform
of f, and the mapping f +> f* as the (convex) Legendre(—Fenchel) transformation.
Similarly to (18), the concave conjugate of h : R* — R is defined to be the function
h° : R" — R given by

h°(p) = inf{(p,x) —h(x) | x € R"} (p eR"). (19)

Note that 2°(p) = —(—h)*(—p).

The conjugacy theorem in convex analysis states that the Legendre transforma-
tion gives a one-to-one correspondence in the class of closed proper convex func-
tions, where a convex function f is said to be proper if dompg f is nonempty, and
closed if the epigraph {(x,y) € R**1 | y > f(x)} is a closed subset of R+
Notation f** means (f°*)°.

Theorem 3.1, The Legendre transformation (18) gives a symmetric one-to-one cor-
respondence in the class of all closed proper convex functions. That is, for a closed

proper convex function f, the conjugate function f* is a closed proper convex func-
tionand f** = f.

Addition of combinatorial ingredients to the above theorem yields the conjugacy
between M-convex and L-convex functions.

Theorem 3.2 (Murota and Shioura 2004a). The Legendre transformation (18) gives
a one-to-one correspondence between the classes of all closed proper M*-convex
functions and L*-convex functions. Similarly for M-convex and L-convex functions.

The first statement above means that, for a closed proper M®-convex function f,
f* is a closed proper L'-convex function and f** = f, and that, for a closed
proper Li-convex function g, g* is a closed proper M¥-convex function and g** = g.
To express this one-to-one correspondence we have indicated M"-convex functions
and L-convex functions by congruent regions in Fig. 11.9. The second statement
means similarly that, for a closed proper M-convex function f, f* is a closed proper
L-convex function and f** = f, and that, for a closed proper L-convex function g,
g* is a closed proper M-convex function and g** = g. It is also noted that the conju-
gate of a separable convex function is another separable convex function.

The L/M-conjugacy is also valid for polyhedral convex functions.

Theorem 3.3 (Murota and Shioura 2000). The Legendre transformation (18) gives
a one-to-one correspondence between the classes of all polyhedral MP-convex func-
tions and LP-convex functions. Similarly for M-convex and L-convex functions.
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11.3.2 Discrete Case

We turn to functions defined on integer points. For functions f : Z" — Rand & :
Z" — R with domgz f # @ and domzh # @, discrete versions of the Legendre
transformations are defined by

f*(p) =sup{(p,x) — f(x) | x € Z"} (peR"), (20)
h°(p) =inf{{p,x) —h(x) |x € Z"} (p eR"). (1)

We call (20) and (21), respectively, convex and concave discrete Legendre(—Fenchel)
transformations. The functions f®* : R® — R and 4° : R” — R are called the
convex conjugate of f and the concave conjugate of h, respectively.

Theorem 3.4. For an MP-convex function f : Z" — R, the conjugate function f*
R” — R is a (locally polyhedral) LP-convex function. For an L*-convex function g -
Z" — R, the conjugate function g* : R* — R is a (locally polyhedral) M"-convex
function. Similarly for M-convex and L-convex functions.

For an integer-valued function f, f*(p) is integer for an integer vector p. Hence
(20) with p € Z" defines a transformation of f : Z" — Zto f* : Z" — Z; we refer
to (20) with p € Z" as (20)z.

The conjugacy theorem for discrete M-convex and L-convex functions reads as
follows.

Theorem 3.5 (Murota 1998b). The discrete Legendre transformation (20)z gives
a one-to-one correspondence between the classes of all integer-valued MP-convex

functions and LP-convex functions in discrete variables. Similarly for M-convex and
L-convex functions.

It should be clear that the first statement above means that, for an integer-valued
M"-convex function f : Z" — Z, the function f* in (20)z is an integer-valued
LY-convex function and f** = f, where f°** is a short-hand notation for (f*)® using
the discrete Legendre transformation (20)z, and similarly when f is Li-convex.

11.4 Examples

11.4.1 L-convex Functions

Some examples of LI- and L-convex functions are given in this section. The follow-
ing basic facts are noted.

1. The effective domain of an L-convex function is an LY-convex set.

2. An LY-convex function remains to be Li-convex when its effective domain is
restricted to any L¥-convex set.

3. A sum of L -convex functions is L-convex.
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Similar statements are true when “L%-convex” is replaced by “L-convex” in the
above.

We first consider functions in discrete variable p = (p1, ..., pn) e AR
Linear function: A linear (or affine) function
g(p) =a+(p,x) (22)

with x € R” and & € R is L-convex (and hence L-convex).
Quadratic function: A quadratic function

n n
g(p) =Y > aijpip; (23)
i=1 j=1
witha;; =aj; € R (i, j = 1,...,n) is Li-convex if and only if
n
a; <0 (#j), Y a;=0 (i=1,...n). (24)
1
It is L-convex if and only if
n
a; <0 G#)), ) a=0 (=1...,n). (25)
=1
Separable convex function: For univariate convex functions ¥; (i = 1,...,n)
and ¥i; (0, j=1,...,m 0 # j),
n
gp) = i)+ Vij(pi — pj) - (26)
i=1 i#j
is an L¥-convex function. This is L-convex if ; = 0 fori = 1, ..., n.
Maximum-component function: For any 19, 71, ..., 7, € R,
g(p) = max{ro, p1 + 11, p2+712,..., Pn+ Tu} (27)
is an L%-convex function. This is L-convex if 7y does not exist (i.e., T = —00).
Hence
8(p) = max{py, p2, ..., pa} —min{py, p2, ..., pn} (28)

is an L-convex function. Furthermore, if y is a nondecreasing univariate convex
function,

8@ = ¥ (max (pi + ) @9)

is an Li-convex function. It is also mentioned that, if go(p, ¢) is Li-convex in

(p, 1) € Z" xZ and nondecreasing in ¢, then the max-aggregation g : Z" xZ"™ —
R defined by

g(p,q) =go(p, max(q1,....qm)) (p€Z',qeZ™) (30)

is LY-convex in (p, ), whereas g is L-convex if gg is L-convex.
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» Submodular set function: A submodular set function p : 2¥ — R can be
identified with an LP-convex function g under the correspondence g(xx) = p(X)
for X C V, where domzg C {0, 1}*.

* Multimodular function: A function & : Z" — R is multimodular if and only if
it can be represented as

h(P)=g(Pl,pl+P2’---,P1+"'+pn)

for some L”-conveg( function g; see (Altman et al. 2000, 2003; Hajek 1985;
Murota 2005).

The constructions above work for functions in continuous variable p € R”. That
is, the functions g : R” — R defined by the expressions (22) to (30) are L- or
L-convex functions, if all the variables are understood as real numbers or vectors. It
is noteworthy that quadratic LP-convex functions are exactly the same as the (finite
dimensional case of) Dirichlet forms used in probability theory (Fukushima et al.
1994). The energy consumed in a nonlinear electrical network, when expressed as a
function in terminal voltages, is an L¥-convex function (Murota 2003a, Sect. 2.2).

11.4.2 M-convex Functions

Some examples of M- and M-convex functions are given in this section. The fol-
lowing basic facts are noted.

1. The effective domain of an MP-convex function is an Mf-convex set.

2. An M"-convex function does not necessarily remain M"-convex when its effec-
tive domain is restricted to an MY-convex set.

3. A sum of MU-convex functions is not necessarily M-convex.

4. The infimal convolution of M!-convex functions f; and f,, defined as

(/10 2)&x) =inf{ f1(x1) + fa(x2) | x = x1 + x2}, 31D

is MU-convex if f1 O f> does not take —oo, where x1, x3 € Z" in the discrete
case and x1, x2 € R"” in the continuous case.

Similar statements are true when “M?-convex” is replaced by “M-convex” in the
above.
We first consider functions in discrete variable x = (xi, ..., x,) € Z".

¢ Linear function: A linear (or affine) function

fx)=a+ (p,x) (32)

with p € R” and « € R is MP-convex. It is M-convex if domg f is an M-convex
set.
* Quadratic function: A quadratic function

FE) =YY aijxix; (33)

i=1 j=1
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withag;j =a;; eR(@G, j=1,...,n)is MP-convex if and only if a;; > 0 for all
@, j)and
a;j > min(aix, ajx) if{i, j}N{k} =9, (34)

where domg f = Z". A function f of (33), withdomz f = {x € Z" | }/_;x: =
r} for some r € Z, is M-convex if and only if

aij + ap > min(aix +aji, ai +aj) if{i, j}0{k, 1} = 0. (35)

- Laminar convex function: By a laminar family we mean a nonempty family 7°
of subsets of V suchthat X NY =@ForX CYorX DY forany X,Y € 7.
A function f is called laminar convex if it can be represented as

fx =) fx@X)) (36)
XeT

for a laminar family 7" and a family of univariate convex functions fx indexed
by X € 7, where x(X) = ) ;cx Xi. A laminar convex function is M'-convex.
A separable convex function (3) is laminar convex and hence Mt-convex. It is
known (Hirai and Murota 2004) that every quadratic MP-convex function (in dis-
crete variables) is laminar convex.

Minimum-value function: Given g; for i € V we define a set function y :
2V - R as u(X) = min{a; | i € X} for nonempty X C V. By convention we
put 1(@) = a. by choosing a, € R such that a, > max{a; | i € V}. Then p is
MU-convex when identified with a function f : Z" — R with domz f C {0, 1}"
by f(xx) =pu(X)for X C V.

Bipartite matching: Let G = (V, W; E) be a bipartite graph with vertex set
V UW and edge set E, and suppose that each edge e € E is associated with
weight y(¢) € R. For X C V denote by I'(X) the minimum weight of a match-
ing that matches with X, i.e.,

rx = min{ )" v(e) | M is a matching, V N dM = x],
eesM

where I'(X) = +o0 if such M does not exist. Then I" is M®-convex when iden-
tified with a function f : Z" — R with domz f € {0, 1}* by f(xx) = I'(X)
for X C V. This construction can be extended to the minimum convex-cost flow
problem.

Stable marriage problem: The payoff function of the stable marriage problem
is MP-concave; see (54) in Sect. 11.10.

Matroid: Let (V, B, Z, p) be a matroid on V with base family B, independent-set
family Z and rank function p. The characteristic vectors of bases {xp | B € B}
form an M-convex set and those of independent sets {x; | I € Z} form an
Mt-convex set. The rank function p : 2¥ — Z is M¥-concave when identified
with a function f : Z" — R with domz f = {0, 1}" by f(xx) = p(X) for
X C V; see Sect. 11.6.1. More generally, the vector rank function of an integral
submodular system is M®-concave (Fujishige 2005, p. 51).
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 Valuated matroid: A valuated matroid w : 2V — R of Dress and Wenzel (1990,
1992) (see also Murota 2000, Chap. 5) can be identified with an M?-concave
function f under the correspondence f(xx) = w(X) for X €V, where
domgz f C {0, 1}". The tropical geometry (Speyer and Sturmfels 2004) is closely
related with valuated matroids. For example, the tropical linear space (Speyer
2004) is essentially the same as the circuit valuation of matroids (Murota and
Tamura 2001).

Next we turn to functions f : R* — R in continuous variable x € R". The
infimal convolution (31) preserves M!-convexity when the infimum is taken over
x1, X2 € R", Laminar convex functions (36) as well as linear functions (32) remain
to be Mf-convex when x is understood as a real vector. The energy consumed in a
nonlinear electrical network, when expressed as a function in terminal currents, is an
ME-convex function (Murota 2003a, Sect. 2.2).

A subtlety arises for quadratic functions. Condition (34), together with a;; > 0
for all (i, j), is sufficient but not necessary for f : R® — R of the form of (33) to be
Mt-convex. A necessary and sufficient condition in terms of the matrix A = (a;;) is
that, for any B > 0, A + B1 is nonsingular and (A + 81)~! satisfies (24). It is also
mentioned that not every quadratic M%-convex function in real variables is laminar
convex. As for M-convexity, condition (35) is sufficient but not necessary for f to be
M-convex.

Thus the relation between discrete and continuous cases are not so simple in
M-convexity as in L-convexity.

11.5 Separation and Fenchel Duality

11.5.1 Separation Theorem

The duality principle in convex analysis can be expressed in a number of different
forms. One of the most appealing statements is in the form of the separation theorem,
which asserts the existence of a separating affine function y = «* 4 (p*, x) for a
pair of convex and concave functions.

In the continuous case we have the following.

Theorem 5.1. Let f : R* — Rand h : R* — R be convex and concave functions,
respectively (satisfying certain regularity conditions). If

f(x) = h(x) (Vx €R"),
there exist «* € R and p* € R” such that
f&x)=a*+(p*,x) = h(x) (¥x € R").

A discrete separation theorem means a statement like:
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Forany f : Z* — Randh : Z" > R belonging to certain classes of
functions, if f(x) > A(x) for all x € Z", then there exist ¢* € R and
p* € R" such that

f) zZa*+(p* x) 2 h(x) (YxeZ).

Moreover, if f and 4 are integer-valued, there exist integer-valued a* € Z
and p* € Z".

Discrete separation theorems often capture deep combinatorial properties in spite
of the apparent similarity to the separation theorem in convex analysis. In this con-
nection we note the following facts (see Murota 2003a, Examples 1.5 and 1.6 for
concrete examples), where 7 denotes the convex closure of f, h the concave closure
of h, and =~ stands for “does not imply.”

1. f(x) = h(x) (Vx € Z") == f(x) > h(x) (Yx € R").
2. f(x) = h(x) (Vx € Z") =~ existence of «* € R and p* € R".
3. Existence of «* € R and p* € R" =5 existence of a* € Z and p* € Z".

The separation theorems for M-convex/M-concave functions and for L-convex/
L-concave functions read as follows. It should be clear that f*® and 4° are the convex
and concave conjugate functions of f and & defined by (20) and (21), respectively.

Theorem 5.2 (M-separation theorem). Let f : Z" — R be an M"-convex function
and h : Z" — R be an M"-concave function such that domg f N domgh # @ or
domg f* N domgh® # @. If f(x) > h(x) (Vx € Z"), there exist a* € R and
p* € R" such that

fx) =a*+({p*, x) > h(x) (xeZ".

Moreover, if f and h are integer-valued, there exist integer-valued o* € Z and
p*eZ.

Theorem 5.3 (L-separation theorem). Let g : Z" — R be an L'-convex function
and k : Z" — R be an Li-concave function such that domgzg N domzk # @ or
dompg® Ndomgk® # @. If g(p) > k(p) (Vp € Z"), there exist B* € Rand x* e R"
such that

gp) = B +(p.x") > k(p) (VpelZ").

Moreover, if g and k are integer-valued, there exist integer-valued B* € Z and
x*elZ".

As an immediate corollary of the M-separation theorem we can obtain an opti-
mality criterion for the problem of minimizing the sum of two M-convex functions,
which we call the M-convex intersection problem. Note that the sum of M-convex
functions is no longer M-convex and Theorem 2.7 does not apply.
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Theoreln 5.4 (M-convex intersection theorem). For M®-convex functions fi, h
Z" — R and a point x* € domg f; N domg f, we have

fiGH) + L&) < ilkx) + L(x) (Vx eZ)
if and only if there exists p* € R" such that

(fi—pHE") = (h—-pHx) (VxeZ),
(fa+pPGE") = (L+p)x) (VxeZ).

These conditions are equivalent, respectively, to

1= <N -P)E*+xi—xj) Vi, je{0,1,...,n}),
(2+p)EN) <L+ +xi—x;) Vi, je{0,1,...,n},

and for such p* we have

argming(f1 + f2) = argming (fi — p*) Nargming (f2 + p*).
Moreover, if f1 and f, are integer-valued, we can choose integer-valued p* € Z".

Frank’s discrete separation theorem (Frank 1982) for submodular/supermodular
set functions is a special case of the L-separation theorem. Frank’s weight splitting
theorem (Frank 1981) for the weighted matroid intersection problem is a special case
of the M-convex intersection problem. The submodular flow problem can be gener-
alized to the M-convex submodular flow problem (Murota 1999); see also (Iwata et
al. 2005; Iwata and Shigeno 2003).

11.5.2 Fenchel Duality

Another expression of the duality principle is in the form of the Fenchel duality.
This is a min-max relation between a pair of convex and concave functions and their
conjugate functions. Such a min-max theorem is computationally useful in that it
affords a certificate of optimality.

The Fenchel duality theorem in the continuous case reads as follows. Recall the
notations f* and #° in (18) and (19).

Theorem 5.5. Let f : R* — R and h : R* — R be convex and concave functions,
respectively (satisfying certain regularity conditions). Then

inf{f (x) — h(x) | x € R*} = sup{h®(p) — f*(p) | p € R"}.

We now turn to the discrete case. For any functions f : Z* — Zandh: Z" - Z
we have a chain of inequalities:

inf{f(x) —h(x) | x € Z"} sup{h°(p) — f*(p) | p € Z"}
v Al 37

inf{(f(x) —h(x) | x e R"} > sup{h"(p) — 7 (p) | p € R"}

from the definitions (20) and (21) of conjugate functions f* and h°, where f and A
are convex and concave closures of f and h, respectively. It should be observed that
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1. The second inequality in the middle of (37) is in fact an equality by the Fenchel
duality theorem (Theorem 5.5) in convex analysis;

2. The first (left) inequality in (37) can be strict even when f is convex-extensible
and h is concave-extensible, and similarly for the third (right) inequality. See
Examples 5.6 and 5.7 below.

Example 5.6. For f, h : Z* — Z defined as

fx1,x2) = |x1+x2 — 1], h(x1,x2) =1 —|x1 — x2|

we have inf{f — h} = 0, inf{f — #} = —1. The discrete Legendre transforms are
given by

. _lp ((p1,p2) €S o _ 171 p,p)eT)
f (pl’pZ)_{+oo (otherwise), h (pl’pZ)_{—oo (otherwise)

with § = {(-1,-1),(0,0),(1,1)} and T = {(-1,1),(0,0), (1, —1)}. Hence
sup{h® — f*} = h°(0,0) — f*(0,0) = —1 — 0 = —1. Then (37) reads as

inf(f — h} > inf{f —h} = sup{h’ — f } = sup{h°® — f°}.
(0) (-1 (-1 (=1

Example 5.7. For f, h : Z? — Z defined as
f(x1, x2) = max(0, x1 + x2), h(x1, x2) = min(xi, x2)

we have inf{ f — h} = inf{f — &} = 0. The discrete Legendre transforms are given

as f* = 85 and h° = —&7 in terms of the indicator functions of S = {(0, 0), (1, 1)}

and T = {(1, 0) (0 1)}. Since Sﬂ T =4, h° f* is identically equal to —oo,

whereas sup{h_ — f } = 0 since 7 = &5, R = = —& and SNT = {(1/2,1/2)}.
Then (37) reads as

inf{f — h} = inf{f — h} = sup(’ —?} > sup{h® — f°}.
©) ©) 0 (—00)

From the observations above, we see that the essence of the following theorem
is the assertion that the first and third inequalities in (37) are in fact equalities for
M!-convex/MP-concave functions and Li-convex/L"-concave functions.

Theorem 5.8 (Fenchel-type duality theorem).

(1) Let f : Z" — 7 be an integer-valued MP-convex functionand h : Z" — Z
be an integer-valued M"-concave function such that domgz, f N domzgh # 0 or
domgz f* N domgh® # @. Then we have

inf(f(x) — h(x) | x € Z"} = sup{h®(p) — f*(P) | p € Z"}.  (38)

If this common value is finite, the infimum and the supremum are attained.
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(2) Let g : Z" — 7 be an integer-valued L°-convex functionand k : 2" — Z
be an integer-valued L-concave function such that domzg N domgk # @ or
domgzg® N domgzk® # B. Then we have

inf{g(p) — k(p) | p € Z"} = sup{k°(x) — g°(x) | x € Z"}. (39)

If this common value is finite, the infimum and the supremum are attained.

Edmonds’ intersection theorem (Edmonds 1970) in the integral case is a special
case of Theorem 5.8(1) above, and Fujishige’s Fenchel-type duality theorem (Fu-
jishige 1984) (see also Fujishige 2005, Sect. 6.1) for submodular set functions is a
special case of Theorem 5.8 (2) above.

Whereas L-separation and M-separation theorems are parallel or conjugate in
their statements, the Fenchel-type duality theorem is self-conjugate, in that the sub-
stitution of f = g*® and & = k° into (38) results in (39) by virtue of g = g**
and k = k°°. With the knowledge of M-/L-conjugacy, these three duality theorems
are almost equivalent to one another; once one of them is established, the other two
theorems can be derived by relatively easy formal calculations.

11.6 Submodular Function Maximization

Maximization of a submodular set function is a difficult task in general. Many NP-
hard problems can be reduced to this problem. Also known is that no polynomial
algorithm exists in the ordinary oracle model (and this statement is independent of
the P £ NP conjecture) (Jensen and Korte 1982; Lovéasz 1980, 1983). For approxi-
mate maximization under matroid constraints the performance bounds of greedy or
ascent type algorithms were analyzed in Conforti and Cornuéjols (1984), Fisher et
al. (1978), Nemhauser et al. (1978) and, recently, a pipage rounding algorithm has
been designed for a subclass of submodular functions in Calinescu et al. (2007),
which is extended in Vondrék (2008) to general submodular functions with the aid
of randomization.

Mb-concave functions on {0, 1}-vectors form a subclass of submodular set func-
tions that are algorithmically tractable for maximization. This is compatible with
our general understanding that concave functions are easy to maximize, and explains
why certain submodular functions treated in the literature are easier to maximize. To
be specific, we have the following.

1. The greedy algorithm can be generalized for maximization of a single M"-con-
cave function.

2. The matroid intersection algorithm can be generalized for maximization of a
sum of two M!-concave functions.

3. The pipage rounding algorithm (Ageev and Sviridenko 2004) can be generalized
for approximate maximization of a sum of nondecreasing Mt-concave functions
under a matroid constraint.
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Note that a sum of M¥-concave functions is not necessarily M"-concave, though it
is submodular. It is also mentioned that maximization of a sum of three M!-concave

functions is NP-hard, since it includes the three-matroid intersection problem as a
special case.

11.6.1 M!-concave Set Functions

Let us say that a set function p : 2V — R is M-concave if the function & : Z" — R
defined as A(xx) = p(X) for X C V and h(x) = —ooforx ¢ {0, 1} is MI-concave.
In other words, p is M-concave if and only if, forany X, Y C V andi € X \ Y, we
have p(X) +p(Y) < p(X\{iD+p (Y U{i}) or p(X) +p(¥) < p((X\{iDU{jH+
p((Y U{ih \ {j}) for some j € Y \ X. An M¥-concave set function is submodular
(Murota 2003a, Theorem 6.19).

Not every submodular set function is M"-concave. An example of a submod-
ular function that is not Mf-concave is given by p on V = {1, 2, 3} defined as
p@) =0, p({2,3}) =2, p({1) = p({2) = p({3) = p({1,2}) = p({1,3)) =
p({1,2,3}) = 1. The condition above fails for X = {2,3},Y = {1} andi = 2.

A simple example of an M¥-concave set function is given by p(X) = ¢(|X|),
where ¢ is a univariate concave function. This is a classical example of a submodular
function (Edmonds 1970; Lovasz 1983) that connects submodularity and concavity.

For a family of univariate concave functions {¢4 | A € 7} indexed by a family
T of subsets of V, the function

p(X)=)_ pa(lANX]) (XCV)
AeT

is submodular. This function is M%-concave if, in addition, 7 is a laminar family
(ie,A,Be7=>ANB=0orAC BorADB).
Given a set of real numbers g; indexed by i € V, the maximum-value function

p(X) =maxa; (XCV)
ieX

is an M?-concave function, where o () is defined to be sufficiently small.
A matroid rank function is M¥-concave (Fujishige 2005, p. 51). Given a matroid
on V in terms of the family Z of independent sets, the rank function p is defined by

p(X)=max{|{I|| T €Z, IS X} (XCV)

which denotes the maximum size of an independent set contained in X. An interest-
ing identity exists that indicates a kind of self-conjugacy of a matroid rank function.
letg : Z" > Z be such that g(xx) = p(X) for X € V and domzg = {0, 1}",
and denote by p°® the discrete Legendre transform g* of g defined by (20)z (i.e., (20)
with p € Z"). Then we have

p(X)=1X]-p*(xx) (XS V). | (40)
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This can be shown as follows: p®(xx) = maxy{|X N Y| — pY) | Y C V}
maxy{IXNY|—p(¥) | X €Y C V} = maxy{|X|—p(¥) | X CY C V} =
|X| — p(X); see also (Fujishige 2005, Lemma 6.2). Since p is submodular, g is L!-
convex, and hence g* (= p*) is Mf-convex by conjugacy (Theorem 3.5). Then the
expression (40) shows that p is M%-concave.

A weighted matroid rank function, represented as

p(X)=max{Zw,- | I €T, ng} (X V) (41)

iel

with a nonnegative vector w € R”, is also MP-concave. This is a recent observation
by Shioura (2008).

11.6.2 Greedy Algorithm

MU-concave set functions admit the following local characterization of global maxi-
mum, an immediate corollary of Theorem 2.7.

Theorem 6.1. For an M®-concave set function p : 2V — R and a subset X C V, we
have p(X) = p(Y) (VY C V) ifand only if

p(X) = Jax {p(X\N{EHUD, pX\ D, p(XU{jD}.
ieX,jeV\X

A natural greedy algorithm works for maximization of an Mf-concave set func-
tion p:

SO: Put X := 0.

S1: Find j € V \ X that maximizes p(X U {j}).

S2: If p(X) > p(X U {j}), then stop (X is a maximizer of p).
S3: Set X := X U {j} and goto S1.

This algorithm may be regarded as a variant of the algorithm of Dress and Wenzel
(1990) for valuated matroids, and the validity can be shown similarly.

11.6.3 Intersection Algorithm

Edmonds’s matroid intersection/union algorithms show that we can efficiently max-
imize p1(X) + p2(V \ X) and p;(X) + p2(X) — | X| for two matroid rank functions
o1 and p3. It should be clear that maxy {01 (X) + p2(V \ X)} is equal to the rank of
the union of two matroids (V, p1) and (V, p2), and that maxx {01 (X) + p2(X) — | X}
is equal to the maximum size of a common independent set for matroid (V, p1)
and the dual of matroid (V, p2). We note here that both p;(X) + p2(V \ X) and
01(X) + (p2(X) — | X|) are submodular functions that are represented as a sum of
two ME-concave functions.
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Edmonds’s intersection algorithm can be generalized for MY-concave functions.
A sum of two MP-concave set functions can be maximized in polynomial time by
means of a variant of the valuated matroid intersection algorithm (Murota 1996b);
see also (Murota 1999, 2000, 2003a). It follows from the M-convex intersection the-
orem (Theorem 5.4) that, for two M¥-concave set functions p; and p;, X maximizes
p1(X) + p2(X) if and only if there exists p* € R” such that X maximizes both
p1(X) + p*(X) and p1(X) — p*(X) at the same time, where p*(X) = Y, P

11.6.4 Pipage Rounding Algorithm

Let p be a nondecreasing submodular set function on V and (V, Z) be a matroid on
V with the family Z of independent sets. We consider the problem of maximizing
p(X) subject to X € Z. It is assumed that the function evaluation oracle for p and
the membership oracle for Z are available.

A recent paper of Calinescu et al. (2007) proposes a pipage rounding framework
for approximate solution of this problem, showing that it works if the function p
is represented as a sum of weighted matroid rank functions (41). Subsequently, it
is pointed out by Shioura (2008) that this approach can be extended to the class of
functions p represented as a sum of Mf-concave functions.

The framework of Calinescu et al. (2007) consists of three major steps.

1. Define a continuous relaxation: maximize f(x) subject to x € P, where P is
the matroid polytope (convex hull of the characteristic vectors of independent
sets) of (V,Z), and f(x) is a nondecreasing concave function on P such that
flxx)=pX) forall X C V.

2. Find an (approximately) optimal solution x* € P of the continuous relaxation.

3. Round the fractional vector x* € P to a {0, 1}-vector X € P by applying the
“pipage rounding scheme,” and output the corresponding subset X (such that
Xz = X) as an approximate solution to the original problem.

This algorithm, if computationally feasible at all, is guaranteed to outputa (1 —1/e)-
approximate solution, where e denotes the base of natural logarithm.

In the case where p = Y j-_; px With nondecreasing M"-concave set functions
Pk, the above algorithm can be executed in polynomial time. As the concave exten-
sion f we may take the sum of the concave closures, say, p; of px fork =1, ..., m.
The continuous relaxation can be solved by the ellipsoid methed, which uses subgra-
dients of 5. The subgradients of p; can in turn be computed in polynomial time by
exploiting the combinatorial structure of M"-concave functions.

11.7 Finite Metric Space

Metrics are closely related to discrete convexity in several aspects. Distance func-
tions satisfying triangle inequality are in one-to-one correspondence with positively
homogeneous M-convex functions, and tree metrics are the same as valuated ma-
troids of rank two. Furthermore, the Buneman construction and the Bandelt-Dress
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split decomposition can be derived as decompositions of polyhedral convex func-
tions.

11.7.1 Peositively Homogeneous M-convex Functions

Recall that V = {1, 2, ..., n}. By a distance function we mean a functiond : V x
V — Rsuch that d(i,i) = O for all i € V, where d may take negative values and
is not necessarily symmetric (i.e., d(i, j) # d(j, i) in general). As usual, triangle
inequality means the inequality:

d@, j)+4d(j, k) =dG, k) (i, j,keV). (42)

There exists a one-to-one correspondence between distance functions with tri-
angle inequality and positively homogeneous (polyhedral) M-convex functions, as
follows (see Murota 2003a, Sect. 6.12 for detail).

Theorem 7.1. For a distance functiond : V x V — R satisfying triangle inequality,
the function f : R" — R defined by

fx) =ir£f{ Y aijdG, J)

i,jeVv

Z Aij(xj —xi)==x, 4 =0(,j € V)] 43)
i,jev

is a positively homogeneous M-convex function, for which
d@, j)=f(xj—x) @G jeV). (44)

Conversely, for a positively homogeneous M-convex function f, the function d de-
fined by (44) is a distance function with triangle inequality, for which (43) is true.

Figure 11.10 illustrates this correspondence when V = {1, 2, 3}; (a) shows the
pointset {x; — x; | i, j € V}, (b) the function values of f, and (c) the corresponding
positively homogeneous M-convex function f.

?d(l- 3)

‘d.l,z)

¢« 7 d(s,z)i
.

Fig. 11.10. Correspondence between distance functions and positively homogeneous M-
convex functions (n = 3)
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11.7.2 Tree Metrics and Buneman Construction

In the following we assume that d is a metric, which means that d is finite-valued
(d:V xV — R)and satisfies d(i,i) = 0 (Vi € V), d(@,Jj) = d(,i) >0
(Vi, j € V), and triangle inequality (42).

A tree metric means a metric that can be represented as the distance between
vertices of a tree with nonnegative edge length. It is known that a metric d is a tree
metric if and only if

d@, j)+dk, ) <max{d(@,k)+d(j,1),d@, 1) +d(j, k)} (45)

for all distinct i, j, k,! € V. This condition is called the four-point condition.

Remark 7.2. Consider the family B = {{i, j} | 1 <i < j < n} of unordered pairs
of V. Afunctiond : V x V — R withd(i, j) = d(j,i) > 0 and d(i,i) = O for
all i, j € V can be identified with a function w : B — R. Then 4 is a tree metric if
and only if @ is a valuated matroid. Thus a tree metric is essentially equivalent to a
valuated matroid on the uniform matroid of rank two.

Remark 7.3. A metric d is called an ultrametric if
d(i, j) < max{d(i, k),d(j, k)} (46)

for all distinct #, j, k € V. An ultrametric is a tree metric. For a tree metric 4 on V
the function d defined by ‘

d@, j) =d(, j) —dG,n) —d(j,n) (G, jeV\{n}) (47)

satisfies (46), where d(i, j) < 0. .

The four point condition is closely related to M- or M"-convexity of a quadratic
function f(x) = xT Ax in x € Z". The condition (35) for M-convexity, a; i+ au =
min(a;x + aji, aii + ajx), is equivalent to the four point condition (45) for d(i, j) =
—a;j, and the condition (34) for M¥-convexity, @;; > min(aix, a;i), is the same

as (46). Note also that the substitution of x, = —(x1 + -+ + x,—1) into f(x) =
xT Ax yields a quadratic function f(i) =%TAxin% = (x1,...,%s—1)" with aij =
aij —Qin—AQjn+ann (i, j =1,...,n—1). Thisis identical with (47) up to a constant
term ay,.

The Buneman construction decomposes a given metric 4 into a tree metric d and
a residual d’, as follows.

A partition of V into two nonempty sets is called a split. For a split o = {A, B},
where ANB=0,AUB =V, A # @, B # @, we define split metric or cut metric
Ay : VXV —> Rby

U QU INAl=1G iNBl=1),
A“("”‘{o (i, j} € Aor {i, j} € B).

For a metric d and a split 0 = {A, B} the Buneman index is a real number defined
as




246 K. Murota

Bo(d) = 2 eun 5 8GR +d(, 1) —dG, j) —dk D).

With the notation B(d) = {0 | B,(d) > 0} we defined : V x V — R as

di, )= ) B Al j).
oceB(d)

Then B(d) is compatible in the sense that for any two splits o; = {A1, Bi}, 02 =
{A2, B2} in B(d) at least one of A1 N Az, A1 N By, 31 N Az, and B N B; is empty.
Accordingly, d is a tree metric with d < d, where d = d if (and only if)d is a tree
metric. Furthermore, d’ = d — d is a metric such that Bo(d") < 0 for every split o’.
Note that we have obtained a decomposition of d in the form of

Y Bod)As +d. (48)
oceB(d)

11.7.3 Discrete Convex Approach to Buneman Construction

The decomposition (48) of a metric d can be derived from a general decomposi-
tion method for polyhedral convex functions applied to the positively homogeneous
M-convex function f that corresponds to d as in Theorem 7.1. The decomposition
method for polyhedral convex functions, called polyhedral split decomposition, is as
follows.

For a hyperplane H lying in R" and a point x € R” let /g (x) denote half the
distance between x and H. That is, Iy (x) = |(a, x) — b|/2 if H is represented as
{a,x) = b, where a € R", b € R with |lall; = 1. This function Iy : R* — Ris
called the split function associated with H.

For a polyhedral convex function f and a hyperplane H let ¢y (f) be the maxi-
mum value of ¢ € R such that f —tly is convex, i.e.,

cy(f) =sup{t e R| f — tly is convex}.
With the notation
H(f) = {H: hyperplane | 0 < cx (f) < +o0}

we obtain the following decomposition, called the polyhedral split decomposition.

Theorem 7.4 (Hirai 2006). Any polyhedral convex function f : R* — R with
dimdomg f = n can be represented uniquely as

f= > eaOlu+f, (49)
HeH(f)

where f' is a polyhedral convex function such that cy:(f') € {0, +00} for every
hyperplane H'.
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Fig. 11.11. Polyhedral split decomposition of the positively homogeneous M-convex function
associated with a metric (n = 3)

Given a metric d we consider the polyhedral convex function f of (43) associated
with d and apply the decomposition (49) to f with necessary modifications to adapt
to the case of dimdompg f = n — 1; see Fig. 11.11, where n = 3. It turns out that
each hyperplane in H(f) is represented as

Hy = {x e R" | x(A) = x(B)} (50

for a split 0 = {A, B}. Moreover, the split function /5 coincides essentially with
the split metric A, in that

|
A (i, j) = 51x(A) = x(B)| = Vnlg, (x) (= = Xj = x)
and the coefficient cg, (f) is given in terms of the Buneman index B, (d) as

cH, (f) = v/n max{Bs(d), 0}.

Furthermore, the residual term f’ turns out to be M-convex and it corresponds to a
metric, which we denote as d’. Thus the decomposition (49) evaluated at x = x; — x;
(i # j) yields the decomposition (48) of d based on the Buneman index.

All the terms in the decomposition (49) for f associated with d are positively ho-
mogeneous M-convex functions. In other words, the sum of the positively homoge-
neous M-convex functions, /7, and f’, is another positively homogeneous M-convex
function f. Compatibility of B(d) as a family of splits plays a crucial role here. Note
that a sum of M-convex fuinctions is not always M-convex.

11.7.4 Discrete Convex Approach to Split Decomposition

The split decomposition of Bandelt and Dress (1992) can also be derived through the
polyhedral split decomposition.

For a metric d and a split 0 = {A, B} the isolation index is a real number defined
as

1
d)= - i
% (d) 2i,je?,lllcl,1e3

d@, k) +d@, D, ..
{max{ a1 +dG, k) } —d(, j) —dk, l)] .

The split decomposition of d is defined as

d= Z oy (d) Ay +d” (51)
oecAW)
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with A(d) = {0 | as(d) > 0}. The “remainder term” d” is a metric such that
g+ (d") < 0 for every split o/, whereas the “main part” 3 o, (d) A, admits a graph-
ical representation (a generalization of tree representation).

Let f be the largest positively homogeneous convex function such that f(x; +
Xj) = —d(, j) fori, j € V, which means, in particular, that f(2x;) =0fori € V.
This function f is a polyhedral convex function, to which the decomposition (49) can
be applied. It turns out that each hyperplane H,; in H(f) appearing in this decompo-
sition is represented as (50) for a split & = {A, B}. Moreover, the split function [y,
coincides essentially with the split metric A, in that

.. 1
Ac(Q, j) = —ilx(A) —x(B)|+1=—=V/nlyg,(x)+1 (x=xi + x;)
and the coefficient ¢y, (f) is given in terms of the isolation index a, (d) as

cH, (f) = &/n max{e, (d), 0}.

Thus the polyhedral split decomposition (49) evaluated at x = x; + x; (i # j) yields
the split decomposition (51) of d.

The reader is referred to Deza and Laurent (1997) and Semple and Steel (2003)
for fundamental facts about metrics and phylogenetics, and to Dress et al. (1996) for a
survey of T-theory. In particular the decomposition (48) based on the Buneman index
is due to Buneman (1971). Discrete convex approach was initiated by Hirai (2006)
for the split decomposition (51) of Bandelt and Dress (1992), whereas its application
to the decomposition (48) based on the Buneman index is due to Koichi (2006).

11.8 Eigenvalue of Hermitian Matrices -

An interesting connection exists between discrete concave functions in two variables
and the range of eigenvalues of a sum of two Hermitian matrices with specified eigen-
values. For an n x n Hermitian matrix A we denote by A(A) the descending vector of

eigenvalues of A, where a descending vector means a vector & = (ay, ..., &) such
thatoy > g > -+ > .
Given two descending vectors o = («1,...,a,) and 8 = (B1,..., Bn), We are

concerned with the problem of determining the set
E(a, ) ={y € R" | \(A) = a,A(B) = B, M(A + B) =y},

which denotes the range of eigenvalues of A + B when Hermitian matrices A and
B vary subject to the constraint that A(A) = « and A(B) = B. This problem was
first addressed by H. Weyl in 1912 and investigated intensively by A. Horn around
1960, who posed a conjecture that E (e, ) is a convex polyhedron described by
the descending condition y; > y¥2 = -+ > y,, the trace condition ) ,_, »x =
> i1 @ + Y%, B; and a family of inequalities of the form

Y ove<) i+ ) B

kek iel Jjed
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Fig. 11.12. Triangular region A

where (I, J, K) runs over a finite index set IT such that |I| = |J| = |K| for (I, J, K)
ell.

In the 1990’s this problem received revived interest. With contributions by many
researchers, in particular, by A. Klyachko, this problem has been settled in the affir-
mative. The range E(a, B) is now understood and described in terms of “puzzles”
or “honeycombs.” See (Danilov and Koshevoy 2003; Fulton 2000; Karzanov 2005;
Klyachko 1998; Knutson and Tao 2001; Knutson et al. 2003) for details.

The connection to discrete concave functions is as follows. Consider an Li-convex
set

A={G,)eZ?|0=<j<i<n)

as depicted in Fig. 11.12. An L%-concave function f on A determines three descend-
ing vectors «, B and y from its boundary values as

@ = fG,0) - fi —1,0) G=1,...,n),
ve=fl0) - fle—Lk=1 Gk=1,...,n).

It then follows that 37 _; v = X_i_; & + > j_; Bj- Conversely, given two de-
scending vectors « and 8, let C(«, B) be the set of y such that (52) holds for some
LY-concave function f : A — R, i..,

C(e, B) = {y € R" | 3Lbconcave f : A — R satisfying (52)}.

It is easy to see that C(c, B) is a polyhedral convex set, and moreover the following
relationship is known.

Theorem 8.1 (Danilov and Koshevoy 2003). E (¢, 8) = C(«, B).

A further problem has been posed by Danilov and Koshevoy (2003). Theorem 8.1
shows that for any (A, B) with A(A) = o and A(B) = B there exists an Li-concave
function f that satisfies (52) for y = A(A + B). How can we construct such f
from (A, B)? It is conjectured in Danilov and Koshevoy (2003) that

fG, j)=max{wr (AP +BQ) |wP=i,uQ=j QU —P)=0},
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where P and Q run over orthogonal projectors satisfying the specified conditions,
is an L"-concave function on A, and that every LP-concave function on A can be
represented in this form with some (A, B). Note that we have (52), since

f@,0) = max{tr (AP) |uP =i}=a1+ -+,
fn,j)=max{t (A+BQ) |[wQ=jl=(a1+--+ap)+ b1+ +8j,
flk, k) =max{tr (AP +BQ) |t P=twQ=k,P=Q}=9n+"+ W

Some attempts have been made, but no answer has yet been obtained, as far as the
present author knows.

11.9 Discrete Fixed Point Theorem

To motivate a discrete fixed point theorem we first take a glimpse at Kakutani’s fixed
point theorem. Then we explain how the conditions assumed in that theorem can be
“discretized” to yield a discrete fixed point theorem. )

Let S be a subset of R” and F be a set-valued mapping (or a correspondence)
from $ to itself, which is denotedas F : § - — S (or F : S — 25). Apointx € §
satisfying x € F(x) is said to be a fixed point of F. Kakutani’s fixed point theorem
reads as follows.

Theorem 9.1. A set-valued function F : S —— S has a fixed point if

(a) S is a bounded closed convex subset of R",
(b) For each x € S, F(x) is a nonempty closed convex set, and
(c) F is upper-semicontinuous.

In a discrete fixed point theorem we are concerned with F : § —— S where
S is a subset of Z". With reference to the three conditions in Theorem 9.1 above we
proceed as follows to obtain a discrete fixed point theorem.

e Condition (a) assumes that the domain of definition S is nicely-shaped or well-
behaved. In the discrete case we assume S to be “integrally convex.”

e  Condition (b) assumes that each value F(x) is nicely-shaped g_v_vell-behaved.
In the discrete case we assume that F(x) = F(x) N Z", where F(x) denotes the
convex hull of F(x).

e Condition (c) assumes that function F is continuous in some sense. In the dis-
crete case we assume F to be “direction-preserving.”

We will explain the key concepts, “integrally convex” and “direction-preserving”, in
turn.
The integral neighborhood of a point y € R” is defined to be

NO)={z€Z" | llz—yloo < 1},

where || - [lo means the maximum norm. A set S € Z" is said to be integrally convex
(Favati and Tardella 1990) if
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=

m(z)
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Fig. 11.13. Projection 7 (x) with o' (x) = sign (7 (x) — x) = (+1, —1)

yeS = yeSNN(y)

for any y € R”. We have S = § N Z” for an integrally convex set S. It is known that
L%-convex sets and MY-convex sets are integrally convex.

Given F : § —->— S and x € Z" we denote by 7 (x) the projection of x to
F(x). This means that m(x) is the point of F(x) that is nearest to x with respect
to the Euclidean norm (see Fig. 11.13). We also define the direction sign vector
o(x) € {+1,0, —1}" as

o(x) = (01(x), ..., 0n(x)) = (sign (w1 (x) — x1), ..., sign (7w, (x) — xp)).

Then we say that F is direction-preserving if for all x, z € S with ||x — z|[loo < 1 we
have

oix) >0 = 0i(2) >0 (=1,...,n).

Note that this is equivalent to saying that o;(x)o;(z) # —1foreachi = 1,...,nif
x,z€Sand [|x —z]loo < 1.
We are now ready to state the discrete fixed point theorem.

Theorem 9.2 (Iimura 2003; Iimura et al. 2005). A set-valued function F : S ——
S has a fixed point if

(a) S is a nonempty finite integrally convex subset of Z",
(b) For each x € S, F(x) is nonempty and F(x) = F(x) NZ", and
(c) F is direction-preserving.

The proof of this theorem consists of three major steps.

1. We show that an integrally convex set S has a simplicial decomposition 7 such
that for each y € § all the vertices of T'(y) belong to N (y), where S means the
convex hull of S and T (y) the smallest simplex in 7 that contains y.

2. We consider a piecewise linear extension f : S — S of 7 defined as

FOY= ) hem(x) (y= Yo ohex, Y =1, szO)
xeV(y) xeV(y) xeV(y)

where V (y) = T'(y) N N(y). By Brouwer’s fixed point theorem applied to f we
obtain a fixed point y € S of f (i.e., y = f(3).
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3. From the identity

Y M@® =Y Mm@ = Y Ax=f()—-y=0

 xeV(y) x€V(y) xeV(y)

and the assumption of F being direction-preserving, we see that 7 (x) — x = 0
for some x € V(y), which is a fixed point of F.

The discrete fixed point theorem originates in limura (2003) with a subsequent
rectification in Iimura et al. (2005). See Chen and Deng (2006) for a generalization
and van der Laan et al. (2006) for an algorithm.

11.10 Stable Marriage and Assignment Game

Two-sided matching (Roth and Sotomayor 1990) affords a fairly general framework
in game theory, including the stable matching of Gale and Shapley (1962) and the
assignment model of Shapley and Shubik (1972) as special cases. An even more
general framework has been proposed recently by Fujishige and Tamura (2007), in
which the existence of an equilibrium is established on the basis of a novel duality-
related property of M"-concave functions.

Let P and Q be finite sets and put

E=PXQ={(11])IIEP’jEQ}’

where we think of P as a set of workers and Q as a set of firms, respectively. We
suppose that worker i works at firm j for x;; units of time, gaining a salary s;; per
unit time. Then the labor allocation is represented by an integer vector

x=(xj| G j)eE)eZ

and the salary by a real vector s = (s;; | (i, j) € E) € RE. We are interested in the
stability of a pair (x, s) in the sense to be made precise later.
Fori € P and j € Q we put

Enh={}x02={G.N1jeQ} En=Px{j}={G)lieP}

and for a vector y on £ we denote by y(;) and y(;) the restrictions of y to E;) and
E ), respectively. For example, for the labor allocation x we obtain

Xy =(xij | j € Q) eZEO,  xy = (xjlieP)eZFv

and this convention also applies to the salary vector s to yield s(;) and s(j).
It is supposed that for each (i, j) € E lower and upper bounds on the salary s;;

are given, denoted by 7, i € Rand 7;; € R, where T < 7;j. A salary s is called
feasible if&-j < s <m;jforall (i, j) € E. We put

.. =E
n=@;|Gj)eE)eRE, T=@;lG)eb)ekR .
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Each agent (worker or firm) k € P U Q evaluates his/her state x() of labor
allocation in monetary terms through a function f; : ZE® — R. Here the effective

domain domgz fi = {z € ZE® | fi(z) > —o0} is assumed to satisfy the following
natural condition:

domg f is bounded and hereditary, with unique minimal element 0, (53)

where domg f; being hereditary means that 0 < z < y € domgf; implies z €
domg fi.. In what follows we always assume that x is feasible in the sense that

xgy € domgz f; (i € P), xjy €domzf; (e Q).
A pair (x, s) of feasible allocation x and feasible salary s is called an outcome.

Example 10.1. The stable marriage problem can be formulated as a special case of
the present setting. Put x = 7 = 0 and define f; : ZE® — R fori € P and
fi:ZE0 — Rfor j e Qas

aij (y=xj.Jj€Q) bij (z=xi,i€P),
fiky) =10 y=0), fi@@ =140 (z=0), (54)
—00 (otherwise), —o0 (otherwise),

where the vector (a;; | j € Q) € R represents (or, is an encoding of) the preference
of “man” i € P over “women” Q,and (b;; | i € P) € R? the preference of
“woman” j € Q over “men” P. Then a matching X is stable if and only if (x, s) =
(xx, 0) is stable in the present model.

Example 10.2. The assignment model is a special case where & = (—o0, ..., —00),
7 = (409, ..., +00) and the functions f; and f; are of the form of (54) with some
a,-j,b,-j € Rforalli € P,j € Q.

Given an outcome (x, s) the payoff of worker i € P is defined to be the sum of
his/her evaluation of x(;y and the total income from firms:

fie@) + ) sijxij (= (fi #50)(x6))-
jeQ
Similarly, the payoff of firm j € Q is defined as
£ = D siixij (= (Fi = sG)&G))-
ieP

Each agent (i € P or j € Q) naturally wishes to maximize his/her payoff function.

A market equilibrium is defined as an outcome (x, s) that is stable under reason-
able actions (i) by each worker i, (ii) by each firm j, and (iii) by each worker-firm
pair (i, j). To be specific, we say that (x, s) is stable with respect to i € P if

(fi +56))(x@)) =max{(fi +s6)) ) | y < x¢)}- (55)
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Similarly, (x, s) is said to be stable with respectto j € Q if

(fi = sin&gy) = max{(f; —s(;)) @) | z < xj}- (56)

In technical terms (x, s) is said to satisfy the incentive constraint if it satisfies (55)
and (56).

The stability of (x, s) with respect to (i, j) is defined as follows. Suppose that
worker i and firm j think of a change of their contract to a new salary o € [x; i Tij IR
and a new working time of 8 € Z, units. Worker i will be happy with this contract
if there exists y € ZE® such that '

yj =8, Ye < xie (ke Q\{jD, (57)

(fi +50) @) < (fi + (55, ) (), (58)

where (s(:)J , &) denotes the vector s(;) with its j-th component replaced by «. Note
that y means the new labor allocation of worker i with an increased payoff given on
the right-hand side of (58). Similarly, firm j is motivated to make the new contract if
there exists z € Z£( such that

zi=8, w=<x (keP\{i}), (59)

(fj = s @) < (fj = (5, ) @), (60)

where (s(’j'; , @) is the vector s, with its i-th component replaced by «. Then we say
that (x, s) is stable with respect to (i, j) if there exists no (¢, 8, y, z) that simultane-
ously satisfies (57), (58), (59) and (60). ’

We now define an outcome (x, s) to be stable if, foreveryi € P, j € Q, (x,5)
is (i) stable with respect to i, (ii) stable with respect to j, and (iii) stable with respect
to (i, j). This is our concept of market equilibrium.

A remarkable fact, Theorem 10.3 below, is that a market equilibrium exists if
the functions f; are M-concave. See (Murota 2003a, Sect. 11.3) for the relevance
of M¥-concave functions for economic or game-theoretic problems; in particular,
MP-concave functions enjoy gross substitutes property, concave-extendibility. and
submodularity. See (Topkis 1998) for the role of submodularity in this context.

Theorem 10.3 (Fujishige and Tamura 2007). Assume that © < T and, for each
k € PU Q, fi is an M*-concave function satisfying (53). Then a stable outcome
(x,5) € ZE x RE exists. Furthermore, we can take an integral s € ZE if n € ZE,

7€ ZE, and f is integer-valued for everyk € P U Q.
The technical ingredients of the above theorem can be divided into the following

two theorems. Note also that sufficiency part of Theorem 10.4 (which we need here)
is independent of M"-concavity.

Theorem 10.4 (Fujishige and Tamura 2007). Under the same assumption as in
Theorem 10.3 let x be a feasible allocation. Then (x, s) is a stable outcome for some
s if and only if there exist p € RE, u = (uy | i € P) € ZF and v = (v |
jeQ)e ZE such that
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xiy € argmaxz{(fi + pi))(Y) | ¥y S up ), (61)
x(jy € argmaxz{(f; — pj»)@) | z < vp), (62)
Z<p=T, (63)
(i, j) € E,u;j < +00 = p;j =5, Vij = +00, (64)
(i,)) € E,vj < +00 = pij = Tij, uij = +00. (65)

Moreover, (x, p) is a stable outcome for any (x, p, u, v) satisfying the above condi-
tions.

Theorem 10.5 (Fujishige and Tamura 2007). Under the same assumption as in
Theorem 10.3 there exists (x, p, u, v) that satisfies (61)—(65). Furthermore, we can
take an integral p € ZF ifm € ZE, 7 € ZE, and fy is integer-valued for every
ke PUQ.

It is worth while noting that the essence of Theorem 10.5 is an intersection-type
theorem for a pair of MP-concave functions. Indeed it can be derived easily from
Theorem 10.6 below applied to

FeX) =) filkp),  fo) =) FiGx)-

ieP jeQ
Theorem 10.6 (Fujishige and Tamura 2007). Assume n < 7 for x € RE and

— _=E
TeR,andlet f,g : ZE — R be Mh-concave functions such that the effective
domains are bounded and hereditary, with unique minimal element 0. Then there

exist x € domgz f Ndomzg, p e RE, u e z" andv € z*t such that

x € argmaxz{(f +p)(») | y <u},

x € argmaxz{(g — p)(2) | z < v},
T<p=T,

e€cE,u, <400 = pe=nm,, v =400,
e€ E, v, < +00 = pp =Te, Uhe = +00.

, . — _=E
Furthermore, we can take an integral p € ZF if g € ZE, T € Z", and f and g are
integer-valued.

The Fujishige-Tamura model contains recently proposed matching models such
as (Eriksson and Karlander 2000; Fleiner 2001; Sotomayor 2002) special cases. In
particular, the hybrid model of Eriksson and Karlander (2000), with flexible and
rigid agents, is a special case where P and Q are partitioned as P = Py U Py
and 0 = Qoo U Qo, and 7;; = —00, Wjj = +00 for (i, j) € Py X Qo and
z;; = 7wij = 0 for other (i, j). Fleiner’s fixed point theorem approach (Fleiner
2003) seems to be independent of the Fujishige—Tamura model.

Concepts and results of discrete convex analysis are also useful for other prob-
lems of mathematical economics. For instance, Walrasian equilibria of indivisible
markets are discussed in Murota (2003a, Chap. 11) and combinatorial auctions are
treated in Lehmann et al. (2006). See Tamura (2004) for a survey.
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Conclusion

Efficient algorithms are available for minimization of L-convex and M-convex func-
tions (Murota 2003a, Chap. 10). The complexity analysis for the L-convex func-
tion minimization algorithm of Murota (2003b) is improved in Kolmogorov and Sh-
ioura (2007). As other recent papers we refer to Shioura (2003), Tamura (2005) for
M-convex function minimization, and Iwata et al. (2005) for the submodular flow
problem, or equivalently for the Fenchel duality. Most of the efficient algorithms em-
ploy scaling techniques based on proximity theorems; see (Iwata and Shigeno 2003;
Moriguchi et al. 2002; Murota and Tamura 2004) for proximity theorems.

Discrete convex functions appear naturally in operations research. Multimodular
functions, which are L!-convex functions in disguise, are used in the analysis of
queueing systems (or more generally, discrete event systems) (Altman et al. 2000,
2003; Hajek 1985; Murota 2005). In inventory theory Miller (1971) was a forerunner
of discrete convexity in the 1970’s and a recent paper of Zipkin (2008) sheds a new
light on some classical results of Karlin, Scarf, and Morton.

A jump system (Bouchet and Cunningham 1995) is a generalization of a ma-
troid, a delta-matroid and a base polyhedron of an integral polymatroid (or a sub-
modular system). The concept of M-convex functions can be extended to functions
on constant-parity jump systems (Murota 2006). For x,y € Z" we call s € Z"
an (x, y)-increment if s = x; for some i € supp™(y — x) or s = —x; for some
i € supp™ (y — x). Wecall f : Z" — R an M-convex function (on a constant-parity
jump system) if it satisfies the following exchange property: For any x, y € domgz f
and any (x, y)-increment s, there exists an (x 4 s, y)-increment ¢ such that

fR+fO)=fe+s+)+ f(y—s—1).

It then follows that domyg f is a constant-parity jump system. Theorem 2.7 can be ex-
tended and operations such as infimal convolution can be generalized. See (Kobayashi
and Murota 2007; Kobayashi et al. 2007; Kobayashi and Takazawa 2007; Shioura
and Tanaka 2007).
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